Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling...

116
Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry Gießtechnik im Motorenbau Volume 83 · March 2007 International Journal for Industry, Research and Application Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen – PVST H 13410 – Dt. Post AG – Entgelt bezahlt 3 Norsk Hydro

Transcript of Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling...

Page 1: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

Special 2007 The aluminium recycling industry

The value engineering in downstream sectors of modern aluminium industry

Gießtechnik im Motorenbau

Volume 83 · March 2007International Journal for Industry, Research and Application

Gie

sel

Ver

lag G

mbH

· P

ost

fach

1201

58 ·

D-3

0907 I

sern

hag

en –

PV

ST

H 1

341

0 –

Dt.

Po

st A

G –

Entg

elt

bez

ahlt

3

No

rsk

Hyd

ro

Page 2: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

HE-ECOMELT-PPState of the art

There are many benefits in one-stop shopping –even for industrial goods. Reliable, co-operativeplanning, specifications, which meet exactly yourdemands and individual service-packages to operateon first-class level throughout the whole life-time ofthe plant – this can be realized by one of the mostexperienced suppliers: Hertwich Engineering.

Major benefitsHertwich Engineering is dedicated to leading tech-nology in the aluminum casthouse. We add valueby designing integrated turn-key solutions. Frommelting and remelting to testing and packing. Theresults are convincing: highest quality of productsat lowest cost-of-ownership. This has been provenby numerous plants all over the world.

He-Ecomelt-PPHigh capacity system for remelting extrusionscrap contaminated with paint and plasticProduction: 6 tons per hourContent of paint and plastic up to 5 % of chargeweightHydrocarbons are pyrolyzed and burnt in anenvironmentally sound wayResidue carbon is also gasified and burnt thusavoiding formation of hard carbides in the meltLow energy consumption, low fuel gas con-sumption (400 to 450 kWh/ton), low oxidationlosses (metal losses)Bundles up to 7.2 m length can be charged

HERTWICH ENGINEERING GMBH

Weinbergerstrasse 65280 Braunau, Austria

Phone: +43 (0) 7722 806-0Fax: +43 (0) 7722 806-122

E-mail: [email protected]: www.hertwich.com

Leading technology in the aluminum casthouse.

MEETING your EXPECTATIONS

We will exhibit atALUMINIUM CASTING 2007

March 27 to 29Moscow, Russia

Short profile scrap. View of chamber 2. Long profile scrap in bundles.

Page 3: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

ALUMINIUM · 3/2007 �

E D I T O R I A L

Volker Karow

Chefredakteur

Editor in Chief

Hardly a day goes by when we do not hear about the dangers of dependence on oil and gas imports and the supply risks associated with this. The two fossil fuels count in economic policy terms as “strategic” forms of energy of high, indeed essential importance for the economy, particularly against the background of the voracious appetite of China, India and other fast-devel-oping countries for energy. Security of supply is (again) a central focus of energy policy in the fight for scarce resources. Against that background there is increasingly often talk about the “European foreign policy for energy”, to secure a position in the sharing of energy resources that will become more and more scarce in the future.

It is all the more surprising that the political agenda places no similar em-phasis on a “European raw materials policy”, with a view to securing con-tinuity of supply for the German and European economies as regards the basic materials needed for industrial processes. It is not only shortage of energy, but also a lack of raw materi-als that can slow down an economy and drastically restrict its potential for growth.

Since the only relevant raw mate-rial sources in Germany and Europe are scrap metals, including of course aluminium, a forward-looking EU raw materials strategy is called for to resist the drastic outflow of scrap to Asia, which could have severe nega-tive effects on the European econo-mies. The problem should not be un-derestimated: considering aluminium scrap alone, we are talking here about at least one million tonnes that have gone to China and India in the past three years, and this is a trend which is increasing as time goes by.

From the market economy stand-point a restriction of access to the European market may be the wrong approach. But inactivity too does not help. Europe must keep a close eye on its economic interests. The other players in the world trade are also looking to theirs.

Plädoyer für eine

europäische Roh-

stoffstrategie

Plea for a Europe-

an raw materials

strategy

Kaum ein Tag, an dem nicht über die Gefahren der Abhängigkeit von Öl- und Gasimporten und die damit verbundenen Versorgungsrisiken be-richtet wird. Die beiden fossilen Ener-gieträger gelten wirtschaftspolitisch als „strategische“ Energien von hoher, ja essenzieller volkswirtschaftlicher Bedeutung, auch vor dem Hintergrund des enormen Energiehungers Chinas, Indiens und anderer Schwellen-länder. Versorgungssicherheit wird (wieder) zur energiepolitisch zentra-len Kategorie im Kampf um knappe Ressourcen. Vor diesem Hintergrund fällt immer öfter das Wort von der „europäischen Energieaußenpolitik“, um sich bei der Verteilung künftig knapper werdender Energien zu po-sitionieren.

Umso verwunderlicher, dass nicht mit gleichem Nachdruck eine „euro-päische Rohstoffpolitik“ auf der poli-tischen Agenda steht, die die konti-nuierliche Versorgung der deutschen und europäischen Volkswirtschaften mit den Grundstoffen industrieller Prozesse im Blick hat. Nicht nur der Mangel an Energie, auch der Mangel an Rohstoffen kann eine Volkswirt-schaft, nun, wenn nicht lahm legen, so doch ihr Wachstumspotenzial dra-stisch einschränken.

Da die einzige relevante Rohstoff-quelle in Deutschland und Europa Me-tall- und mithin Aluminiumschrotte sind, ist eine langfristig orientierte EU-Rohstoffstrategie angeraten, die geeignet ist, einem drastischen Abfluss von Schrotten nach Asien zu begegnen, der die europäischen Volkswirtschaften empfindlich stören kann. Das Problem ist nicht zu unter-schätzen: Wir sprechen hier, allein mit Blick auf Aluminiumschrott, im-merhin von einer Million Tonnen, die in den letzten drei Jahren nach China und Indien abgeflossen sind. Tendenz langfristig steigend.

Eine Beschränkung des europäi-schen Marktzugangs mag aus markt-wirtschaftlicher Sicht der falsche Ansatz sein. Tatenlosigkeit hilft aber auch nicht weiter. Europa muss seine wirtschaftlichen Interessen im Auge behalten. Die anderen Akteure im Welthandel haben die ihren ebenfalls im Blick.

Page 4: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

4

ED I TOR IALPlädoyer für eine europäische Rohstoffstrategie . . . . . . . . . . . . . . . . . . . . . . . . . . �

AKTUELLESPersonen, Unternehmen, Märkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

W IRTSCHAFTAluminiumpreise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Produktionsdaten der deutschen Aluminiumindustrie . . . . . . . . . . . . . . . . . . 12Industriestrompreise: Wettbewerb im Strommarkt unzureichend . . . . 14ThyssenKrupp Services wächst im Aerospace-Geschäft .................... 14Otto Junker übernimmt Mehrheit an IUT ...................................... 18

SPEC IAL 2007: D I E INTERNAT IONALE ALUMIN IUM-RECYCL ING INDUSTR I E . . . . . . . . . . . . . . . . . . . . �0Englischsprachige Artikel: s. nebenstehendes InhaltsverzeichnisOtto Junker UK: Neue Kippdrehtrommelöfen im Programm ............�8„Greenmelt“: umweltfreundlich und mit hoher Schmelzausbeute .....48Generationenwechsel bei Thermcon Ovens ...................................49Internationale Metallindustrie zu Umweltanalyse von Metallen ........51Agor erweitert Aluminium-Salzschlackeaufbereitung ......................54 Mobile Tauchsonde für die Schmelzanalyse ...................................55

INTERNAT IONALE BRANCHENNEWS . . . . . . . . . . . . . 56

MARKT UND TECHN IKSolide Auftragslage bei Tuben und Aerosoldosen . . . . . . . . . . . . . . . . . . . . . . . 62Thermcon Ovens liefert Walzbarren-Gießstraße nach China . . . . . . . . . . . 6�Neuartige Beschichtung beflügelt Aluminium-Zerspanung.. . . . . . . . . . . . 71Ein neues wässriges Reinigungssystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ALUMIN IUM IM AUTOMOB I L4. VDI-Tagung „Gießtechnik im Motorenbau“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Druckgießtechnik für China ........................................................67 Aluminiumanteil in Neufahrzeugen steigt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Deutsche Autobauer 2006 mit neuen Rekorden ............................68Sapa Technology: Autokühler im Blickpunkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Der neue BMW 1er: sportlich, innovativ, effizient .........................70

ÖKOLOG I EUSA überdenken Klimapolitik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7�

VERANSTALTUNGEN EAA: Aluminium Renovation Award 2007 .....................................74Geesthachter Schweißtage 2006: Festphase Fügeverfahren .............82Einführung in die Technologie des Aluminiums ..............................8�Fügen von Aluminiumprofilen und -blechen ........................................85Termine, Fortbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

DOKUMENTAT IONNeue Bücher ............................................................................87Literaturhinweise ......................................................................89Patente .....................................................................................91Impressum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11�Vorschau .................................................................................114

BEZUGSQUELLENVERZE I CHN I S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

I N H A L T

ALUMINIUM · 3/2007

4848

4646

�6�6

2020

Page 5: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

5ALUMINIUM · 3/2007

ED I TOR IALPlea for a European raw materials strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

NEWS IN BR I E FPeople, companies, markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ECONOMICSAlcoa: Highest income and revenue in its history . . . . . . . . . . . . . . . . . . . . . . . 16Rusal with strong 2006 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Aluminium price is expected to fall in 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Otto Junker takes over majority interest in IUT . . . . . . . . . . . . . . . . . . . . . . . . . 18Hydro’s Karmøy appeal sent to Environment Ministry . . . . . . . . . . . . . . . . . 18The value engineering in downstream sectors of modern aluminium industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 China’s aluminium activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SPEC IAL 2007: THE ALUMIN IUM RECYCL ING INDUSTRYSecondary aluminium activities during 2006 ..................................26U.S. Department of Energy backs secondary smelting project ..........32Secondary and recycling news in brief ..........................................32Modern furnace installation - design criteria aspects ......................36Compact type remelt plant for contaminated scrap using latest melting technology ............................................................36O. Junker UK: Launching new tilting rotary furnaces .....................38EMP system and the Lotus vortex ................................................42Strategy for automatic furnace skimming ......................................44Advantages of the IRMA process for the in-furnace treatment of aluminium .............................................................................46“Greenmelt”: environmentally friendly and with a high melt yield .. 48 Declaration by the metals industry on recycling principles . . . . . . . . . . . . 51

COMPANY NEWS WORLDWIDEAluminium smelting industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Bauxite and alumina activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Aluminium semis, On the move ...................................................59

MARKETS AND TECHNOLOGYEuropean tube industry successful in 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Thermcon Ovens delivers casting line to China . . . . . . . . . . . . . . . . . . . . . . . . . . 63A new water-based cleaning system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

AUTOMOT IVEEnvironmental benefits in Hydro brazing technology . . . . . . . . . . . . . . . . . . . 68Sapa Technology: car radiator in focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Rolls Royce Phantom Drophead Coupé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ECOLOGYAmerica on the way to a new climate policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Developing powers seen critical to climate pact . . . . . . . . . . . . . . . . . . . . . . . . 73

RESEARCHIn search of ways to increase Al-Li-Cu-Mg system aluminum-lithium alloy processing ductility ...................................76Potentials of new ductility criterions in car development with lightweight materials...........................................................80

EVENTSEAA Aluminium Renovation Award 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Metallurgy-Lithmash 2007, Moscow, Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83ExpoAlumínio 2007, São Paulo, Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Extrusion Workshop and 2nd Extrusion Benchmark, Bologna, Italy . . . 84Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

DOCUMENTAT IONNew books, Literature service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

SOURCE OF SUPPLY L I ST ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Inserenten dieser Ausgabe

List of advertisers

AE Light Metal Casting GmbH und Co.KG 67Alcutec Engineering GmbH 55 Böhler Edelstahl GmbH, Österreich 27Coiltec Maschinenvertriebs GmbH 30 Drache Umwelttechnik GmbH 39Hertwich Engineering GmbH, Österreich 02High Performance Industrie-Technik GmbH, Österreich 42Inotherm Industrieofen- und Wärmetechnik GmbH 11, 60Interall s.r.l., Italien 13LOI Thermprocess GmbH 45Messe Düsseldorf GmbH 15Messezentrum Salzburg GmbH, Österreich 25Precimeter Control AB, Schweden 66 Bruno Presezzi SpA, Italien 19 Reed Exhibitions 116Selema s.r.l., Italien 21Signode System GmbH 29

C O N T E N T S

6969

72

Page 6: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

A K T U E L L E S

ALUMINIUM · 3/2007

Peak – ein „Ort der Ideen“ Die Peak Werkstoff GmbH, Velbert, ist bei der Initiative „Deutschland – Land der Ideen“ als eines der 365 Unternehmen ausgewählt wor­den, die für innovative Leistungen und kreative Ideen stehen. Die Initiative unter der Schirmherr­schaft von Bundespräsident Horst Köhler kooperiert mit Regierung, Wirtschaft und gesellschaftlichen Einrichtungen, die das Ziel teilen, das Deutschlandbild als „Land der Ideen“ zu fördern. In einem bundes­weiten Wettbewerb wurden auch für 2007 365 „Orte“ – private und öffentliche Institutionen, kulturelle und kirchliche Einrichtungen, so­ziale Projekte, Unternehmen und Forschungszentren – ausgewählt, die sich, ihre Ideen und Innovatio­nen an je einem Tag im Jahr der Öffentlichkeit präsentieren. Am 31. Oktober 2007 wird die Peak Werk­stoff GmbH ein solcher Ort sein. Das Unternehmen entwickelt und produziert pulvermetallurgisch her­gestelltes Hochleistungsaluminium. Es vermarktet mit neuen Alumini­um­Werkstoffklassen Profile und Bauteile für die Automobilindustrie, den Maschinenbau sowie die Luft­ und Raumfahrttechnik.

Zarges in neuen HändenDie Privat Equity Gesellschaft Taros Capital verkauft Zarges Tubesca, den europäischen Marktführer für aluminiumbasierte Steigtechnik und Logistikprodukte, an Granville Baird Fonds. Die Transaktion ist 156 Mio. Euro schwer und soll nach Geneh­migung durch die Kartellbehörden bis Ende März abgeschlossen sein. Taros Capital hatte Zarges Tubesca 2001 erworben und das Geschäft mit einer Akquisition in Frankreich wachstumsorientiert weiterentwi­ckelt. Der Jahresumsatz der Gruppe beträgt rund 230 Mio. Euro. Erklär­tes Ziel des Managements ist es, weiter zu expandieren und neue Märkte zu erschließen. Die dazu nö­tigen Investitionsmittel sollen nun von Granville Baird kommen.

Die deutsche Wirtschaft trauert um eine ihrer profiliertesten Unternehmer­persönlichkeiten. Am 2. Februar 2007 verstarb im Alter von 79 Jahren Dr. Hans Joachim Gottschol.

1927 in Hagen geboren arbeitete Gottschol nach einem Studium der Metallhüttenkunde seit 1954 an der Spitze seines Familien­unternehmens, des Me­tallwerks Krauthausen. 1994 gründete er die Rackwitz Aluminium GmbH. „Gesamtmetall wird seinen Ehrenprä­sidenten Hans­Joachim Gottschol als weitsich­tige und mutige Unter­nehmerpersönlichkeit in Erinnerung behal­ten“, sagte Gesamtme­tall­Präsident Martin Kannegiesser. Eines der herausragenden Ergebnisse des ver­bandspolitischen Engagements Gott­schols sei der Tarifvertrag Beschäf­tigungssicherung gewesen, der das Prinzip der Arbeitszeitflexibilisierung weiterentwickelte und abrundete.

Gottschol war von 1984 bis 1995 Vor­sitzender des Verbandes der Alumini­umrecycling­Industrie (VAR). In die­ser Funktion hat er wesentlich dazu beigetragen, die Bedeutung des Recy­clings für den Werkstoff Aluminium über den Kreis der Recyclingindustrie hinaus einer breiten Öffentlichkeit be­

wusst zu machen. Gott­schol zählt auch zu den Pionieren des Einsatzes von Aluminiumschrot­ten zur Herstellung von Knetlegierungen.

„Mit Herrn Dr. Gott­schol ist ein Unterneh­mer von uns gegangen, der der gesellschaft­lichen Verantwortung des Unternehmers gro­ße Bedeutung beimaß und dies auch prakti­zierte. Hiervon zeugen

seine vielfältigen Aktivitäten in den Verbänden“, würdigten Erich Oe­tinger als Vorsitzender und Günter Kirchner als Geschäftsführendes Vorstandsmitglied des VAR die Ver­dienste Gottschols.

Hans-Joachim Gottschol verstorben

Die vorgeschlagene Halbierung des EU­Importzolls auf Rohaluminium von sechs auf drei Prozent und sei­ne komplette Abschaffung zum 1. Januar 2009 ist vorerst abgelehnt. Bei Gesprächen im EU­Ministerrat Anfang Februar fand der Vorschlag keine ausreichende Unterstützung. Seitens einiger Mitgliedsländer mit eigener Hüttenproduktion hatte sich eine Sperrminorität abgezeichnet. Vor allem Warschau hatte die Absen­kung des Importzolls angestrebt. Die heimischen Verarbeiter hatten früher zollfreies Aluminium aus Russland bezogen, müssen aber seit dem Bei­tritt Polens zur Europäischen Union den 6­prozentigen Importaufschlag zahlen.

Der Anteil zollfreier Einfuhren hat sich im Laufe der Jahre durch die Zu­nahme der Produktionskapazitäten in solchen Drittländern erhöht, die im

EU-Importzoll auf Aluminium bleibtRahmen eines Präferenzabkommens von Einfuhrzöllen befreit waren. Gegenwärtig unterliegen rund vier Fünftel des gesamten Gemeinschafts­verbrauchs von Primäraluminium keinem Einfuhrzoll. Hiervon stammt eine Hälfte aus EU­Produktion und die andere Hälfte aus zollfreien Ein­fuhren (2,7 Mio. t) von Handelspart­nern, für die ein Präferenzabkommen besteht.

Der Marktanteil importierten Roh­aluminiums, das einem Einfuhrzoll unterliegt, beträgt lediglich 15 Pro­zent des Gesamtverbrauchs an Primär­aluminium. 2005 wurden 1,2 Millio­nen Tonnen Rohaluminium zollfrei und 1,1 Millionen Tonnen unter An­wendung eines 6%­Zolls importiert. Das entspricht einem Importanteil an den Gesamteinfuhren von Rohalumi­nium von 52,9 bzw. 47,1 Prozent.

Gesamtmetall

Page 7: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

N E W S I N B R I E F

ALUMINIUM · 3/2007

Christel Bories, Senior Vice President, Alcan Inc. and President and CEO of Alcan’s Engineered Products Group has been elected Chairman of the European Aluminium Association’s (EAA) Executive Committee. Her new mandate lasts for two years and began on 1 January 2007. Ms Bories assumed her current position at Alcan on 1 December 2006 succeeding Michel Jacques who has taken over responsi­bility for Alcan’s Primary Metal busi­ness. She was previously in charge of the company’s Packaging Group. As head of the Engineered Products Group, Ms Bories oversees 120 facili­ties in 32 countries and regions.

Patrick de Schrynmakers, Secre­tary General of the EAA, said, “We are certain that Christel’s extensive experience will help us to get the right guidance in order to successful­ly manage the issues facing Europe’s aluminium industry. Under her lead­ership, the EAA will further promote the aluminium industry’s interests throughout Europe and the world.”

Alcan’s Ch. Bories new Chairman of the EAA

Aluminium is shaping up to be the laggard in the bull market again in 2007. Metal Bulletin research (MBR) has revised its production forecast up again in December 2006, mainly due to Chinese smelters that continue to ramp up production. This trend will continue strongly in 2007. With alumina prices forecast to remain rela-tively depressed, but exchange prices for aluminium set to stay relatively elevated, smelters can expect high profits in 2007.The revised Chinese aluminium production forecast for 2007 is 11.1 million tonnes from previous estimates of 10.5 million tonnes for 2006. Aluminium demand growth looks set to remain at a strong and healthy 7%. Nevertheless, the headlong pace of supply growth will eventually swing the market into surplus, which will then weigh on prices.

LME cash price forecast is US$ 2,325 per tonne. Although at the beginning of 2007 supply is still very tight across the board,

the slowdown in the US economy and some uncertainty over China’s growth pros-pects have weakened demand for many metals and undermined investor sentiment.

Annual average LME 3-month cash price forecast for aluminium

Institutions and banks US$/tMetal Bulletin Research 2,350Man Financial 2,825RBC 2,866UBS 2,646Calyon 2,500Goldman Sachs 2,425Sucden 2,580Natexis 2,300Mitsui 2,325Bear Stearns 2,205Barclays Capital (cash) 2,738Macquarie Bank (cash) 2,315LME 2,325

200� Aluminium Price Preview

Hindalco acquires Novelis for US$�.0bn

Multi-alloy aluminum ingots using Novelis Fusion technology

Nov

elis

Hindalco Industries Ltd., India‘s larg­est non­ferrous metals company, and Novelis Inc, the world‘s leading pro­ducer of aluminium rolled products, have entered into a definitive agree­ment for Hindalco to acquire Novelis in an all­cash transaction which val­ues Novelis at approx. US$ 6.0 billion, including approx. US$ 2.4 billion of debt. Following the transaction, Hin­dalco, with Novelis, will be the world‘s largest aluminium rolling company, and one of the biggest producers of primary aluminium in Asia.

Kumar Mangalam Birla, Chairman of the Aditya Birla Group and Hin­dalco’s parent, said, “The acquisition of Novelis is a landmark transaction for Hindalco and our Group. It is in line with our long­term strategies of expanding our global presence across our various businesses and is consist­ent with our vision of taking India to the world. The combination of Hin­dalco and Novelis will establish a glo­bal integrated aluminium producer with low­cost alumina and aluminium production facilities combined with high­end aluminium rolled product capabilities. The complementary ex­pertise of both these companies will create and provide a strong platform for sustainable growth and ongoing success.”

Acting CEO of Novelis, Ed Blech­schmidt, said, “After careful consid­eration, the Board has unanimously agreed that this transaction with Hin­dalco delivers outstanding value to Novelis shareholders. Hindalco is a strong, dynamic company. The combi­nation of Novelis‘ world­class rolling

assets with Hin­dalco‘s growing primary alumin­ium operations and its down­stream fabricat­ing assets in the rapidly growing Asian market is an exciting pros­pect.”

The transac­tion has been unanimously ap­proved by the

Boards of Directors of both compa­nies. The closing of the transaction is not conditional on Hindalco obtain­ing financing. The transaction will be completed by way of a plan of arrange­ment under applicable Canadian Law. It will require the approval of 66,6% of the votes cast by shareholders of Nov­elis at a special meeting to be called to consider the arrangement followed by court approval. The transaction is ex­pected to be completed in the second quarter of 2007.

Page 8: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

A K T U E L L E S

ALUMINIUM · 3/2007

Die deutsche Werkzeugmaschinen­produktion bricht alle Rekorde: 10,8 Mrd. Euro Umsatz produzier­ten die Hersteller 2006, das ist ein Plus von vier Prozent gegenüber dem Vorjahr. Für das laufende Jahr erwartet Carl Martin Welcker, Vorsitzender des VDW (Verein Deutscher Werkzeugmaschinen­fabriken) noch einmal weitere sieben Prozent Zuwachs auf dann 11,5 Mrd. Euro.

Vor allem der Export hat die Branche ein weiteres Mal zum Erfolg geführt. China hat sich abermals als wich­tigster Absatzmarkt vor den USA be­hauptet. Daneben ragen die Exportzu­wächse nach Korea und Indien positiv heraus. Dies sei ein klares Zeichen für die deutlich gewachsenen Ansprüche der dortigen Industrie, so Welcker. Die asiatischen Anbieter ihrerseits drängen zunehmend mit höherrangi­gen Technologien auf den deutschen Markt. Insgesamt wuchs der Import in den ersten drei Quartalen 2006 um 15 Prozent.

Auch die Nachfrage aus Deutsch­land hat gehörig zugelegt. Allein 2006 sind die Bestellungen um mehr als ein Viertel gewachsen. Das verschafft dem nunmehr vier Jahre währenden Auf­schwung des deutschen Werkzeug­maschinenbaus ein stabiles zweites Standbein.

Der optimistische Ausblick für 2007 basiert auf mehreren Indikatoren: Der Auftragsüberhang trägt weit in das laufende Jahr hinein und das internationale wirtschaftliche Um­feld bietet Rückenwind. Die globale Nachfrage nach Werkzeugmaschinen läuft seit Mitte 2003 stetig aufwärts. Zu der hohen Nachfragedynamik aus den asiatischen Märkten heraus über­nimmt auch die Nachfrage aus Europa eine Lokomotivfunktion. Davon profi­tiert das Schwergewicht Deutschland, denn über die Hälfte seines Exports geht nach Europa.

Das Geschäftsklima in der inländi­schen Investitionsgüterindustrie zeigt steil nach oben. Fast alle Abnehmer­industrien wollen ihre Anlageinvesti­tionen weiter hochfahren. Besonders aktiv bleiben der Maschinenbau, die Elektrotechnik und der Fahrzeugbau. Auch die Investitionen der Automobil­industrie und ihrer Zulieferer haben Fahrt aufgenommen. Einzige Ausnah­me sei die Metallerzeugung und ­be­arbeitung, so Welcker, deren Anlage­investitionen sich leicht eintrüben, nachdem die Budgets zuvor stark aus­geweitet wurden.

„Die Zeichen stehen auf Wachstum. Das sollte unseren Mitgliedern auch ermöglichen, dem ausufernden An­spruchsdenken einiger großer Abneh­mer, z. B. aus der Automobilindustrie, entgegenzutreten und faire Verträge

Deutsche Werkzeugmaschinen-hersteller auf Rekordkurs

Die Zeichen stehen auf Wachstum, so der VDW-Vorsitzende Carl Martin Welcker

durchzusetzen“, hofft Welcker. Auch erlaube es, die Preise zu erhöhen und die gestiegenen Kosten für Material und Personal zumindest teilweise an die Kunden weiterzugeben.

Der SMS-Konzern, Düsseldorf, hat im abge-laufenen Jahr seinen Auftragseingang auf mehr als 3,2 Mrd. Euro ausweiten können. Diese Steigerung ist vor allem auf die starke Weltkonjunktur in der Stahlindustrie zurückzuführen, wo kräftig investiert wur-de. Doch auch die anderen Märkte, die von den SMS-Unternehmen bedient werden, z. B. die Härte- und Schmiedeindustrie oder die NE-Metallbranche, haben sich positiv entwickelt. Dabei zeigt der Auftragsein-gang aus Deutschland von rund 13 Prozent am Gesamtvolumen erstmals seit Jahren

eine leichte Erholung des Inlandsmarktes. Die wichtigsten Marktregionen für SMS bleiben China, Russland und Indien. Neben der guten Geschäftslage im klassischen Maschinenbau tragen vor allem die Wachs-tumsgebiete Elektrik, Automation und Service zum gestiegenen Auftragsvolumen bei. Die seit geraumer Zeit verfolgte Politik, den Kunden nicht nur Maschinen, sondern komplette Produktionssysteme anzubieten und anschließend zu warten, trägt in im-mer stärkeren Maße zum Geschäftserfolg bei.

Starkes Wachstum der SMS-Gruppe

VD

W

NA baut eigenes KraftwerkDie Norddeutsche Affinerie AG (NA) wird ab 2009 gemeinsam mit der Ham­burger Stadtreinigung GmbH ein Er­satzbrennstoff­Kraftwerk zur Strom­erzeugung betreiben. Damit will der Hamburger Kupferkonzern seine Ab­hängigkeit von den großen Stromver­sorgern „spürbar verringern“, wie der NA­Vorstandsvorsitzende Werner Marnette auf der Bilanzpressekonfe­renz Ende Januar sagte. Die NA zählt ähnlich wie die Aluminiumerzeuger zu den energieintensiven Unterneh­men in Deutschland.

EU genehmigt Fusion

Die Europäische Kommission hat die geplante Dreierfusion zwischen Rusal, Sual und Glencore genehmigt. Durch die Fusion werde der Wettbewerb im europäischen Wirtschaftsraum „nicht erheblich beeinträchtigt“, so die Kom­mission. Im Geschäft mit Bauxit, Alu­miniumoxid, Primäraluminium und Aluminiumfolie bewege sich die neue Gesellschaft United Company Rusal auf allen Märkten deutlich unterhalb der Schwelle, ab der eine Beeinträch­tigung des Wettbewerbs gegeben sei.

Page 9: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

�ALUMINIUM · 3/2007

The global aluminium market will face a 315,000 tonne surplus in 2007 as supply increases faster than demand. Primary aluminium demand will rise 6.1 per cent to 35.9 million tonnes.

China will continue to drive growth – aluminium demand there is slated to grow by 17 per cent. Demand from former CIS and Eastern Europe will rise 6.1 per cent while demand from Asia excluding China and Japan will rise 6 per cent. Demand will just grow by 1.9 per cent in Western Europe. Japanese consumption is expected to remain almost flat, edging up just 0.1 per cent, while demand from the rest of the world is projected to increase 5 per cent. The only region likely to see a fall in demand is the USA, where Sumitomo Corp is predicting a 1 per cent decline.

Supply growth will outstrip demand, rising 7.1 per cent year­on­year to 36.2 million tonnes. Output from China will increase by 10 per cent while output from the former CIS and Eastern Europe will rise by 7.9 per cent. Middle East and US production are likely to increase 7.3 per cent and 7.2 per cent respectively. Although the forecast 315,000 tonnes surplus amounts to less than 1 per cent of global output it is nevertheless likely to send prices on the LME lower later in the year.

Three­month aluminium is likely to trade at US$ 2,400 to 2,900 per tonne in the first half of the year, before slipping to an average of US$ 2,200 to 2,600 per tonne in the third quarter and US$ 2,100 to 2,400 per tonne in the fourth quarter. paw

Global aluminum market to face 315,000 tonnes surplus in 200�

Ole Enger, Executive Vice President of Orkla‘s Speciality Materials busi­ness, took over as President and CEO of Sapa on 15 February 2007. He will also be CEO of the merged Sapa­Al­coa company after it has been formally established. Enger succeeds Lennart Evrell, who will continue as Executive Vice President of Sapa. Orkla Group President and CEO Dag J. Opedal will take over as Chairman of the Board of Directors of Sapa and the merged Sapa­Alcoa company. “The Sapa Group is at the threshold of an excit­ing development phase. By combining the leadership of Ole Enger and Len­nart Evrell, we create a strong man­agement team,“ said Opedal.

Sapa with new President and CEO

Outokumpu Technology and German technology company Riedhammer GmbH have signed an agreement on close technology cooperation in the field of carbon plants of the primary aluminium industry. Outokumpu has over 50 years experience in supply­ing green anode plants and equipment for aluminium smelters with a track record of over 40 plants and numer­ous equipment installed worldwide. The company is also an important supplier of rod shop process equip­ment and related technologies to the primary aluminium smelters.

Riedhammer is experienced in the supply of anode baking furnace tech­nologies to the aluminium smelters. The knowledge base coupled with the recent acquisition of the Alesa bake oven technology consolidates Ried­hammer as one of the leading anode baking furnace technology providers in the world. The company has an installed base of over 170 plants glo­bally. With this cooperation the two companies will reinforce their mar­ket leadership and provide advanced concepts for cost competitive modern carbon plants for the aluminium in­dustry.

Outokumpu and Ried-hammer cooperate in smelter technologies Hydro with new

board members

Tom Røtjer and Jørgen C. Arentz Rostrup have been appointed mem­bers of Hydro‘s Corporate Manage­ment Board, with responsibilities for Projects and Power, respectively. The appointments reflect Hydro‘s ambi­tions to grow as a focused aluminium company and will take effect following completion of the proposed merger of Hydro’s oil and gas activities with Sta­toil, expected in third quarter 2007.

Tom Røtjer (53) will be responsible for Hydro’s projects in Norway and abroad, including the planned Qata­lum aluminium project in Qatar. He has been involved in most of Hydro’s development projects since he joined the company in 1980 and headed Hy­dro’s technology and project sector for nearly six years.

Jørgen C. Arentz Rostrup (40) will manage Hydro’s power production fa­cilities, including solar energy activi­ties. He comes from a position as head of Oil & Energy Markets. Since joining Hydro in 1991, he has held a number of management positions in energy, finance and international business development in Norway and abroad.

China’s aluminium activities The move to downstream products is more pronounced in the aluminium market. After the Chinese government launched a number of measures over the last years to crack down on inefficient, energy-intensive primary aluminium production, smelters have rushed to the fabrication market. The latest producer to consider changing its focus is Yankuang Ke-Au Aluminium, which operates a 140,000 tpy smelter in eastern Shandong province. The company may make a strategic move into aluminium alloys and aluminium recycling. Aluminium exports could be faced with even higher costs in the future. If the industry faces pressure from expansion at the same time as exports grow rapidly, then the export tax could be quickly increased to 30%. While export taxes are one major concern for aluminium producers, raw material costs are another. Chinese alumina production has surged in 2006, sending spot alumina prices tumbling by more than 50%, and relieving cost pressures for many alu-minium producers. But alumina refineries in turn could soon be facing challenges from rising bauxite costs.

N E W S I N B R I E F

Page 10: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

10

W I R T S C H A F T

ALUMINIUM · 3/2007

Quelle: Trimet AG, DüsseldorfTrimet Aluminium AG

Page 12: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

12 ALUMINIUM · 3/2007

W I R T S C H A F T

Primäraluminium Sekundäraluminium Walzprodukte > 0,2 mm Press­ & Ziehprodukte**

Produktion(in 1.000 t)

+/­in % *

Produktion(in 1.000 t)

+/­ in % *

Produktion(in 1.000 t)

+/­in % *

Produktion(in 1.000 t)

+/­in % *

Dez 05 47,6 ­16,5 54,6 6,6 122,6 2,6 31,4 13,4

Jan 06 42,9 ­24,8 65,4 16,2 152,0 6,9 45,4 10,7

Feb 38,7 ­25,5 65,1 9,6 158,6 15,4 46,0 8,6

Mrz 43,1 ­24,8 78,9 27,1 178,6 18,0 51,9 22,0

Apr 42,4 ­23,8 62,5 2,8 149,1 ­2,6 42,8 ­3,8

Mai 43,4 ­24,0 68,0 22,1 170,8 16,4 49,7 21,8

Jun 43,2 ­20,7 65,7 3,3 163,7 9,1 47,8 0,1

Jul 45,1 ­17,9 64,0 4,6 164,7 5,0 48,5 9,3

Aug 45,2 ­16,7 59,6 7,2 166,5 4,6 48,1 9,1

Sep 42,8 ­19,4 66,9 6,9 160,4 1,5 51,1 9,2

Okt 44,1 ­17,4 65,0 6,1 170,0 11,0 52,2 21,1

Nov 41,9 ­17,9 73,0 11,8 163,9 8,7 52,1 10,2

Dez 42,8 ­10,1 61,6 12,9 124,1 1,2 34,6 10,2

* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf

Produktionsdaten der deutschen Aluminiumindustrie

Press- und ZiehprodukteWalzprodukte > 0,2 mm

Primäraluminium Sekundäraluminium

Page 13: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

Courtesy Alcoa Brazil, 81000 Ampere.

Via Marinuzzi, 38 - 41100 MODENA - ITALY - Tel. +39 059 280362 - Fax +39 059 280462 - E-Mail: [email protected] - http://www.italtecno.com

DAM

Gra

fica &

Info

rmat

ica -

RE -

Italy

At your service since 1974

�����������������������������������������������

���������� ������������������������������� ������������

���� ������������� ��������������� ���

���������������������������������������

����������� ������� ���

����� ����������� ���� ��

� ��������� ���������������������������� ����� ��

������������������������� ����

���� ��������������������� ����������������������� ����������� �����

�����­� ���� �� ����� ����� ���� ���������

AUTOMATIC DIE CLEANING CAUSTIC SODA RECOVERY

Page 14: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

14 ALUMINIUM · 3/2007

W I R T S C H A F T

Ein aktuelles Gutachten der TU Dresden belegt, dass die Industrie seit Jahren weit höhere Strom­preise zahlen muss, als dies bei funktionierendem Wettbewerb der Fall wäre.

Die vom Verband der Industriellen Energie­ und Kraftwirtschaft (VIK) an den Lehrstuhl für Energiewirtschaft und Public Sector Management der TU Dresden in Auftrag gegebene Stu­die zur Preisbildung und Marktmacht auf den deutschen Elektrizitätsmärk­ten bestätigt, dass es mit dem Wettbe­werb im Strommarkt nicht weit her ist. Die Wissenschaftler zeigen auf, dass die Strompreise zum Teil erheb­lich über den Grenzkosten liegen, die bei funktionierendem Wettbewerb den Referenzpreis bilden. Bei der Ein­preisung von CO2­Zertifikatspreisän­derungen werden Preissteigerungen deutlich stärker weitergegeben als Preissenkungen. Der Markt für grenz­überschreitende Netzkapazitäten ist ineffizient strukturiert, was zu Beein­trächtigungen des Wettbewerbs und zu Wohlfahrtsverlusten führt.

Als Konsequenz fordern die Ver­fasser der Studie „eine stärkere ord­nungspolitische Ausrichtung der Energiepolitik sowie eine aktive Wett­bewerbspolitik in diesem Bereich“. Zu den möglichen Maßnahmen zäh­len sie die Entflechtung bestehender Kraftwerkskapazitäten von markt­beherrschenden Unternehmen, den Verkauf von „virtuellen“ Kraftwerks­kapazitäten, die Öffnung von Lang­fristverträgen alteingesessener Unter­nehmen, die Steigerung der nutzbaren Kuppelkapazitäten, vertikale Entflech­tung sowie die aktive Förderung des Markteintritts neuer Anbieter.

Im einzelnen weist das Gutach­ten nach, dass die Strompreise an der Leipziger Strombörse EEX im Jahr 2004 – also noch vor Beginn des Emissionshandels – im Mittel 18,5 Prozent über den Grenzkosten, bei einem Viertel der betrachteten Stun­den sogar mehr als 30 Prozent da­rüber lagen. Die Strom­Marktpreise lagen zwischen 35 und 45 Euro je

MWh, ihre Grenzkosten jedoch nur zwischen 27 und 30 Euro je MWh. Das untersuchte erste Halbjahr 2006 zeigt mit 24,5 Prozent die stärkste Abweichung der EEX­Strompreise von ihren Grenzkosten innerhalb des Untersuchungszeitraums.

Das Gutachten kommt zu dem Schluss, dass die EEX­Strompreise deutlich oberhalb des zu erwartenden Wettbewerbsniveaus liegen. Anders

Gutachten bestätigt überhöhte Industriestrompreise

Wettbewerb im Strommarkt unzureichend

ausgedrückt: 2004 hätten sich die­se EEX­Preise nur einstellen dürfen, wenn das Stromangebot in Deutsch­land um 9 bis 19 GW niedriger gele­gen hätte. Bei einer Gesamtnachfrage von in der Spitze 80 GW (Spitzenlast) ein mit rund 11 bis 25 Prozent erheb­licher Anteil nicht angebotener Kapa­zität. Ähnliche Zahlen zeigen sich für die Jahre 2005 und 2006.

Überhöhte Strompreise durch Ausnutzung von Marktmacht wirken zweifach negativ: Sie führen zu einer Umverteilung zugunsten der Stromproduzenten und aufgrund geringerer Absatzmengen zu Wohlfahrsverlusten.

Die ThyssenKrupp Services AG, Düsseldorf, verstärkt ihr Werk­stoff­Dienstleistungsgeschäft für die Luftfahrtindustrie. Das Unter­nehmen hat von Alcoa den Ge­schäftsbereich „Aerospace Service Business“ erworben, der für den Handel mit und die Lagerung von Aluminium­Werkstoffen sowie für hochwertige Anarbeitungsdienstlei­stungen für den Flugzeugbau steht.

Insgesamt werden etwa 100 Mitar­beiter und 75 Mio. Euro Umsatz über­nommen. Die Transaktion wird durch 3 Tochtergesellschaften von Thyssen­Krupp Services in den USA, Großbri­tannien und Deutschland vollzogen. In den USA werden Vorratsbestände

ThyssenKrupp Services wächst

im Aerospace-Geschäftan Aluminium sowie langjährige Kun­denservice­ und Lieferverträge mit namhaften Herstellern und Zuliefe­rern aus der Branche übernommen. Damit baut ThyssenKrupp Services die eigenen Geschäftsaktivitäten weiter aus: Das Segment ist in Nord­amerika bereits als Systempartner der Luftfahrtindustrie etabliert: Erst vor kurzem konnte in Kanada mit Bombardier Aerospace ein 6­Jah­resvertrag als Dienstleister rund um Aluminium abgeschlossen werden. In Großbritannien werden die Einheit „Aluminum Supply Aerospace“ sowie zwei Service­Center übernommen. Auch in Kontinentaleuropa wird das Aerospace Servicegeschäft von Alcoa übernommen.

IAJ

Page 15: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

15

Joachim Limberg, Vorstandsmitglied von ThyssenKrupp Services, erklär-te: „Der Ausbau des Aerospace-Ge-schäfts hat für uns große strategische Bedeutung. Wir haben in der Luft-fahrtbranche durch unsere Supply-Chain-Management-Lösungen bereits ein starkes Dienstleistungs-Standbein. Durch den Neuerwerb sichern wir uns den weltweiten Zugang zu allen namhaften Flugzeugherstellern und deren Schlüssellieferanten.“

Das Unternehmen bedient die Luftfahrtbranche über Töchter in Brasilien, Frankreich, UK, Deutsch-land und Nordamerika. Tendenz stei-gend. Paradebeispiel ist der ex­klusive Servicevertrag mit Boeing. Auch mit Rolls-Royce wurde für Supply-Chain-Dienstleistungen ein 5-Jahresvertrag abgeschlossen.

ThyssenKrupp besetzt weltweit starke Technologie- und Marktposi-tionen in den Bereichen Stahl, In-dustriegüter und Dienstleistungen. Für Letzteres steht vor allem das zweitgrößte Konzernsegment Servi-ces. Mit mehr als 180 konsolidierten Gesellschaften und 600 Standorten in 60 Ländern ist das Segment einer der weltweit führenden Dienstleister für Industriekunden. Fast 60 Prozent des Gesamtumsatzes von über 12 Mrd. Euro (2004/05) erwirtschaftet ThyssenKrupp Services außerhalb Deutschlands.

Das Unternehmen fokussiert sich auf hochwertige Versorgungs- und Prozessdienstleistungen für die pro-duzierende und verarbeitende In-dustrie. Außerdem zählt es zu den weltweit größten Anbietern für Edel-stahl, NE-Metalle und Kunststoffe. Für zusätzliche Wertschöpfung sorgt die Übernahme zahlreicher Anarbei-tungsschritte wie Längs- und Quer-teilen, Schneiden, Sägen, Brennen, Fräsen, Bohren und Beschichten.

Das Leistungsspektrum wird durch den Handel mit Walzstahl, Rohren und technischen Ausrüstungen, Dienstleistungen in der Gleis- und Tiefbautechnik sowie die Distributi-on von metallurgischen Produkten, Mineralien und Spezialkoks abgerun-det. Hauptmärkte von ThyssenKrupp Services sind Europa und die NAFTA-Region, in Osteuropa wird die Markt-position derzeit stark ausgebaut. ■

Düsseldorf

12 - 16June2007

Messe Düsseldorf GmbHPostfach 1010 0640001 DüsseldorfGermanyTel. +49(0)211/45 60-01Fax +49(0)211/45 60-6 68www.messe-duesseldorf.de

Come to

where the

professionals

meet.

www.gmtn.de

One date – four events – one location

Four top-class trade fairs with clear technicaland thematic contexts in one place andwith one admission ticket.

World-wide no.1 in the trade; multiplesynergies, connections and cross-linking –all this with only one trade fair visit.

Welcome to Düsseldorf!

11th InternationalFoundry Trade Fairwith WFOTechnical Forum

7th InternationalMetallurgical Trade Fair with the CongressesInSteelCon and EMC 2007

9th International TradeFair and Symposiumfor Thermo ProcessTechnology

2nd InternationalCastings Trade Fairwith Newcast Forum

ALUMINIUM · 3/2007

Page 16: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

1� ALUMINIUM · 3/2007

Alcoa announced the best full year results in the company’s 118­year history. Annual income from continuing operations was US$ 2.2 billion for 2006. After excluding the impact of previously announced restructuring and im­pairment charges, income from continuing operations was US$ 2.5 billion, a 75% increase from 2005.

Driven by higher metal prices and strong demand for aluminium in the aerospace, commercial transporta­tion and building markets, revenues for 2006 increased 10% to a record of US$ 30.4 billion. Cash from opera­tions highest in company history in­creased 53% to more than US$ 2.5 bil­lion. Return on capital stood at 13.2%, up 490 basis points from the end of 2005. Debt­to­capital ratio was within target range at 30.6%. There has been continued progress in upstream and downstream projects and managing portfolio.

During 2006, Alcoa’s primary products group completed a growth expansion at its Pinjarra alumina re­finery in Australia (660,000 t), and will finish a smaller expansion at is refinery in Jamaica (150,000 t) early in 2007. The expansion of the smelter

in Sao Luis, Brazil was completed in March 2006 (60,000 t). Another refin­ery expansion at Sao Luis (more than 1.1 million t for Alcoa) along with de­velopment of the new Juruti bauxite mine will be completed by late 2008. The Alcoa Fjardaal Aluminium smelt­er in Iceland (344,000 t) is on target to produce metal in the second quarter, with full production expected by the end of 2007.

The flat­rolled products business is investing in expansion projects

at Bohai and Kunshan in China; its Belaya Kalitva and Samara plants in Russia are expanding production; and US and European plants are making improvements to mix, quality and productivity. The engineered solu­tions business expanded its fastening operations with two new facilities in China, and made investments to ramp up production in aerospace castings.

Alcoa

Highest income and revenue in its historyThe packaging and consumer business opened a new facility in Bulgaria serv­ing the consumer products market.

In 2006 Alcoa produced 15.1 mil­lion tonnes of alumina and 3.6 million tonnes of primary aluminium.

Alcoa’s forecast of 2007 demand growth of 14% for China and 3% outside China could be construed as conservative, given that China expe­rienced 2006 demand growth of 17% while the United States saw 6% and Europe just over 3% demand growth.

Capital expenditures in 2006 were US$ 3.2 billion, the most ever, as the company maintained a debt­to­capi­tal ratio of 30.6%. Alcoa would main­tain capital spending at between US$ 3 and 3.2 billion for 2007, while also keeping the company’s debt­to­capi­tal ratio between 30 and 35%.

In view of 2007, Alcoa Chairman and CEO Alain Belda said, “Market fundamentals remain strong. We will generate more than enough cash this year to fund our capital investment programmes. We will continue to de­liver strong results, invest in our fu­ture, and keep a strong balance sheet. And, we continue to manage our in­vestment decisions and portfolio ac­tions on the basis of contribution to profitable growth.” paw

Alcoa Corporate Centre, PittsburghA

lcoa

At the end of January Rusal an­nounced the key production and financial results for 2006: • revenues increased by 23% to US$ 8.18 billion compared to US$ 6.65 billion in 2005 • aluminium production rose by 2% to reach 2.77 million tonnes • output of value­added casthouse products increased by 14% to 972,978 tonnes• alumina production remained at the same level, amounting to 3.93 million tonnes• bauxite production rose by 29% and equalled 7.37 million tonnes.

2006 was of particular importance for Rusal. Rusal achieved significant production and financial results by expanding the geography and acquir­ing strategic assets in key markets. The average annual price for primary aluminium rose to US$ 2,570 a tonne, reaching an historic high. The growth in demand for aluminium equalled 7.1%. At the same time, increasing energy prices and the expiry of long­term power supply contracts resulted in shutdowns of a number of alumin­ium smelters in Europe.

In 2006, Rusal expanded its sales geography, substantially increasing the number of its clients. Europe re­

Rusal with strong 200� resultsmained the largest sales market with 33.5%. At the same time Rusal signifi­cantly increased sales to Asia, which now accounts for 26% of group sales.

The 2% growth in aluminium out­put resulted from Rusal’s ongoing programmes to bolster production, modernise equipment and improve technical as well as economic param­eters of the company’s smelter opera­tions.

Revenue from international sales rose in 2006 over 40% to US$ 6.6 bil­lion; revenues from sales in Russia reached US$ 1.6 billion, 14% more than in 2005; the company’s net debt reached US$ 4.43 billion. The in­

E C O N O M I C S

Page 17: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

1�ALUMINIUM · 3/2007

E C O N O M I C S

creased debt results from the prepa­ration of the agreement to combine Rusal, Sual and Glencore alumina assets. The debt consists mainly of long­term instruments; Rusal’s over­all investments in its production as­sets during 2006 amounted to US$ 1.4 billion.

In 2006, Rusal invested US$ 603 million in order to expand, recon­struct and modernise its production

capabilities. Rusal’s investments into research and development expendi­ture amounted to US$ 38 million. The investments include the development of engineering solutions to optimise production and improve technologi­cal processes at company’s aluminium smelters, alumina refineries, service facilities; research and development and hydropower projects.

The overall investment into Kras­noyarsk aluminium smelter mod­ernisation in 2006 amounted to US$ 89 million. At the Sayanogorsk alu­minium smelter, Rusal completed the modernisation of the second cast­house and the installation of the new homogenisation line for billet produc­tion worth about US$ 46.5 million. The Nikolayev alumina refinery was modernised in order to increase alu­mina output to 1.6 million tpy. For this the company invested US$ 45.9 mil­lion. Rusal also continued to expand the capacity of the Achinsk alumina refinery in order to bolster its output to 1.1 million tpy of alumina. Total in­vestment for this project amounted in

2006 to US$ 17 million. Increasing energy prices, high

costs associated with launching new production facilities, further shut­downs of smelters in Europe and in the United States and reduction of Chinese exports will be the key fac­tors influencing the global aluminium market in 2007. These factors will be accompanied by strong global eco­nomic growth. The forecast for growth in demand in aluminium, supported by increasing demand from automo­tive and construction industries in the US, Europe and Asia is 7%.

Rusal’s most important strategic priority in 2007 will be to consolidate its assets to create United Company of Rusal, supported by an integrated management and production struc­ture. In February the EU Commission approved the planned merger of Rus­al, Sual and Glencore. The transac­tion “would not significantly impede effective competition in the European Economic Area or any substantial part of it”, so the Commission. paw

If 2006 was marked by the im­pact of strong demand on prices, 2007 should reflect the impact of strong supply growth, said Rus­sian aluminium major Rusal in an aluminium market outlook.

Elsewhere in the world, Rusal ex­pects production growth to increase by around 5.2% in 2007. This com­pares with 3% in 2006, as the Khakas smelter in Siberia ramped up with a 300,000 tpy capacity, and Alcoa began production at its new Fjardaal smelt­er, with a 350,000 tpy capacity in Ice­land. In addition, capacity restarts in the US Pacific Northwest and Ormet’s reactivation of the 270,000 tpy Han­nibal, Ohio, smelter would contrib­ute to the growth. Rusal expects the net effect will be the emergence of a modest global surplus by the year end and a decline in the average annual aluminium price from US$ 2,550/t in 2006 to US$ 2,350/t in 2007.

Overall, 2006 was a solid year for

Aluminium price is expected to fall in 200�global aluminium demand and LME prices rose rapidly from a low US$ 2,300/t in January to a peak of US$ 3,275/t in May. While the second half saw a slight softening in the US, re­surgent demand in Europe, combined with steady Asian orders, saw overall production fully sold for the year. On the commodity market supply/de­mand remained fairly well balanced.

Rusal forecast a 12% increase in value­added sales when compared to 2005. The billet, wire rod and high purity markets were particularly tight. This situation is forecast to be main­tained through 2007, as recoveries in the European extrusion market, extensive investments in cables for electricity supply, and a resurgent aerospace industry are generating solid demand. In terms of casthouse activity, 2006 saw the commissioning of the second stage of the billet facility, with equipment supplied by Hydro, at Sayanogorsk aluminium smelter, and the commissioning of the Khakas alu­

minium smelter. In 2007, Rusal expects commis­

sioning of: a new casting pit at Kras­noyarsk aluminium smelter; a new pit at the Bratsk aluminium smelter, both capable of producing long slabs using Wagstaff casting technology; a new billet casting centre at Novokuznetsk aluminium smelter equipped with a Wagstaff casting table and with a continuous homogenizing line from Hertwich. A new centre for foundry alloys will be commissioned at No­vokuznetsk aluminium smelter; one product there will be piston alloy. ■

The first starter complex of the Khakas aluminium smelter was launched on 15 December 2006 in Sayanogorsk

For subscribers

www.alu-archiv.de

Knowledge with a lasting impact!

Rusa

l

Page 18: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

1� ALUMINIUM · 3/2007

W I R T S C H A F T

Zum 1. Januar 2007 hat die Otto Junker GmbH die Mehrheitsbetei­ligung an der IUT AB in Schweden übernommen. Mit dieser Akquisi­tion setzt die Otto Junker Gruppe ihre Strategie fort, das Produkt­portfolio entlang der gesamten Pro­zessketten der Leichtmetall­ und Stahlindustrie zu komplettieren.

IUT (Industriell Ugnsteknik) ist marktführend bei Planung, Konstruk­tion und Herstellung von Anlagen zur Warmauslagerung von Aluminium­profilen und kontinuierlichen Homo­genisierung von Aluminium­Strang­pressbarren sowie bei Matrizenöfen. IUT ergänzt damit die Kompetenz und Präsenz der Unternehmensgruppe auf dem Aluminiummarkt optimal.

Als Technologieführer für Warm­auslagerungsöfen und Erwärmungs­öfen für Strangpressmatrizen bietet IUT kundenspezifische Prozesslösun­gen mit technisch ausgereiften Pro­dukten, die von hoher Funktionalität und Verarbeitungsqualität sind. Da­rüber hinaus verfügt das Unterneh­men über innovative Produkte für die Wärmebehandlung von Quali­tätsbauteilen für die Automobil­ und Luftfahrtindustrie. Das umfangreiche Know­how stärkt die Position der Otto Junker Gruppe als Komplettan­bieter, insbesondere für die Alumini­um­Halbzeugindustrie.

Mit dem Zusammenschluss stehen die Fertigungskapazitäten der Otto Junker Gruppe in Deutschland, Groß­britannien, China und Tschechien und deren weltweites Vertriebsnetz der IUT zur Verfügung. Die Kunden­beziehungen und regionalen Kontakte

von IUT sind wiederum für die Otto Junker Gruppe von Nutzen. Die Kon­struktionsbereiche der erweiterten Gruppe werden eng zusammenarbei­ten, um so ihre Ressourcen optimal zu nutzen. Die Übernahme stärkt das Know How, die Kompetenz und die Leistungsfähigkeit der Otto Junker

Otto Junker übernimmt Mehrheit an IUT Gruppe auf dem Aluminiummarkt weiter. Die strategische Verbindung der Unternehmen Otto Junker in Lam­mersdorf, Elhaus in Rielasingen, Ther­mcon Ovens in Geldermalsen und IUT in Göteburg trägt auch zur Sicherung der jeweiligen Standorte dar.

As of 1 January 2007, Otto Junker GmbH took over the majority in­terest in IUT AB in Sweden. With this acquisition, the group contin­ues its strategy of complementing the product portfolio regarding the overall process chains of the light metal and steel industries.

IUT is a market leader in the planning and design as well as manufacture of equipment for the artificial ageing of aluminium sections, die heating fur­naces and continuous homogenizing furnaces for aluminium extrusion logs thus strengthening the competence of the group on the aluminium market.

As technology leader for artifi­cial ageing furnaces for aluminium sections and heating furnaces for extrusion dies, IUT offers customer­specific process solutions based on technically mature products of high functionality and manufactur­ing quality. Apart from that, the IUT product range comprises innovative equipment for the heat treatment of quality components for the automo­tive and aircraft industries. Thus IUT represents a valuable addition to the

present range of products of the Otto Junker group with its extensive know­how strengthening the group‘s posi­tion as a supplier of complete lines, especially for the aluminium semi­fin­ished products industry.

The merger now also enables IUT to use the world­wide marketing net­work of the group. In return, the cus­tomer relations and regional contacts of IUT represent a useful addition for the whole group. It’s well­proven manufacturing capacities in Germa­ny, Great Britain, China and the Czech Republic are now also available to IUT. The design departments of the extended group will work together closely in order to ensure optimum utilization of the resources.

This company merger is another step towards continuous improve­ment of know­how, competence and performance of the Otto Junker group on the aluminium market. The stra­tegic combination of Otto Junker in Lammersdorf, Elhaus in Rielasingen, Thermcon Ovens in Geldermalsen and IUT in Gothenburg represents as well a further step in securing the in­dividual locations. ■

Otto Junker takes over majority interest in IUT

The Norwegian Pollution Control Authority (SFT) has rejected Hy­dro‘s appeal on extended opera­tion of the Søderberg lines at the Karmøy aluminium plant. This means that the Ministry of the Environment will decide whether the Søderberg lines can run until

the end of 2009, as planned, or must close as early as September this year.

„The Søderberg lines at Karmøy give work to a lot of people, both directly and indirectly. We need the time un­til 2009 for restructuring, and this

makes SFT’s rejection of our appeal very serious,“ says Tom P. Johansen, head of Hydro’s primary aluminium production.

In its original plans up to the year 2010, Hydro has worked to encourage outside businesses to move to the area surrounding the Karmøy plant, by set­

Karmøy appeal sent to Environment Ministry

Page 19: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

1�

E C O N O M I C S

ting up an industrial park. According to Hydro there will not be enough time for restructuring and establishing new positions up to October 2007.

In the SFT’s view, adjusting the emission limits for the Karmøy plant would constitute differential treat­ment in relation to other actors in the industry. SFT does not attach much importance to the argument that a rapid closure can have commercial and market­related consequences for the company, and neither does it em­phasize the opportunities for modern­

izing Karmøy through the K6 project.

In December 2006, Hydro appealed against SFT’s rejec­tion of its application to postpone the in­troduction of stricter limits for emissions to air from the Søder­berg lines at Karmøy. Hydro wants to pro­duce aluminium at the Søderberg lines

until the end of 2009, and then close them. Instead, SFT granted 10 months’ postponement from 1 January 2007. If the Ministry of the Environment sup­ports SFT’s latest decision, Hydro will have to close the Søderberg lines at Karmøy by 1 October 2007.

Deteriorating quality of raw ma­terials over recent years contributes to the Søderberg lines at Karmøy not meeting all the stricter emission re­quirements introduced in 2007. In Hydro’s view, the aluminium works at Karmøy, in its entirety, is a good plant.

If the prebaked and Søderberg lines at Karmøy are viewed together, the total emissions per tonne of produced alu­minium are within the new emissions limits. Therefore, in Hydro’s view the Søderberg plant can be run in an envi­ronmentally justifiable manner before it is closed. Hydro wants to reduce the emissions from the Søderberg plant through a number of measures that have been identified. By adopting the proposed measures it would be pos­sible to reduce emissions of PAH16 (polycyclic aromatic hydrocarbons) to levels approaching the new emis­sion limits. However, it will be diffi­cult to meet the requirements regard­ing dust.

„We have done a great deal to re­duce emissions to air at all our alu­minium plants. The Søderberg lines in Sunndal and Høyanger have been closed, while Søderberg in Årdal closes in June 2007. This means that Karmøy has the last Søderberg lines in production, and we plan to close them by the end of 2009,“ says Johansen. ■

Karmøy Norway casting extrusion ingots. The Søderberg lines at Karmøy are threatened to be closed by 1 October 2007

Nor

sk H

ydro

ALUMINIUM · 3/2007

Page 20: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

20 ALUMINIUM · 3/2007

We are already well acquainted with the fact that the BRIC countries (Bra­zil, Russia, India and China) are of key importance with regard to the future of the aluminium industry, as they provide high economic growth and new markets for traditional products and services based on aluminium. Analysts expect that, with respect to market size, in the late 21st century the BRIC markets will outperform the Western markets in terms of alu­minium products unless the latter can develop large numbers of products and services with high added value. In the future the world, including its aluminium segment, will probably be divided up as follows: the East will be the area of economic growth, the development of infrastructure, and the consequent development of new markets, while the West will be the area of innovations and the market­ing of, mainly, sophisticated products and services.

One of the key questions is for how long can the global economy develop successfully in spite of the huge dif­ferences and the gaps between rich and poor. It is of crucial importance that the poverty of the poor, which is, to a large extent, also the responsibil­ity of the rich, is increasingly affecting the rich as well. In other words, if the rich want to maintain their position and acquire even more wealth, they will have to share an increasing part of their wealth with the poor. In response to such challenges the rich will continue to link up, and, as we have seen recently, not even the Atlantic Ocean will represent a sig­nificant barrier to this process. The grouping of the leading European countries (primarily Germany) and the USA into joint trade areas is al­ready becoming a necessary response to the large­scale development and market changes in the East.

In addition to the industrially developed countries and the BRIC countries that will see further indus­

trial development, it is also important to take into account the countries of the so­called third world that are rich in raw materials and energy re­sources (and are for this reason in­creasingly active in the international arena); however, many analysts tend to overlook this fact because of the intense consumption of aluminium in the BRIC area.

We should not forget that only those business visions (especially with re­spect to aluminium) that will succeed in bringing together the industrially developed countries, the BRIC coun­tries and the third­world countries, will lead to the best business results, as well as the best prospects for the future of the world, civilisation and the economy.

The aluminium production chain is surely an activity that, already to­day, successfully brings together the countries rich in raw materials with the BRIC countries and the industri­ally developed countries. It is also a good example of how the key contra­dictions of the modern world affect the price for aluminium and can, if we fail to resolve them, even threaten the future of its production. To overcome these differences we need a lot more than just knowledge about profit op­timisation in the aluminium produc­tion chain. We need to know how to compromise successfully at all levels, from the local to the inter­civilisation levels, and consider appropriately also those non­economic values that are not directly related to profit mak­ing, but can nevertheless significantly affect its extent.

In the late 21st century, profit and added value will be the results not only of a successful business op­eration and the optimisation of all re­sources, but, to a large extent, also of the skill to conclude inter­civilisation compromises that will help increase the wealth of all the participants. Such a situation will also provide great op­portunities for aluminium.

The aluminium industry production chain

The aluminium industry is approx. a century old. The modern production chain involves the upstream busi­ness area (bauxite, alumina and pri­mary aluminium production) and the downstream business area (produc­tion of semis and finished products). The transformation performed in the upstream business area results in the production of primary aluminium from raw materials (bauxite, alumina), while products transformed in the downstream segment are considered as semi­finished (rolling, wire draw­ing, extrusion) and finished products (aluminium foils, cables, doors, win­dows, cans, automobile parts, etc.).

Generally, 4 kg of bauxite needs to be refined by the Bayer process to obtain 2 kg of alumina, which by the Hall­Herout process results in 1 kg of primary aluminium. The energy ex­pended in the Bayer process to pro­duce alumina from crude bauxite is about 60 MJ (16. 6 kWh) expressed per kg of aluminium produced (or, which

The value engineering in downstream sectors of modern aluminium industryV. Kevorkijan, Maribor

Fig. 1: The aluminium production chain with an increasing added value generated along the downstream and upstream business area.

E C O N O M I C S

Page 21: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

21ALUMINIUM · 3/2007

SELEMA srlVia Prealpi, 8 I-20034 GIUSSANO (MI) ITALYphone +39.0362.850701 fax [email protected] www.selema.com

ENGINEERING &INDUSTRIAL PLANTS

SLITTER FOR COPPERthickness 0.06÷0.20 mm

speed 140 mpm

SLITTING LINE 30μ÷10mmresearch, innovation, experience

aluminium | copper | brass | stainless steel

aluminium and alloys |thickness from30μ to 10mmspeed till 800mpm

cutting accuracy,reduced burrs, absenceof scratches and marks,precise and uniform coilsrewinding, easy threadingand maintenance, reducedtime of machine stops

quick head changing car,pneumatic cuttinggroups, burr masher,leveller and oiler

degreasing, coating,tension levelling,slitter, cut-to-length,ingot milling,oiling, trimming,revamping

performances advantages ourprogrammespecial devices

E C O N O M I C S

is the same, 30 MJ per kg of alumina produced).

The energy required for the Hall-Heroult process is about 50 MJ (ap-prox. 15 kWh) per kg of aluminium (assuming that there is 100% current efficiency). In fact, the current effi-ciency is usually 85-95%. The energy required increases as a result to about 55 MJ per kg. However, the electrical energy is in fact produced by burn-ing fossil fuels in plants that are only 30 to 40% efficient. The real energy expended in this procedure therefore is given as about 160-170 MJ/kg of aluminium.

It is important to note that the cost of energy represents approx. one third of the production cost of primary alu-minium from alumina and also alumi-na from bauxite. However, one should also consider the huge amount of raw materials consumed in the upstream part of the production chain, mainly bauxite, caustic soda, alumina, anode carbon, electrolytic bath, etc.

In 2006, the world production of primary aluminium was almost 25

million tonnes. This means that more than 240 million tonnes of coal (or the energy equivalent of an energy-pro-ducing fuel e.g. gas or oil) was required in power plants all around the world. This is a huge amount of energy. In fact, it is the same amount as 360 to 600 cities consume in a year!

Thus the upstream part of the alu-minium production chain is energy and raw material intensive, having significant impacts on the environ-ment. The main challenges facing the upstream segment of the aluminium industry are: to decrease energy con-sumption, respect the environment, reduce costs and increase productiv-ity, improve logistics, etc.

The downstream part of the chain is faced with some additional chal-lenges such as to develop alloys/materials, develop markets, develop and diffuse knowledge of new ap-plications and products, increase the level of quality of semi-finished and finished products, but also the same challenges such as reducing costs and increasing productivity, which are es-

sential for all sectors of the aluminium transformation industry to remain competitive in the world market. Beside these mainly operational (tech-nical and economical) challenges, the aluminium industry is also facing the increasing impact of globalisation and, particularly after the year 2000, the economic impact of China.

Added value engineering (AVE) along the aluminium production chain

As evident in Fig. 1, every particular segment involved in the aluminium production chain operates with spe-cific cost components in predicting its own added value. However, it is im-portant to note that, along the chain, the added value assured in the previ-ous segment (e.g. bauxite mining) will appear in the next one (production of alumina) as an increased cost. In such a kind of evaluation it is also very important to distinguish between the predicted and assured (realised) add-ed value. Note that the added value

Page 22: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

22 ALUMINIUM · 3/2007

is not really assured before success­ful selling of the product or, in other words, the willingness of customers to pay the difference (“magic delta”) between cost and market price (which acts as the movable target).

It is also very important to note that the sum of all added values contractu­ally fixed in real time along the chain (which means in advance, in terms of selling of the final product) represents the real “grand delta” which should or should not be paid by the end user.

Inside each particular segment of the chain, business activities are directed toward maximizing of the added value. On the other hand, due to the permanent pressure of power­ful end­users (automotive and trans­port industry, building segment, etc.) the cost of finished products shows a marked tendency to remain the same, or even to reduce slowly (price reduc­tion policy typical in the automotive segment). Thus in the downstream business area, the producers of fin­ished parts are always under tremen­dous pressure from their customers to keep prices the same or make them even lower.

In order to keep the added value of finished products (after paying all other added values involved in the production chain) at the proper (sufficiently high) level, which repre­sents a permanent challenge to value­based­management, the producers of finished products, when reaching the limits of cost reduction available through incremental advances in their core technology, are face­to­face with just two options: to sell at higher pric­es or to buy semis at lower prices.

However, the producers of finished parts, located at the end of the pro­

duction chain, have the privilege of selling their products direct­ly to end­users. This creates several advan­tages, such as market knowledge, develop­ment of new products, processes, services, opening new market segments, creating new alliances, etc. Another advantage of producers of finished

parts is their ability to buy raw ma­terials (semis) inside the downstream business area, particularly through various alliances and partnerships with producers of semis.

In contrast, all the advantages of producers of finished parts are point of weakness of producers of semis: they are usually located far away from the end­users, and are obliged to buy raw material (primary aluminium) outside the upstream business area. The advantage of producers of semis is their possibility to collect and use a significant proportion of new and old aluminium scrap. However, this advantage is limited by the fact that a great percentage of aluminium scrap is also collected and remelted by pro­ducers of primary aluminium.

Producers of primary aluminium have two main advantages: 1) They are located just at the end of the upstream business area, and so are in a position to negotiate with the producers of semis as end­users (and thus, obliged to pay all increases of alumina and energy prices) 2) Primary aluminium is a strategic raw material in the modern world and one of the basic materials for future development of civilisation.

In spite of all this, improvement of added value in the primary alumin­ium production segment is not easy. Due to the fact that, roughly speak­ing, one third of the price of primary aluminium is the cost of energy and an additional one sixth is the cost of alumina, their impact on added value is crucial.

Historically, alumina ore has been priced either at a fixed price per met­ric tonne or at a variable price of 12 to 13% of the LME price per tonne

of aluminium. It takes about 2 tonnes of alumina to produce one tonne of primary aluminium, so the cost of alu­mina typically represented about 15% of the LME price of aluminium.

Because alumina ore is a commod­ity and the amount of alumina required per unit of aluminium is fixed as a mat­ter of physics, the competitiveness of different primary aluminium smelters is determined by two factors: power rates and other conversion costs.

In 2005, the cost of alumina in­creased by approx. 40%. In the same period of time, the market price of alumina soared to over two to three times its normal price and at times represented 50 to 60% of the total cost of primary aluminium!

The cost of electricity increased significantly in Europe and the United States and will remain at high levels also in future. The power requirement of the aluminium industry is in the range of 15,700 to 18,800 kWh/t. This constitutes 40 to 50% of the manufac­turing cost at the primary aluminium manufacturing stage.

After a decade of little investment in alumina refining capacity, resulting in shortages in the last three years, cur­rent prices of metallurgical alumina are still volatile, responding promptly to changes in the supply and demand balance.

Currently, alumina production worldwide is operating at close to full utilization capacity, and thus in­creased capacity can only be realized by either expanding the capacity of existing refineries (brownfields), or by building new refineries (greenfields).

Over the past three decades the majority of new alumina refining capacity has been realized through brownfield expansion. Industry fore­casts estimate that over the next ten to fifteen years there will be up to 15 million tonnes of new alumina refin­ing capacity made available through brownfield expansion. Alone, these brownfield expansions would not be sufficient to satisfy worldwide alumi­na demand. Furthermore, the ability to continually expand existing refineries is limited due to bauxite availability, environmental considerations, infra­structure constraints and/or overall plant economy.

Unloading of Bauxite in Jamaica

Nor

sk H

ydro

E C O N O M I C S

Page 23: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

23ALUMINIUM · 3/2007

E C O N O M I C S

power. More than 40 other countries also produce aluminium, includ­ing Norway, Iceland, Switzerland, Tajikistan, and New Zealand, which are small but mountainous, and have many rivers to provide hydroelectric power. Other areas of the world with access to abundant and cheap elec­tricity, such as the Middle East, are also expanding their metal produc­tion capacities.

Sometimes, raw bauxite is shipped overseas for processing to alumina, while in other cases it is processed near the mine. Alumina is lighter than bauxite because the water has been removed, and it flows readily in processing plants, unlike bauxite which has a sticky, muddy consisten­cy. Due to the fact that the transporta­tion of alumina and ingots is cheaper than the transportation of bauxite, the production of alumina at locations without bauxite (USA) will no longer be profitable.

In the upstream business area prices of alumina and energy will be the key drivers of variable operational costs. However, by significant rationaliza­tion in current bauxite mining and technology­driven efficiency in alu­mina production, improved logistics for just­in­time delivery and in ad­vance planning of new production capacities, added value engineering for maximizing value will create new business opportunities.

In the downstream business area higher added values will be gener­ated mostly by implementing innova­tive solutions in development of new products, applications and markets hand in hand with local customers.

During the last few years, the glo­

Therefore, new greenfield projects are required in order to meet global needs, but greenfield projects require a long time to implement because of the necessary studies and approvals required.

For most of the past two decades alumina prices have been linked to between 11 to 13% of the LME alu­minium price. Long­term contracts that were not directly linked to the LME aluminium price typically took the form of a fixed market price with a standard escalation.

As world competition for alumina continues to grow beyond the exist­ing capacity of the large, vertically integrated aluminium companies, and taking into consideration future trends for China, most experts agree that market demand will force alumi­na prices to be set higher (more like 18%) than the historic 11 to 13% of the LME aluminium price including possible delinkage from LME alu­minium.

However, the planned alumina production ex­pansion, mostly caused by rapidly growing de­mand for alumina in China, could result in a deficit of bauxite, too. The main cost compo­nents in refining of alu­mina are bauxite (27%), caustic soda (11%), energy (33%), labour (11%), other (18%).

The main bauxite mine producers are located in Australia (40%), Brazil (10%), Guinea (11%), Jamaica (9%), India (6%) and China (7%). Australia has huge reserves of bauxite, and produces over 40% of the world’s ore. Brazil, Guinea and Jamaica are important producers, too. India and China are improving their production capacities. The United States’ produc­tion, which was important 100 years ago, is now negligible.

Australia, the United States, and China are the largest producers of alumina. All the U.S. alumina being made is from imported bauxite.

The largest producers of primary aluminium are China, the United States, Russia, and Canada, countries which have abundant hydroelectric

bal shortage in primary aluminium and alumina improved the added values achieved in the upstream sec­tor. However, after the year 2010, especially when China will become alumina self­sufficient, the prices of primary aluminium and alumina will probably become more stable, again generating more added values in the downstream sector.

Up to the year 2020 there will be rapid growth in the entire aluminium business, both upstream and down­stream. Due to that, the added value achieved inside a particular segment of the aluminium production chain will be influenced not only by the business activities inside that segment but also by the dynamic changes in­side other segments and by the abil­ity of each of them to be in dynamic balance with increasing supplies and demands along the chain.

In practice, if the cost of primary aluminium exceeds the price of semi

products, which hap­pened at the begin­ning of 2006, it would deteriorate in the final stage business results in all segments along the chain, although for a limited period of time some better business results would probably appear in the upstream sector.

From the point of view of the final busi­

ness result, it is also important if the entire chain is within one vertically integrated company or involves sev­eral different companies specialized for production inside particular seg­ments (e.g. production of semi­fin­ished products).

Restructuring of the production in downstream segments for achieving higher added value

The half year of continuous increase of primary aluminium prices at the beginning of 2006, the complete un­certain regarding price movements and the consequent inability of trans­formers to determine contractually a reliable price of their products and to project the amount of profit, placed ➝

Hydroxide storage building photo: AOS

Page 24: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

24 ALUMINIUM · 3/2007

the producers of semi­finished prod­ucts in a very difficult position – prob­ably the most serious since 2000.

The cost of transformation and oth­er costs command a premium above the LME price. In spite of the fact that the cost of transformation, driven pri­marily by the cost of energy and la­bour, as well as other costs (financing, transportation), is continually on the increase, competition on the global market, as a rule, is actually pushing the cost of transformation persistent­ly down. Consequently, added value also diminished or is even no longer created.

In addition, the unstable LME contributed to a higher business risk, creating an additional cost for its

control. The matter is less critical if the bulk of orders are lower than the existing stock of primary aluminium. However, in the case when the orders received exceed the stock of primary aluminium, it becomes very risky for the producers of semi­finished products to lock into such a contract with a customer, because the unsta­ble LME. In order to reduce such a risk, producers enhance the stock of primary aluminium, but this is costly and in addition contributes to further increase of LME.

So, let try to answer the question: how could the producers of semi­fin­ished products, under these circum­stances, improve the added value of their products? First of all, let dis­tinguish between the added value of a particular semi­finished product, which is the price difference (margin) created by sale of that product on the market, and the added value of the entire company producing semi­fin­

ished products, which is the net value difference between all issued and re­ceived invoices.

To improve the added value of the company, the (regional or semi­glo­bal) producers of semi­finished prod­ucts could consider several scenarios including a stronger portfolio strat­egy directed toward capturing global growth opportunities, more intensive vertical (upstream and downstream) and horizontal integration (acquisi­tions, alliances) combined with in­ternal reorganisation. In response to further globalisation of the aluminium industry, the local producers of semi­finished products need to change fundamentally and quickly in order to defend their local market shares. Glo­

bal issues such as raw materi­als and energy prices, logistical costs and legacy issues are defi­nitely out of the scope of such producers. The ability to achieve leverage in their positions in lo­cal markets will be the key. Cre­ation of more

differentiated value propositions to serve local customers and to be the local developing supplier, creating in­novations hand in hand with custom­ers will be crucial in improving added value. The ability to orientate locally, where single markets are growing and where the customers and opportuni­ties are, by continuously improving operation performances and driving innovations every day should be the main comparative advantage of local producers. Another important advan­tage of local producers could be a bet­ter local market understanding and the ability to serve local customers promptly and exactly with the solu­tions they need. Speed, flexibility and market knowledge are critical success factors.

To achieve these advantages, the local producers of semi­finished aluminium products should employ locally advanced marketing tools in their actions for higher returns as

the key development factor in selling new products and opening new mar­kets. Local producers of semis could only improve the added value of their products if they are able to sell their products without middlemen, direct­ly to the final users, and by listening to their demands better than global suppliers.

Restructuring of the production of semi­finished products toward achievement of higher added values is possible only by further reducing costs (of raw materials, labour, pro­duction and marketing), by techno­logical improvements for achieving a better competitive position on the market and by increasing the propor­tion of all kind of finishes used on aluminium (mechanical and chemi­cal finishes and coatings). In this con­nection, various business alliances between producers of semis and local producers of final products could be very effective.

However, it is important to note that the crucial point of any restructur­ing of the production of semis toward products with higher added value is restructuring of both technology and marketing capabilities. The essential part of the new added value could be created in the process of innovative adjusted marketing.

In any case, the in­house multi­purpose knowledge involved in de­veloping, production and marketing is that, which decisively contribute in the increase of the added value of products. That involves develop­ing knowledge (for strategic and applicative research), technological knowledge (for industrial research), and organizational knowledge (for management research), marketing knowledge (for marketing research) and social knowledge (for creating cultural rapport with local markets in the sense of initiating alliances and partnerships).

Conclusion

The current developing stage of the aluminium industry is strongly af­fected by China as a global economic force, and further continuation of vertical and horizontal integration and consolidation. The three larg­

Rolled product coils

Nor

sk H

ydro

E C O N O M I C S

Page 25: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

25

E C O N O M I C S

est producers Alcoa, Alcan and an eventual merger of Rusal, Sual and Glencore Int., would control one third of the world production of aluminium, another one third is already controlled by China’s producers (mostly by Chalco), while the rest is controlled by several medium sized producers, which are also completely or partly integrated (active in the bauxite, alumina and primary aluminium business as well as production of semi­fin­ished and finished products).

The biggest aluminium production and transforma­tion chains, created by the above mentioned producers, are spread across the entire planet, leaving the non­global players only limited resources and market op­portunities for surviving.

On the planetary level, the future development of the non­global (i.e. non­integrated) aluminium industry both in the upstream and downstream sectors seems to depend most of all on the joint necessity of the global price leaders to finely well­balance their profit along the production chain. To do that it will be necessary to manage strategic, operational and also political risks and focus on prices and margins as the movable targets. This will lead to further integrations and consolidations, creating several new global players.

On the other hand, though it seems unlikely, even the largest players in the global arena of aluminium are continually influenced by local factors. This trend of “growing global through local” will also continue in the future. The fact is that a global enterprise will always be sourced by local or regional suppliers of raw materials, energy and labour, and that market opportunities will at the same time be deeply affected by local consumption of aluminium products.

In other words, all resources and market opportuni­ties in the aluminium industry are located and created in local areas and (micro­) market segments, while glo­bal just represents their management from centres of power. However, since the non­global players are look­ing for opportunities mostly in their neighbourhood, creating strong relationships with local customers (and developing through that really new market opportuni­ties by working hand in hand with customers), the glo­bal producers are more involved in “orbiting planet” and “seizing global opportunities” for better business results. For certain, the way for non­global producers of semis and finished aluminium products to survive is just in their ability to create sufficient added value in between the existing and future global chains.

Definitely good news for local producers of semis and finished products is that all natural and other produc­tion resources (bauxite, alumina, energy, labour) and market demands are located locally. Global changes in the aluminium industry are mostly motivated by efforts by well consolidated centres of power to exert economi­cal and political domination, particularly in local growth and where the local customers and opportunities are. In order to capture growth wherever it is on the planet, they are establishing a global position quickly through acquisitions, alliances, and licensing.

Regarding further evolution of the upstream and down­stream business sectors, it seems that upstream business activities will probably become more global, while the downstream side will strengthen the local dimensions of that business by breaking up (probably under a global umbrella) the existing global producers of semis and final products.

It is also important to consider the future availability of primary aluminium with “equal opportunities for all” or, more generally, about the future of free trade in stra­tegic raw materials. If upstream activities become more consolidated, the independent producers of primary alu­minium will probably survive in just a few “world oases of free trade”.

In that case, globalisation of aluminium industry will prevail and the “laissez­faire” aluminium arena with non­global players will disappear forever. Since by “cutting the trees one at the same time kills the forest”, it seems that some global players decided to keep their upstream activities more local and regional, through a network of apparently independent enterprises “playing non­global with global resources”.

Author

Dr. Varuzan Kevkorkijan (1957), Principal Scientist, is Head of applied and industrial projects in the field of aluminium and aluminium­based composites as well as in the field of alumin­ium dross processing and recycling of aluminium scrap. He is an independent researcher.

Lightweight Construction – From design to serial production

0726.– 28. June

Exhibition Centre Salzburg

0320

2 ©

200

7

www.eurolite-expo.eu

Messezentrum Salzburg GmbHAm Messezentrum 1A-5020 SalzburgPhone: +43 (0) 6 62 / 24 04-0Fax: +43 (0) 6 62 / 24 04-20offi [email protected]

H & K Messe GmbH & Co. KGKaiserstraße 142 – 144D-76133 KarlsruhePhone: +49 (0) 7 21 / 57 04 44-20Fax: +49 (0) 7 21 / 57 04 [email protected]

ALUMINIUM · 3/2007

Page 26: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

26

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

The secondary aluminium activi-ties of the last year are reviewed in alphabetical order according to continents and country. Only key events are mentioned.

Increased costs threaten the future of the European and North Ameri-can secondary aluminium industry. Part of these costs concern safety and environmental protection; but these secondary smelters are in direct com-petition with smelters in countries without such severe regulation.

Many western smelters have al-ready had to shut down. The trend will continue unless governments who make and impose these laws can restore the market balance with im-port taxes or other measures.

In the short term this would allow what remains of their industries to survive, and in the longer term would encourage less regulated countries to enforce similar standards. This would benefit the environment, workers and populations world-wide.

NORTH AMERICA

In Canada Tower Automotive Inc., a Novi, Michigan-based company which has been operating under bankruptcy court protection since February 2005, announced plans to phase out production at its Toronto aluminium foundry and mini-mill by the end of August 2006.

At the beginning of 2006, an Indi-ana, U.S.A., agency became the prima-ry enforcer of federal air quality rules affecting secondary aluminium smelt-ers in its jurisdiction. The handoff covers all Indiana facilities falling un-der the US Environmental Protection Agency’s (EPA) Maximum Achievable Control technology rulebook. Indiana has a significant share of aluminium melting furnaces, which are a key focus, and adherence is still shaky as regards the complicated reporting requirements, imposed on that niche in March 2003. State inspectors will cease referring violations to the US EPA for the imposition of penalties. The handoff does not bar the federal

EPA from site visits. However, com-panies’ routine air quality filings will now go to Indianapolis rather than to the EPA’s Chicago office. An EPA tabulation from the 1990s listed 60 In-diana sites melting aluminium scrap. Therefore, environmental officials took a direct role in enforcing of the federal government’s sweat furnace and secondary aluminium smelter rules. For example, the EPA issued ad-ministrative orders requiring Nu-Cor Automotive Corp., Stroh Die Casting Co Inc., Beck Aluminum Corp., Del’s Metal Co and Allcast Inc., and other companies to comply with hazard-ous air pollutant emission standards. These standards require secondary aluminium smelters and/or alumini-um sweat furnaces to destroy hazard-ous dioxins and furans, substances that are associated with liver damage and cancer. Total fines against the above mentioned companies reached more than US$ 430,000.

The bankrupt JL French Automo-tive Castings emerged from Chapter 11 in June. JL French has reached

Secondary aluminium activities during 2006R. P. Pawlek, Sierre

Norsk Hydro

Page 27: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

27 ALUMINIUM · 3/2007

S P E C I A L

27ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

new agreements with automotive customers Chrysler Group, and Ford Motors, both based in Michigan, and has ironed out an accord with Detroit-based General Motors.

Harbor Light Metals LLC began producing aluminium ingot and sow on the former site of Tobian Metals Inc., Benton Harbor, Michigan.

Aluminum Association, Can Manu-facturers Institute (CMI) and Institute of Scrap Recycling Industries (ISRI) released statistics indicating that Americans and the aluminium indus-try recycled 51.4 billion aluminium cans in 2005, for a used beverage can (UBC) recycling rate of 52%. In the US, 98.9 billion cans (1,308,000 tonnes of aluminium) were produced in 2005. The 51.4 billion aluminium cans re-cycled equaled 680,000 tonnes of aluminium. Nearly the same amount – close to 50 billion UBC’s or roughly US$ 1.5 billion worth of aluminium was lost to landfill.

The U.S. Conference of Mayors, Novelis Inc. and Keep America Beau-tiful, Inc. once more organized the 2006 Cans for Cash contest. During two weeks in September, more than 30 cities collected nearly 1,100 tonnes of cans which equates to over 82 mil-lion UBC.

ThyssenKrupp Budd, a leading supplier to the automotive industry, has sold its US aluminium castings operations as part of a restructuring plan to an equity holding concern, Speyside Equity LLC, for an undis-closed price.

GM Powertrain Bedford will invest US$ 48 million to renovate its Indiana aluminium foundry with energy-effi-cient melting furnaces. Full volume for both rear-wheel-drive and front-wheel-drive cases is expected late in 2008.

Aluminium billet producer North-west Aluminum Specialties has been bought by its employees for an undis-closed sum. The Oregon-based plant, capable of producing 22,700 tpy of billet from scrap and primary metal, has been transferred to employee ownership.

J&J Bronze & Aluminum Castings Corp., Brooklyn, New York, has been fined by the U.S. Department of La-bor’s Occupational Safety and Health Administration (OSHA). The compa-ny was cited for a total of 33 alleged wilful, serious, and other-than-seri-ous safety and health hazards follow-ing OSHA inspections.

Superior Industries International closed its aluminium wheel manufac-turing facility in Johnson City, Ten-nessee, resulting in around 500 job losses.

US secondary aluminium alloys producer Arkansas Aluminum Alloys (AAA) was closed on 31 October and interrupted scrap deliveries while investigators tried to determine the cause of an explosion that killed two workers early that morning. Arkansas Aluminum Alloys has resumed mak-ing specification sow on 2 Novem-ber.

SPX Corp announced it plans to sell its automotive aluminium and magnesium die-cast components business Contech in 2007.

Jupiter Aluminum was struck by a fire at its Hammond plant on 24 November. The fire may have started when an aluminium furnace at the plant became overfilled, and an au-tomatic furnace-extinguishing system apparently failed. In the meantime, Ju-piter Aluminum has resumed partial production and is considering wheth-er to repair or to rebuild its damaged rolling building.

Aleris International Inc., a producer of secondary aluminium metal and sheet, passed a milestone in its plans to go private. Aleris’ shareholders voted 98.7% of their holdings for the takeover by an offshoot of Texas Pa-cific Group, Fort Worth, Texas.

SOUTH AMERICA

Brazil reported an aluminium bev-erage can recycling rate of 96.2% in 2005. The 9.4 billion processed alu-minium containers represent about 127,600 tonnes of aluminium, worth more than US$ 280 million.

Colombia announced its will train scrap recyclers in order to make their activities public. Another goal is to organize recycling into an associate company where each recycler can go directly with their material, about 350 tpm of aluminium scrap will be available.

In Mexico TK Aluminium sold its aluminium engine casting business to Tenedora Nemak for about US$ 496 million.

ASIA

China currently produces about 21% of its aluminium from scrap, of which 55% is imported. If the target of 60% is met by 2020, China would save 36 million tonnes of alumina and 91 mil-lion tonnes of water. The amount of natural resources saved will be hugely important. Only four of more than 2000 secondary aluminium compa-nies produced more than 50,000 tpy in 2004, with 250,000 tpy producer Shanghai Sigma leading the industry. The government wants ten companies to produce 100,000 tpy each by 2010, with another 30 producing at least 10,000 tpy. Beijing will also promote ➝

Page 28: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

28

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

the construction of large recycling parks, mainly in eastern China, and encourage large overseas companies to invest in the industry. The huge majority of the currently more than 2,000 secondary aluminium smelt-ers in China produce a few thousand tonnes or less each year.

KB Alloys has set up a joint ven-ture with Sunxing in Shenzhen to pro-duce grain refiner rod to be sold in the European, Middle East and Asian markets.

China’s secondary aluminium in-got producer Ye Chiu Metal (Taicang) lifted its designed output capacity to 240,000 tpy by the end of 2006, up 150% from 96,000 tpy currently.

Singapore-listed Midas Holdings has set up a joint venture to oper-ate China’s oldest aluminium alloy producer and to build a new alloy plant. Midas will invest RMB 300m (US$37.8m) for a 30% stake in North-east Light Alloy (Nela), making it the second largest shareholder after SASAC. Nela has a capacity of 82,000 tpy of magnesium and aluminium al-loy products.

End of September 2006, Alcoa formed an alliance with SMW Auto-motive Hong Kong to produce cast aluminium chassis and suspension components and modules for the auto-motive industry in China, South Korea, Japan and the Asia Pacific region. China’s Gansu Province Aluminium Industry has ramped up its new 10,000 tpy alloy ingot line to full capacity, and planned to reach full output at the end of 2006. The line was started up in the middle of 2005. Gansu Alu-minium also has a capacity to produce 72,000 tpy of aluminium ingot, which is a combined capacity between Gan-su and Longxi Aluminium. Gansu has a capacity of about 35,000 tpy, with Longxi having the remaining 37,000 tpy. The two companies are in the process of restructuring and merging to form the new Dongxin Company.

China Minmetals Corp announced plans to build a 34,000 tpy aluminium alloy plant in eastern Jiangsu province. The 145 million yuan (US$18m) plant is likely to be located in Changshu, about 90 km northwest of Shanghai, and will take an estimated 1 to 2 years to construct.

UK-based Caparo Group began con-struction of a new diecasting facility in Chennal, India, to produce cast aluminium components for the au-tomotive industry in southern India. The facility will supply blue-chip au-tomotive companies with production bases in India, including Honda and Toyota.

India’s largest aluminium produc-er, Hindalco Industries, signed a joint venture deal with California-based Almex to manufacture high-strength aluminium alloys. The joint venture, named Hindalco-Almex Aerospace Ltd (HAAL), will cost an estimated Rs 1.55 billion (US$33.7m) to set up and will have a capacity of 46,000 tpy.

Indian secondary aluminium pro-ducer Century Aluminium intends to increase its output to 50,000 tpy from 35,000 tpy by the end of 2007 and would like to increase it to 100,000 tpy in the long term by securing a foreign partner. Demand from auto-motive manufacturers for recycled aluminium is likely to increase in In-dia to some 350,000 tpy by 2010 from 93,700 tpy now, and consumption in the general engineering industry, such as components for washing ma-chines, is forecast to more than treble to 87,500 tpy from 23,500 tpy. India’s domestic production of 200,000 tpy is well below those levels.

Japanese aluminium products manufacturer Almine started con-struction of a new secondary alumin-ium plant in Masuda, Shimane pre-fecture. The plant produces products from aluminium scrap and started production in April 2006. Alloys for the automotive sector will be pro-duced in early 2007.

Summit Aluminium, a secondary aluminium smelter and a subsidiary of Japanese trading firm Sumitomo Corp, merged with Showa Aluminium Alloy, a secondary aluminium smelter of Showa Denko group, in July 2006. The new company, with a capacity of 150,000 tpy, is called Summit Showa Alumi and has its headquarters in Osaka city in western Japan.

Japan’s Mitsubishi Corporation and Nippon Light Metal Co announced the integration of their aluminium alloy production business into a new entity called Nikkei MC Aluminium,

effective 1 April 2007. The entity will have an alloy production of around 310,000 tpy, of which 190,000 tpy will come from five plants in Japan and 120,000 tpy from four overseas opera-tions (all of them currently owned by Mitsubishi Corp.).

Daiki Aluminium Industry will in-crease secondary aluminium produc-tion capacity by 17% to 336,000 tpy through its expansion plans.

Thailand Japanese-owned second-ary aluminium producer Daiki Nikkei Thai Co (DNTC) have been operat-ing their new plant a rate of 66,000 tpy, but the partners plan to increase production to full capacity of 72,000 to 78,000 tpy. The new plant is based at the same site as DNTC’s existing 54,000 tpy plant in Chonburi, eastern Thailand.

Japan’s rolled aluminium prod-ucts maker Furukawa Sky reported it had set up a subsidiary in the city of Ho Chi Minh in Vietnam to produce cast aluminium products used in au-tomobiles. The plant should produce around 300,000 units of aluminium products in 2008. Furukawa’s plan is to gradually move its aluminium auto components production to Vietnam.

EUROPE

Increased labour, energy and envi-ronmental costs threaten the future of the European secondary aluminium industry. Recycling of aluminium has become less attractive. High wages and high energy and environmental costs have reduced the margins sig-nificantly. The prospects are bleak unless companies take action to over-come present conditions. Companies must reduce labour costs by increas-ing automation through investment in new technology, seek niche markets with higher profit margins, and cut fixed costs by increasing productiv-ity to 1,000 tpy output per employee. Producers should also consider mov-ing plants outside of the 15 countries in the former European Union to lower-cost sites among the new EU countries, or out of the EU altogether, where they would be less burdened by environmental and high general costs.

Consumption of scrap by the Asian

Page 29: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

29 ALUMINIUM · 3/2007

S P E C I A L

29ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

market, and in particular by China, has left Europe starved of raw materi-als. It is frightening that scrap imports to China are estimated to reach 5.5 million tonnes by 2020, far exceeding the volumes that will be generated by Europe. Plant closures and company bankruptcies will increase as compa-nies lose the battle to survive.

The number of refineries in Eu-rope has already dropped sharply to at present 132, following the collapse of Hardenberg in the Netherlands and the closure of Novelis in Borgofranco in Northern Italy. And this trend will probably continue.

The possible elimination of the 6% European import tax on primary aluminium is an additional threat to the industry. While the duty will likely remain unchanged in the short term, it will be cut in time, paving the way for exporters from low-cost countries to supply the region. A reduced import tax might be a severe crisis leading to further consolidation; so the fight for survival will go on. Therefore the 6%

import duty should remain and is nec-essary for the secondary aluminium industry to survive.

In France, Alcan began the con-sultation process with trade unions in September, as the prospect of job and production cuts looms over the pro-posed sale of its troubled 110,000 tpy primary and secondary casting alloy plant Affimet in France to RecovCo.

Alcan will invest US$ 7 million in a special sheet Rhenalu facility in France to recycle aluminium used beverage cans (UBC). The new ca-pacity will come on stream by the start of 2008, and will turn the site at Neuf-Brisach into Europe’s only fully integrated UBC processing, rolling and finishing facility.

Manzoni Bouchet filed for bank-ruptcy protection in France as the troubled French pressure die-caster announced plans to close its Span-ish foundry and its plastics business. French high-pressure and gravity die-caster Groupe Arche and Dutch die-casting group Euralcom Group

are rumoured to be interested in buy-ing Manzoni-Bouchet which is one of Europe’s largest die casters and buys 55,000 tpy of aluminium alloy.

In Germany, Alcan sold its auto-motive casting activity BDW GmbH & Co KG to AluCast GmbH, a company controlled by Parter Capital, a private equity company based in Frankfurt. Alcan BDW employs approx. 330 peo-ple and recorded a 2005 turnover of 50 million euros.

German aluminium casting alloys producer Bruch Group announced plans to build a 120,000 tpy plant in Marbach, near Stuttgart, after it shuts down the nearby Asperg plant which has exhausted scope for expansion. The new plant will be set up on the River Neckar, just 12 km from the old location. Provided the permit ap-plication process runs smoothly, as expected, production can start up at the end of 2007.

In Hungary, German non-ferrous and ferrous scrap merchant Scholz AG has acquired secondary alumin- ➝

Page 30: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

30 ALUMINIUM · 3/2007

ium producer Eural kft from Span-ish group Pansoinco SA for an un-disclosed sum. Eural has a capacity to produce 50,000 tpy of aluminium alloy. Scrap is sourced from Audi’s manufacturing plant in Györ.

Novelis announced an agreement with Atlante Srla for the sale of land in Borgofranco, Italy, that is currently occupied by a Novelis casting alloys plant. Novelis sold the land for a nominal amount, the previously an-nounced charges of US$24m have been reduced to US$16.5m. The plant employed 105 people.

European regulators imposed a US$ 29 million fine on Norwegian beverage container recycler Tomra Systems ASA for allegedly abusing the European Union’s antitrust rules.

Hydro Aluminium agreed to sell its European automotive casting busi-ness to the Mexican group Nemak. Nemak acquires the European cast-ing operations in Dillingen, Germany; Linz, Austria; Hungary and Charlot-tenberg, Sweden.

Russian production of secondary aluminium is expected to grow 3 to 4% annually over the next five years, as producers, who are consolidating rapidly, cater for increasing demand. Currently, Russia produces about 590,000 tpy of secondary aluminium, but the global growth of recycled alu-minium consumption and stronger Russian industrial production will boost output. Consolidation is taking place as smaller companies are driven out of business and larger companies increase their turnover as a result, partly because of government policy in Russia. At the end of 2005 there were 170 exporters of secondary alu-minium from Russia, but in 2006 the number dropped to 90, and there are indications that by 2007 only 15 to 20 major exporters will remain.

Rusal announced plans to produce some 500,000 tpy of secondary alu-minium by 2011 through acquisitions and through building its own pro-duction plants. The plan to produce 500,000 tpy would give Rusal more than 60% of the Russian market. About 440 businesses in Russia pro-duce aluminium alloys from scrap.

JL French was said to be planning a die-casting plant in Slovakia. The

move comes amid speculation about the company’s UK-based operations. The new venture in Slovakia may re-place the UK operations.

Befesa Aluminio, Spain’s larg-est secondary aluminium producer, will increase liquid aluminium alloy capacity to 50% of total production by 2007, and will shift all aluminium scrap processing to its site in Val-ladolid in a move to save time and money. Befasa produced just less than 100,000 tonnes of alloy in 2006.

Aluminio Sala, a Spanish family-owned secondary aluminium ingot producer, announced plans to more than double capacity to 3,500 to 4,000 tpm from 1,500 tpy by 2007.

Spanish secondary aluminium producer Iberica de Aleaciones Lig-eras (Idalsa) announced it is facing a financial crisis, struggling under the weight of EUR 26 million (US$33.4m) in debt. The news did not surprise the market as Idalsa, which produces around 30,000 tpy of alloy, was a sup-plier to Manzoni-Bouchot, the French die-caster that filed for bankruptcy protection.

Novelis is planning to invest US$ 32 million in the construction of a new casthouse at its Sierre, Switzerland, rolling mill. The facility will house a multi-alloy ingot casting center based on the company’s breakthrough Nov-elis Fusion technology for simultane-ously casting multiple alloy layers into aluminium ingots. The Sierre casting center is expected to be operational in early 2008. The new casthouse will have an initial capacity of 70,000 tpy, and will lead to the creation of 30 new jobs at the Sierre plant.

Bernhard Metals has closed and its assets were sold off after administra-tors for the United Kingdom second-

ary aluminium ingot producer failed to broker a last-minute deal with a potential buyer to save the company from collapse.

Aluminium die-casting alloy pro-ducer Brock Metal Co reduced its workforce as the company runs well below capacity because of a sharp drop-off in demand for die-casting alloys in the domestic market. Brock will cut under ten jobs out of a work-force of 60. Alumasc Group put its zinc and aluminium die-casting alloy producer Brock Metal Co up for sale and is actively seeking buyers for the business.

Administrators of UK high-pres-sure automotive die caster JL French UK officially agreed to break the com-pany up and sell its two plants as sepa-rate entities. The administrators put the Presteigne plant in Wales up for sale. JL French administrators sold the company’s Presteigne plant in Powys mid-Wales to a newly formed com-pany called Kaye Engineering Ltd. The Indian die-casting giant Amtek has been negotiating to buy Whitham since early in the sales process, but talks collapsed after Amtek was un-able to reach a supply agreement with Whitham’s key customer, Ford.

UK die caster Zeus castings filed for administration and was acquired by Caparo Engineering Ltd., part of UK-based Caparo Group. Caparo En-gineering Ltd. also acquired UK grav-ity die caster Bridge Aluminium for an undisclosed sum.

Hydro Aluminium Deeside an-nounced plans to lift production to 55,000 tpy to boost sales by the end of 2007 in a bid to offset soaring electric-ity prices. Hydro Aluminium Deeside produces extrusion ingot from 90% remelted aluminium scrap. ■

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 31: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

31 ALUMINIUM · 3/200731ALUMINIUM · 3/2007

The Department of Energy is back-ing a project to improve energy efficiency in aluminium re-melt-ing. This project is being carried out by a group of companies that include Secat, Alcan, Arco Alumi-num, Aleris International, Century Aluminum, Logan Aluminum, Ohio Valley Aluminum and Hydro Aluminum.

The US$ 5 million project – which began in 2001 and was due for com-pletion in December 2006 – aims to save about 13 trillion BTU per year in energy by 2015 and US$ 57 mil-lion per year using year 2000 US gas prices.

U.S. Department of Energy backs secondary aluminium smelting project

The objective is to develop new technologies to be applied either in a retrofit or in new installations that will both improve energy efficiency of secondary aluminium smelting by 25% and also reduce greenhouse gas emissions. The project partners have built two experimental reverberatory furnaces for testing improvements in oxygen-air-fuel burners, insulation, refractories, sensors and control sys-tems. The technologies include oxy-gen enrichment (saving up to 40% of energy), molten metal stirring (saving between 5% and 30%) and air preheat-ing (saving between 10% and 20%).

To achieve the targeted energy saving, all the suggested technologies

would have to be explored and imple-mented. The financing initial cost of investment, as well as limitations in existing plant floor space, are poten-tial stumbling blocks to the introduc-tion of these technologies.

Commercial applications that stem from this research so far include a heat flow simulation software package, which enables companies to simulate changes to their particular furnace conditions. In addition, firms can now run trials for testing refractories, furnace configuration changes and burners on model 907 kg and 68 kg furnaces available through Secat. The final report will be released in March 2007. ■

Alumasc puts Brock up for sale

Alumasc Group has put its UK zinc and aluminium die-casting alloy pro-ducer Brock Metal Co up for sale, and is actively seeking buyers for the business. Alumasc approached AMC, which owns one of the UK’s largest aluminium alloy producers, Mil-Ver Metals, but was turned down. A pos-sible sale of Brock comes nearly two years after the demise of one of Alu-masc’s most important customers MG Rover, which had a severe effect on Alumasc’s engineering business and forced the company to implement a massive restructuring programme. Alumasc closed its West Midlands die-caster Copal Castings in February 2006 after failing to find a buyer.

JL French UK lures three poten-tial bidders as sale drags on

JL French UK administrators have three potential companies, including one from Spain and one from China, that may be willing to take the ailing UK die-caster off their hands. The sales process is complicated. In order to seal an agreement, the administra-tors must secure the backing of Ford,

JL French’s major customer, which is signing the business while it is in administration. Concerns are mount-ing that the longer the sales process takes the more likely it is that the US carmaker may stop supporting the plant, based in Whitham, Essex, forc-ing it to close. Whitham, which buys an estimated 500 tonnes per month of aluminium alloy ingot was said to lose as much as £500,000 per month.

Alcan and CFF sign aluminium UBC contract

Alcan Specialty Sheet has singed a multi-year agreement with CFF Re-cycling division Canibal, France to support deployment of a used bever-age can (UBC) collection network in France. The partnership aims to sig-nificantly expand the current network of UBC collection equipment in tar-geted locations in France. Alcan Spe-cialty Sheet has committed to recycle all the Canibal-collected aluminium UBCs at Alcan’s Neuf-Brisach plant in France. Alcan recently announced plans to invest US$ 7 million in its specialty sheet rolling and recycling plant at Neuf-Brisach to recycle alu-minium UBCs. The new capacity is

scheduled to come on stream by the beginning of 2008. France’s current overall UBC recycling rate is 18 per cent compared with a 50 per cent rate for all of Europe.

Hindalco and Almex form alu-minium alloy joint venture

India’s largest aluminium producer Hindalco Industries has signed a joint venture deal with California-based Almex to manufacture high-strength aluminium alloys. The joint venture, named Hindalco-Almex Aerospace Ltd (HAAL), will cost an estimated Rs 1.55 billion (US$33.7m) to set up and will have a capacity of 46,000 tpy. Hindalco will hold a 70 per cent stake in the company, which will produce alloys for the aerospace, transport and sporting goods industries. First production is scheduled for the first quarter of 2008, though full capacity will be reached in stages over the next three to four years. The location of HAAL’s manufacturing facility is still to be finalized, though it is likely to be in south-west India. A large portion of HAAL’s output will be marketed overseas.

S P E C I A L A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 32: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

32

S P E C I A L

The design of new furnaces and the modernisation of existing ones have to consider the following ba-sic requirements: production, effi-ciency, maintenance, environment, economy.

None of the above aspects can be ig-nored for a modern furnace installa-tion. Which of these aspects dominate the list depends mainly on the type of furnace and on the local environment. Certainly the priorities are very dif-ferent for furnaces melting contami-nated scraps in contrast to electrically heated furnaces melting clean metal.

The modernisation targets most often requested by furnace operating companies are:• shorten melting cycle • reduce dross development• improve dross removal and dross handling• simplify solid and / or liquid metal charge• reduce power and fuel costs• improve waste gas cleanliness• easily maintain cleanliness of furnace• easily treat liquid metal in furnace• improve workplace and environmental conditions.Most of these targets can be reached or optimised with presently available technologies and/or modern PLC for operation and furnace protection. Generally it should be clear that a modern, optimised furnace installa-tion has to be based on customized engineering so as to integrate all the very specific requirements of each particular furnace user.

The wide variety of furnace types presently used in the aluminium in-dustry ranges from fuel fired, double chamber furnaces, used for melting contaminated scraps, and reaches to electrically heated channel inductor furnaces for melting clean metal. Fur-thermore there are numerous varia-tions of combined melting / casting or pure casting furnaces.

To narrow this wide range we like to concentrate our modernisation

thoughts on technical possibilities for fuel fired combined furnaces. This group of furnaces represents the larg-est number of installations in use and requested.

Frequently observed deficiencies on furnaces are:

• Poorly sealed doors, metal inlets and/or outlets• Limited access for charging and for metal treatments• Not optimised burner capacities, burner regulation mismatch to heat absorption capacities of metal, burner’s flame direction, dimension and speed• Wrong siting of waste gas outlet in relation to flame directions• Cascading of outflowing metal• Not optimised metal treatment possibilities

• Metal bath too deep• Incorrect expansion joints of refractory• Poor stability of furnace body.These deficiencies are the main fields of discussion for modernisation and/or optimisation projects to eliminate the following negative consequences:• Furnace deformation and/or deterioration of body and door• High energy consumption and high temperature of refractory• High waste gas production.• Quality problems• High dross formation• Time-consuming furnace handling.In addition to the above general infor-mation and observations on deficien-cies we describe below how a modern furnace should operate and further-more provide an outlook for the next steps in modernisation.

Summary

Modern furnace installation – design criteria aspects R. Weiand and C. Hamers, Oberhausen

ALUMINIUM · 3/2007

Delivered modern furnaces: 1. Melting furnace

Basic technical data:

Furnace capacity: 110 tMelting rate: 25 t/hFuel: natural gasHeat efficiency rate: 319 kWh/t to 358 kWh/t(depending on alloy and scrap assembly)Number of burners: 3 pairs of regenerative burnersDoor opening: 9.5 m x 1.9 mMetal bath depth: approx. 750 mmMetal surface: 64 m2

Power (electromagnetic stirring) installed: 140 kWTotal weight of furnace: approx. 630 t

Gra

phs

and

phot

os:

IST

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 33: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

33 ALUMINIUM · 3/2007

S P E C I A L

33

Delivered modern furnaces: 2. Combined melting / casting furnaceBasic technical data:

Furnace capacity: 120 tMelting rates- without porous plugs: 22 t/h- with porous plugs: 24 t/h- number of porous plugs: 24Bath surface: 64 m2

Bath depth: approx. 1000 mmBurner system- number of burners (Pairs of regenerative burner couples for natural gas) 3- Energy of burners: 3 x 6000 kWDoor opening: 9.2 x 1.95 mTilting angle: approx. 27°Min. tilting time: approx. 5 minTotal weight of furnace: approx. 570 t

Except for the EMS system, this furnace is assembled with same equipment as the melting furnace described before. Priority here was given to porous plugs to combine metal movements with metal treatment.A further step to the next generation of this type of melting furnace is presently under engineering review. It integrates the followingtechnical properties.Large capacity: 130 tMelting rate: approx. 28 t/hMetal charges: scraps, ingots, liquid metalElectro magnetic stirrer: 1Semi automated fluxing and gas treatment system: by means of inserted rotating equipment

ALUMINIUM · 3/2007

This type of furnace had been equipped with:• 3 pairs of highly efficient independently operating regenerative burners • Automated burner control allowing for heat absorption capacity of metal, furnace protection, and metal temperature adjustment • Semi-automated thermocouple extraction and insertation • Adjustable furnace pressure control system• Programme to record melting cycles so as to optimise programmable melt process • Full visualisation of all furnace data at all times• Automated burner control during door operations and thermocouple movements• Fully sealed large charging door with 9,5 x 1,9 m door opening. Size of door is harmonised with number and size of charging containers, dross collecting containers, and motorised metal handling equipment • Electromagnetic stirrer for contact-free liquid metal movement to homogenise temperature and alloy, and furthermore to maintain cleanlessness of furnace by means of programmable magnetic field intensity, direction and/or location of stirrer• Very rigid, bricked refractory for furnace bottom to allow charges of heavy solid metal blocks, and monolithic refractory for walls and roof• Rigid but elastic furnace body design to allow for all refractory and body thermal movements • Hydraulic systems to control furnace tilting speed and to lift and seal furnace door• Semi-automated metal outlet opening• Automated waste gas suction hood on furnace door.This installation has been in successful operation for more than 10 years.

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 34: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

34

S P E C I A L

Summary

To plan a modernisation or to choose a new modern furnace, it is impor-tant that supplier and customer first discuss technical possibilities and that the customer’s requirements are properly summarised. These summa-rised data are the basis for all design proposals to be evaluated between customer and engineer, so as to select the best solution. In our understand-ing, the following general design cri-teria characterise a modern furnace, whatever it is to be used for.

Criteria

Furnace bodyThe structure should combine rigid with well defined elastic behaviour which is based on computerised stress and deformation analyses under cold and hot conditions. The elasticity provides a springlike backforce to stabilise the refractory during thermal deformation. The structure must also provide a volume optimised for scrap type and for the number of charges per melt cycle.

shell. This implies a limit on the level of insulation. A con-sequence is that the furnace shell feels relatively hot.

Furnace automa-tion:Automation should provide highly flex-ible programming to allow for product changes or changes in operating proce-dures. To optimise

operations by modelling record for-mats should allow specific operations to be screened out and simulated in models. Records should also include failures of parts and systems on instal-lations so as to simplify and improve trouble shooting.

The trend in furnace development is towards higher capacities to al-low casting of large slabs up to 9,8 m length and/or to increase the number of billets and their quality require-ments. For these reasons we expect ever larger furnace capacities in the foreseeable future. To minimise pro-duction risks and to optimise metal handling and quality, requires the closest attention to basic and to detail design of all furnace properties. Also process controls should be highly au-tomated to reduce failures.

Other aspects

In addition, it is most relevant to con-sider logistical circumstances as well as scrap transport conditions when

ALUMINIUM · 3/2007

nace lifetime. Furthermore, the door frame should be large enough to give easy access to all areas of the furnace. A rigid design to withstand charging, de-drossing and cleaning operations, while minimising thermal deforma-tion, should have high priority.

Waste gas suction hoodTo control workplace and environ-ment conditions, a flow-optimised waste gas suction hood above the fur-nace door should be installed to ex-tract dust and smoke during charging and de-drossing operations.

BurnersHighly efficient medium-speed burn-ers should be used with a well defined flame characteristic and direction so as to optimise heat transfer to metal rather than to furnace structure. Burners and automated burner con-trols should provide the possibility to adjust energy input according the heat absorption capacity of the metal during melting and/or holding condi-tions.

Refractory:Only high quality ma-terials should be used; we prefer a bricked top quality furnace in-ner wearing layer with monolithic materials above bath and ceiling. Insulation should be designed so that metal freezing point is situat-ed near the inner wear-ing layer boundry and not near the furnace

Tiltable furnaces should be preferred for cascade-free controlled metal flow, floor-level in-stallations. Casting furnaces it should have provisions to move liquid metal and to treat metal.

Furnace doorAs an important part of a furnace, door design should be given high pri-ority. Production operations, gas flow control, noise control and lifetime of furnace all require a fully sealed and adjustable door blade to follow all foreseeable deformations during fur-

Furnace door

Modernised furnace

Modernised furnace door

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 35: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

S P E C I A L

Page 36: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

36

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

installing a new furnace into an exist-ing plant. This means, sometimes new ideas have to be developed to suit the requirements best. Specially for the automotive industry (motor and gear production units) such furnaces of Tower type are recommanded. Such furnaces, equipped according to above mentioned modern design cri-teria lead to Tower-melting furnace with high efficiency and mainly auto-mated control and process flow.

Authors

Rolf Weiand is consultant for Industrieofen und Stranggiess Technik GmbH (IST).Christian Hamers is Managing Director of IST for projects marketing and sales.

Tower melting furnace

Compact type remelt plant for contaminated scrap using latest melting technologyF. Niedermair, Braunau

Hertwich Engineering has taken on the challenge and has success-fully developed and commissioned a revolutionary scrap remelt plant to meet the limited capacity re-quirement of a typical extruder.Within recent years Hertwich Engineering has supplied some 20 such plants to extruders world-wide.

The term “compact” refers to a remelt plant of compact design, that comprises all production steps from

Fig. 1: General Plant Layout

Gra

phs

and

phot

os:

HE

scrap charging to finished billet into one combined, automated production process. The term “revolutionary” comes to mind since this installation meets all relevant requirements for a modern recycling facility, especially• provides fully automatic charging• combines gasification-, metal pre- heat-, and melting process in one single integrated system• largely avoids the emission of di- oxins by application of an adequate combustion and flue gas cooling re- gime

• utilizes the inherent energy of gasi- fied hydrocarbons for reducing fuel consumption• minimises metal losses at the melt- ing process• minimises manpower requirement and avoiding shredding or baling of scrap• ensures high level of safety.

Description of the HE-remelt plant

Essentially the remelt plant consists of

Page 37: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

37 ALUMINIUM · 3/2007

S P E C I A L

37ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Fig. 2: Overall view of the plant. From left to right: Part of scrap bin accumulator, Skim-ming rake storage, Three-chamber melting and casting furnace, Horizontal caster, Continu-ous homogenizer, Weighing/Strapping system.

Fig. 3: Combined charging and skimming machine

Fig. 4:Horizontal caster with flying saw, billet production

the following elements:• Combined furnace charging and skimming machine, fully automated • Three-chamber melting and casting furnace• Degassing • Horizontal DC casting • Continuous homogenising • Cooling station and exit and sawing. (Figs. 1 and 2)

Combined charging and skimming machine

Approx. one third of the metal charged can be contaminated scrap. The aver-age contamination rate (organic sub-stances) is in the range of 2 to 4 weight % of total metal charged (Fig. 3).

Horizontal caster

The HE horizontal caster produces 5 strands of diameter 178 mm billet or 6 strands of diameter 152 mm. Con-tinuous casting rate is up to 3 tonnes/hour. The integrated flying saw auto-matically cuts the strands into billets of 7 meters length (Fig. 4). In general a casting cycle starts on Monday morn-ing and stops on Saturday morning. Cut-to-length billets are automatically pin stamped on the cut face and con-veyed onto an intermediate table.

Continuous homogeniser

Single billets from the intermediate table are introduced into the continu-ous homogeniser at regular intervals. While passing through the furnace the billets are subjected to heating and holding with very narrow temperature and time tolerances, consistent for all billets. Thereafter billets pass through a cooling station for uniform cooling. After cooling, billets are moved to the exit station where they are weighed and bundled. Strapping and remov-ing of finished bundles are the only manual operations of the production cycle after loading of full scrap bins onto the bin entry accumulator.

Control system

Besides the state-of-the-art process control and visualisation, the plant has been designed to ensure ➝

Page 38: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

38

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

continuous production, even during frequent, short power outages.

Operational information

• Production rate: 1 to 3 tonnes per hour or 500 to 1.500 tonnes per months.• Energy consumption: Melting fur- nace < 600 kWh per tonne or 920 BTU per lb. Continuous homog- enizer < 240 kWh per tonne or 370 BTU/lb.• Metal recovery at the melting fur- nace: Tests on the installation have shown that, upon charging clean

scrap exclusively the quantity of dross removed from the furnace is around 0,8% of total charged metal. This type of dross contains 40 to 60% of recoverable aluminium.• Operating staff: The complete remelt plant is operated by one man per shift. A second man is occupied with handling of purchased scrap and scrap bin transport.

Conclusion

This new remelt plant has met all ex-pectations in terms of performance

and efficiency. The innovative con-cept of this installation represents a milestone in modern recycling of alu-minium scrap regarding:• versatility in terms of charged scrap• scrap maximum yield• improved operating safety• substantially improved economics.

Author

Dipl.-Ing. Franz Niedermair (1952) is since 1989 with Hertwich Engineering (HE) in R&D and marketing. Since 1994 he is Man-aging Director of HE.

Otto Junker UK hat mit der Bau-reihe leistungsfähiger Kippdreh-trommelöfen das Programm der Gruppe um eine alternative Schmelztechnologie komplettiert. Die Öfen sind prädestiniert für das Schmelzen einer Mischung verschiedener Schrotte, von ver-unreinigten Schrotten und stark oxidhaltigen Materialien wie Krät-ze. Insbesondere wenn mit einem Salzzusatz zur Verringerung der Oxidation und zur Aufnahme der Verunreinigungen gearbeitet werden muss, wird bevorzugt der Drehtrommelofen eingesetzt.

So stehen in der Gruppe nun neben den Induktions- und brennstoffbe-heizten Herdschmelzöfen moderne Aggregate für das Schmelzen von Aluminiumschrotten zur Verfügung. Im Aufbau besteht der Drehtrommel-ofen aus einem zylindrischen Stahl-mantel mit feuerfester Auskleidung, der liegend gelagert ist und in Dreh-bewegung versetzt wird. Die Behei-zung erfolgt über einen an der Stirn-seite angeordneten Brenner, der beim Chargieren zur Seite weggeschwenkt wird. Die Baureihe dieser neu entwi-ckelten Öfen reicht von 1 bis 15 Ton-nen Fassungsvermögen und 0,5 bis 5 Tonnen Schmelzleistung pro Stunde.

Der Lieferumfang umfasst ein kom-plettes Anlagensystem mit allen er-forderlichen Hilfs- und Nebenein-richtungen wie Chargiereinrichtung, Filter- und Abgasreinigungsanlage, Gießrinnen usw. Ein modernes Pro-zessleitsystem sorgt für die Steuerung und Überwachung aller Aggregate und Prozesse.

Hier die kurze Beschreibung einer typischen Kippdrehtrommelofenan-lage aus dem Bauprogramm: Der Ofen hat einen Durchmesser von 2 Meter und ein Fassungsvermögen von 17,25 Tonnen. Der Einsatz eines Sauerstoff-brenners ergibt eine Schmelzleistung von 5,75 Tonnen pro Stunde. Durch die Kipp- und Drehbewegung wird

Otto Junker UK

Neue Kippdrehtrommelöfen im Programm

Otto Junker UK

Launching new tilting rotary furnaces

With its launch of a line of high-performance tilting rotary fur-naces, Otto Junker UK has added a new melting technology to the Group‘s product range, thereby completing its offering of furnace equipment. Tilting rotary furnaces are designed for melting mixed, contaminated scrap, or highly oxidized materials such as dross. They are particularly well suited for applications involving the ad-dition of salts to minimize oxida-tion and absorb contaminants.

The core element of a tilting rotary furnace is a refractory-lined cylin-drical steel shell. This tubular shell

Kippdrehtrommelofen

Tilting rotary furnace

O. Ju

nker

Page 39: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

39 ALUMINIUM · 3/2007

S P E C I A L

39ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

zum einem ein intensiver Kontakt zwischen Salzschlacke und Einsatz-material bzw. Schmelze erreicht und zum anderen eine sehr gute Wärme-übertragung ermöglicht. Das Resultat sind kurze Behandlungszeiten und ein niedriger Energieverbrauch.

Eine Chargiermaschine mit einem Fassungsvermögen von 6 Tonnen sorgt für eine sehr schnelle Beschi-ckung des Ofens. Nach 3 Stunden ist der Recyclingprozess abgeschlossen und das flüssige Aluminium wird in wenigen Minuten abgegossen. Da-nach wird der Ofen weiter gekippt und gedreht, so dass die gesamte Salz-schlacke aus dem Ofen entfernt wird. Nach 3,5 Stunden ist der Ofen bereit für die nächste Charge und es kann erneut mit dem Chargieren begonnen werden. Die Abgase werden in einer modernen Entstaubungsanlage und durch die Zuführung von Kalk so auf-bereitet und gereinigt, dass die Emis-sionsgrenzwerte klar unterschritten werden. ■

is arranged horizontally and driven to rotate about its axis. The furnace is heated by a front-mounted burner which swings away sideways for charging. The line of newly developed tilting rotary furnaces ranges from 1 to 15 tonnes in capacity and covers melt outputs from 0.5 to 5 tonnes per hour.

The scope of supply comprises the complete furnace system including all requisite auxiliary and ancillary equipment such as the charging ma-chine, filters, off-gas cleaning system, launder, etc. An advanced process management system ensures that all equipment and processes are effec-tively controlled and monitored. The newly developed design is character-ized by a high thermal efficiency and hence, low energy consumption, in addition to high metal yield, low salt input, and minimum emission rates.

The features of a typical tilting rotary furnace installation from the new range can be outlined as follows:

A furnace measuring 2 metres in di-ameter has a capacity of 17.25 tonnes. Equipped with an oxygen burner, it delivers an output of 5.75 tonnes per hour. Its tilting and rotary movement ensures an optimum interaction of the salt slag and furnace charge or melt, respectively, while also providing a very good heat transfer. Short treat-ment cycles and low energy consump-tion are achieved as a result.

A charging machine with a capac-ity of 6 tonnes allows the furnace to be filled very quickly. After 3 hours, the recycling process is complete and the liquid aluminium is poured out within just a few minutes. The furnace is then tilted further and set to rotate so that all salt slag will drain from its interior. Some 3.5 hours after it was charged, the system is ready to receive the next scrap load. Off-gases are proc-essed in an advanced dust collection system and treated with lime such as to ensure compliance with applicable emission thresholds. ■

for Aluminium DCcasting

Dracheumwel t t echn ik

Drache Umwelttechnik GmbH · [email protected] · www.drache-gmbh.de

Spouts andStoppers

Ceramic FoamFilters

for Aluminium DCcasting

Page 40: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

40

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Against a backdrop of rapidly in-creasing LME price for aluminium as well as spiralling energy costs, maximising the metal yield and economising energy when remelt-ing aluminium has never been more important than in today’s economic climate. With this objec-tive in mind EMP Technologies of-fers its electromagnetic pump and charge well system from a portfo-lio of equipment designed to assist the secondary aluminium cast house and aluminium recycler in today’s challenging market.

Since the mid-1990’s EMP Technolo-gies has perfected and proven its systems in over 80 installations in 30 countries around the world using its circulation method to melt light gauge scrap. Whatever the reverberatory fur-nace design or the operating practice, EMP has a suitable system for circula-tion or for combined circulation and light weight scrap charging.

In 2005 EMP was acquired by the global Pyrotek organisation, which brought with it the significant benefit of local support via the many Pyrotek offices throughout the world.

The principal concept of the sys-tem when used in combination with a reverberatory furnace is to acceler-ate wetting and melting of light weight scrap by using a high capacity electro-magnetic pump to circulate hot liquid metal from the hearth to a special ex-

ternal charging well, then back into the hearth.

The electromagnetic pump circulates liquid metal as illus-trated in Fig. 1. The systems are suited to furnaces of from 5 to 150 tonnes, with pumps avail-able to provide mass flows of up to 20 tonnes per minute.

EMP and Lotuss for light gauge scrap melting

The key principles for high-re-covery and efficient scrap melt-ing are:• Rapidly submerge of the scrap into liquid metal, continuously circu- lated by a high-capacity molten metal pump• Prevent direct flame impingement onto the scrap which would aggra- vate oxidation and metal losses• Continuously melt with automated scrap feed which is uninterrupted by dross removal.The heart of the technology best suited to this application is the patented LO-TUSS (LOw TUrbulence Scrap Sub-merging system) vortex design used to melt light weight scrap charged in a well external to the main furnace, as illustrated in Fig. 2.

The systems are capable of absorb-ing scrap charge rates up to 15 tonnes per hour. Since their introduction, many Lotuss systems have been in-stalled in aluminium cast houses, sec-

ondary operations, wheel plants, and large foundries where they commonly achieve metal recoveries above 96%.

Cast houses with cap-tive downstream process-ing may have a readily available supply of light weight process scrap such as scalper chips, edge trim and saw chips.

Typically, the second-ary aluminium producer

must use a variety of available scrap types to produce secondary alloy.

While light gauge scrap is usually less expensive, often by a wide margin, it presents operational challenges which may offset the low purchase price.

In both cases the Lotuss system aids the melting of scalper chips, edge trim, saw chips, turnings, borings, used beverage cans and other light scrap, while achieving high recovery rates, excellent production rates and low energy consumption. The system features rapid scrap submergence to minimise melt loss as well as strong circulation of molten metal within the furnace to enhance production rates and energy efficiency,

Economics

The above system can result in very attractive economic returns for the user. Summarised below are the proc-ess gains that can be conservatively expected, based on the experience of many users:Higher production 20%Lower energy usage/kg 10%Higher yield 3-4%Longer refractory life 25%.

Foil bale charging

More recently the Lotuss technology has been applied to the processing of in-house generated 6 µm aluminium foil compacted into bales.

Traditional methods make use of induction furnaces or they compact foil scrap into bales with high densities

EMP system and the Lotuss vortexR. Starczewski, Burton-on-Trent

Fig. 1 EMP system applied to a reverbera-tory furnace

Fig. 2: Lotuss vortex in an EMP chargewell

All

imag

es:

EMP

Tech

nolo

gies

Page 41: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

41 ALUMINIUM · 3/2007

S P E C I A L

41ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

of up to 2,100 kg/m³ to try to minimise losses when charged to the melt fur-nace directly. Both these traditional methods are inefficient for recycling this type of scrap, as the induction furnace consumes high amounts of energy, and direct charging to furnace yields a low level of metal recovery sometimes as low as 80%. Following many years of trials with several large aluminium producers, EMP has devel-oped a special method to efficiently recycle of this type of clean bailed foil scrap. Foil bales compacted to densi-ties of between 800 to 1,400 kg/m³, with dimensions up to 600 mm by 400 mm by 400 mm, have been charged continuously through the Lotuss vor-tex with recoveries greater than 98% (for clean dry process scrap) .

Alloying

Over the past 10 years some operators

who have been using the EMP Lotuss systems for melting light gauge scrap additions have also taken advantage of the unique vortex well as a route for alloy additions into the furnace. They have found that by keeping the furnace door closed during the whole alloying process, they benefit from three advantages:• Maintaining the heat trans- fer efficiency of the furnace• Minimizing energy losses• Minimizing environmen- tal emis sions to the cast house and operators.Instead of following the traditional procedures of alloying directly through

the furnace doors, or by using specially made alloy tablets, the pure elemental additions can now be easily dissolved by charging e.g. manganese flake, iron splatter, copper cuttings/swarf, or mag-nesium bars directly through the EMP vortex. This has been under-taken by many EMP users and is one of the many benefits attainable from the system.

Economic benefits to alloying through the vortex

With the appropriate feeding equip-ment, various alloying elements from lump silicon to magnesium have been effectively added to melts with signifi-cant savings in alloy losses and a very quick dissolution time of the alloy ele-ments into the melt.

Hulett Aluminium in South Af-rica, a large producer of 5182 alloy,

installed the system to charge all of their mag-nesium additions into the vortex with the sole objective of reducing al-loying cycle time and achieve homogeneity on their 70 tonne furnace. The operation was from dry hearth, fully empty-ing at the end of each cy-cle, and required approx. 2 tonnes of magnesium per charge.

Although the furnace was already equipped with an electro-magnetic stirrer system (EMS) underneath the furnace, by additionally installing an EMP system they were able to fur-ther reduce the cycle by over 20% by charging the magnesium alloy earlier in the melt cycle. The installation is pictured in Fig. 5. In addition they were able to achieve high yields on the magnesium alloy addition, in the order of 97 to 98%.

Eric Shultz, project engineer, de-scribes the use of the EMP system with electromagnetic pump and chargewell at the company’s Camp Drift remelt facility, saying: “The ben-

Fig. 3: Compacted foil on conveyor feeding a Lotuss system

Fig. 4: Compacted foil bales in the EMP chargewell

Fig. 5: Magnesium alloy ready to charge to the EMP Lotuss

efits from this investment are enor-mous. Magnesium was previously loaded into baskets and introduced to the metal bath through the main door using a forklift with the door open for the whole time. Magnesium is now in-troduced through the EMP chargewell with close to 100% recovery. This im-proves productivity and yields signifi-cantly, while it also improves metal cleanliness by producing less magne-sium oxide inclusions.”

These additional benefits, particu-larly the recovery of magnesium, have been so financially significant that we are currently installing a second sys-tem in a similar furnace.

Metal treatment

Also of particular interest is the ability to remove alkali elements and inclu-sions in the furnace prior to transfer to holding a furnace or to the casting pit/machine. A primary smelter cast house has indicated that since the in- ➝

Page 42: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

42

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

troduction of the EMP system and its powerful circulation in the furnace, they have stopped using fluxes to reduce sodium levels in the furnace after transferring metal from the pot room. The kinetic energy of metal cir-culation increases the transport of so-dium to the surface, where it oxidises or vaporises and can be taken off in the fume.

Typical sodium levels prior to the addition of the EMP System were be-tween 80 ppm and 100 ppm depend-ing upon the pot tapping process. Pri-or to the addition of the EMP system, the furnace used to be fluxed and then manually stirred with a dross rake to reduce sodium to the desired level.Since the addition of the EMP system, which achieves a circulation rate of 10 tonnes per minute, the sodium level drops to around 10 ppm during the normal cycle time. Clearly, limits below 10 ppm would require the use of additional fused fluxes for example. This not only saves fluxes and door opening time, but also reduces the cycle time, so increasing furnace pro-

ductivity.Consequently preliminary trials have been under-taken where-by Promag S, a chloride based fused flux, has been added to pri-mary molten metal. The flux was in-troduced into the furnace via EMP Lo-

tuss vortex. These trials were con-ducted on consecutive melts in a 50 tonnes furnace bath of predominantly primary metal with less than 10% re-cycled metal charge. Again the door was kept closed and no manual stir-ring was required.

The preliminary results have dem-onstrated both a further reduction in sodium and in inclusion levels. The key fluxing advantage of EMP is the ability to introduce the flux early in the melt cycle and to distribute it ef-fectively and efficiently.

EMP 620 super pump

The circulation within the EMP sys-tem has historically been provided by a 4” (101,6 mm) diameter electro-magnetic tube pump. For more chal-lenging operational applications, in-cluding dry hearth or where pot-line metal forms part of the charge, EMP has developed a variant 6” (152,4 mm) diameter electromagnetic tube pump. There are currently 5 of these pumps installed and operating. This 6” pump

has now been developed significantly further with substantially increased length and new laminated construc-tion. This improved design signifi-cantly increases mass flow to an esti-mated 20 tonnes per minute.

Installation of the first 620 series pump system is programmed for December 2006 in a 150 tonne twin chamber furnace at a secondary alu-minium smelter in Italy. The increased diameter and power offered by the upgraded 6” EMP 620 series pump is expected to significantly increase mass flow, resulting in improved heat transfer in the furnace and in improved temperature/chemical ho-mogeneity of the metal bath.

Stirring systems

A new addition to the EMP range of products is the EM “metal mover” side mounted electro-magnetic stirring system. The system is ideal in applica-tions where no light scrap is charged but circulation would enhance the melt cycle and improve chemical and temperature homogeneity.

Unlike similar underfloor EM sys-tems, the EM “metal mover” is easily retrofitted to existing furnaces. It re-quires only a discrete area and oper-ates at a low installed power and at normal main frequency of 50 Hz.

Three standard sizes are currently available, offering mass flows of 300, 600 and 750 tonnes per hour.

Author

Richard Starczewski is Sales Manager for EMP Technologies Limited.

Fig. 6: Illustration of EM “metal mover” side stirrer

Page 43: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

S P E C I A L

Page 44: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

44

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

More accurate, effective, timely and rapid dross cleaning allows big production, quality and eco-nomic advantages. This is well known and is the main target of a new range of manual, automatic or semiautomatic de-drossing and furnace cleaning equipment which easily adapts to every cast house and aluminium smelter.

In the last five years developments in the design and manufacture of equip-ment to skim and clean furnaces were pushed not only by productivity and quality issues, but by health and safety standards. The opportunity to withdraw operators from hot, danger-ous and laborious work areas firmly

the best possible performance for the following targets:1) To shorten the time the operations which need the furnaces door kept open2) To skim the furnace in accurate and effective way, removing the mini- mum amount of aluminium3) To clean the furnace walls and bottom without damaging the refractory lining4) To submerge the scrap in the molten bath5) To mix and homogenise the bath.

The automation (both of the frequen-cy and of the operation itself) of these routine furnace tending procedures significantly improves all the aspects

control tool movements in a gradual and progressive manner through the joystick of the remote control, or the movement can be fully automatic (without any direct intervention by the operator). If the operator controls the movements directly, he is posi-tioned in a cabin, or is operating the remote control console from the safest location, protected from the potential risk of splashes of molten metal from the furnace.

The system can be mounted on rails in front of the furnace doors, thus allowing the equipment to oper-ate on more than one furnace, or else it may be fixed in front of one furnace. The flexibility and precision of this furnace tending operation provide a number of safety, economic and pro-duction advantages including:• Increases furnace utilization by reducing the amount of time required to effectively and accu- rate de-dross the furnace• Improves heat transmission• Increases the speed of the cold charge melting cycle due to the po- tential to mix and submerge the scrap into the melt• Avoids dross, sludge and metal build-up that can progressively reduce the furnace capacity, pol- lute the metal analysis and require unscheduled downtime to carry out substantial furnace cleaning using hammer drills, etc.• Increases refractory life by avoid ing the thermal stress caused by long de-drossing time and the mechanical stresses that results when percussion tools are used to clean the furnaces• Reduces the manpower required to carry out the mixing and de-dross- ing operations• Improves the safety of the cast house by keeping the operator away from the furnace door during such operations• Eliminates the need for forklift truck operations in front of the furnaces.

T.T. Tomorrow Technology

Strategy for automatic furnace skimmingG. Campice, due Carrare

Rail mounted furnace cleaning equipment during cold tests

supports this choice. T.T. Tomorrow Technology of Italy has developed manual, automatic or semi-automatic furnace cleaning machines designed to operate in the arduous cast house environment and meet the safety, economic and production require-ments of today’s aluminium industry. The furnace cleaning machines have been successfully installed in a large number of aluminium production fa-cilities. Each of them has enabled the user to realize a number of important benefits, including increased furnace productivity, improved operator safe-ty, reduced maintenance costs, and a major fuel saving.

The furnace cleaning machines are designed and manufactured to reach

of the melting process. It is well known that dross acts as a thermal insulation on the molten bath, thereby reducing the efficiency of heat transfer from the flame to the metal: the opportunity to easily and quickly remove the dross from the liquid metal surface results in higher heat exchange efficiency, permitting a lower chamber tempera-ture and consequent cost savings in fuel and in metal oxidation.

During the de-drossing operation the tool is moved back and forth with precise and controlled movements parallel to the liquid surface. This op-timum standard of control eliminates the waves and oscillations that are of-ten experienced with more traditional de-drossing systems. The operator can

T.T.

Tom

orro

w T

echn

olog

y

Page 45: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

45 ALUMINIUM · 3/2007

S P E C I A L

45ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Experience with using furnace clean-ing machines produced by T.T. To-morrow Technology has yielded very positive feedback as regards the fol-lowing characteristics:• Ease of use• High reliability• Minimal maintenance• Flexibility (when used with more that one furnace)• Easy and user-friendly implemen- tation in the existing process operations.In accordance with T.T. Tomorrow Technology design policy, the ma-chine configuration, structural char-acteristics and working parameters have been designed to make the equipment simple, reliable and easy to maintain. All electrical and hydrau-lic components have been positioned on the main frame of the machine on the side away from the furnace so as to avoid exposure to heat and molten metal splashes. This also eliminates

Fixed furnace cleaning, metal mixing and bottom cleaning equipment

the potential for fires from hydraulic oil that a burst pipe could potentially project into the furnace. An installa-tion advantage of these machines is that they need no special foundations or extensive civil works.

Author

Giovanni Campice is Managing Director of T.T. Tomorrow Technologies, based in due Carrare, Italy.

Unsere Zweikammer-Schmelzöfen (TCF) verbrauchenwenig Energie, weisen niedrigste Emissionswerte auf undarbeiten höchst ökologisch und ökonomisch. Außerdemfunktionieren sie hochsicher und vollautomatisch.

Schützt Umweltund Umsatz.

LOI Thermprocess GmbHAm Lichtbogen 2945141 Essen, Deutschland

Tel.: +49 (0)2 01 18 91-1Fax: +49 (0)2 01 18 91-321E-Mail: [email protected]

GIFA METEC

NEWCASTTHERMPROCESS

Thermprocess 2007Düsseldorf12.-16. JuniHalle 5, Stand B20

BESUCHEN SIE UNS:

ww

w.to

-bic

om.d

e 0

91xx

-07

Page 46: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

46

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Nowadays the use of rotary injec-tors for in-furnace liquid metal treatment is the recognized tech-nology. Casthouse users may choose from a number of technol-ogies implementing this principle. There are chiefly two kinds of installation:• “single” rotor type, which, as a rule, is a portable set-up for furnace treatment via an exist- ing opening, for instance a fur- nace door or hatch.• “multiple” rotor type, which is an automated system using rotors introduced into the fur- nace melt via dedicated open- ings located on the roof of the furnace.The second type of installation is more efficient and presents sev-eral advantages: shorter treatment cycle; no fume emissions, since treatment takes place with the door closed; very good treatment results, as regards the removal of hydrogen, alkaline elements and inclusions; reduced amounts of process gas due to the total reac-tion of the gas injected.

The Novelis PAE IRMA process be-longs to this family of technologies. The latest design features, with new materials and automation, make it the most attractive solution for any mod-ern casthouse. In particular it allows more scrap in furnace charges with no negative effect on the quality of finished products.

Principle of IRMA process

The process is based on the distribu-tion of small bubbles of treatment gas in the furnace melt using rotary injec-tors inserted simultaneously through the furnace roof.

The rotor is identical to that used in Alpur systems (in-line degassing process) and so it guarantees the same gas dispersion efficiency as Al-

Advantages of the IRMA process for the in-furnace treatment of aluminium J.-M. Chateau, Voreppe

pur. This standardisation also gives casthouse users the advantage of total in-terchangeability between IRMA and Alpur rotors and reduces the stock of replacement parts. The number of rotors and their positions are adapted to the size and shape of the furnace, thus allowing a homogenous temperature distribution without ex-cessive turbulence. The rotors are mounted on a

metal structure. This would be the gantry fixed on the top of the furnace for a fixed furnace, or travelling for a tilting-type furnace.

A gas mixture panel regulates the required proportions of gas-es for each rotor. All treatment sequences are fully automated and are launched in succession: gantry positioning, opening of furnace hatches, opening of the process gas circuit, introduction of the rotors inside the furnace, treatment sequence, end of cy-cle etc. For a casthouse facility with several furnaces, the same type of support structure is able to travel between the different furnaces.

Process basics

Simulation tests and in-dustrial operation have established that one rotor is required per 12 tonnes of furnace capacity, and that the average treat-ment time is about 30 minutes. A big capacity furnace may feature up to 6 rotors, and yet the dura-tion of treatment always remains the same. Good

treatment results are directly linked with the small size of the bubbles, the

Fig. 1: A 2-rotor IRMA system

Fig. 2: Mechanisms of removal of impurities from the metal by rotary injector

Fig. 3: Automated hatches (closed position) on furnace roof

All

imag

es:

Nov

elis

Page 47: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

47 ALUMINIUM · 3/2007

S P E C I A L

47ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

IRMA process instead of alterna-tives results in a significant economy in melt loss. This is directly due to eliminating the splash effect thanks to

the small size of the bub-bles and to a slow speed of rotation. Melt loss is estimated at about 10% less than with traditional lance treatments.

Energy savings: The metal temperature drop is reduced to a minimum thanks to the short length of treatment, to the lim-ited amount of process

gas injected into the melt, and to treat-ing the melt with the furnace doors closed. Measurements made on in-dustrial facilities show energy savings

of about 20%.

Conclusions

The IRMA process fully meets ever-increasing mol-ten metal quality require-ments since it allows a high-ly efficient removal of hy-drogen, of inclusions and of alkaline elements. In addi-tion, the other benefits pro-vided by the IRMA system, such as treatment in a sealed furnace, fast treatment time and advanced automation, also have a substantial im-pact on productivity and production costs, on the reliability of operations, on work conditions and on en-ergy savings.

References

[1] P. Le Brun and A. Mathis, “Improved molten metal qual-ity at the outlet of the furnace through the IRMA treatment”, Light Metals 2004, ed. A. T. Tabereaux (TMS, Warrendale, Pa), 789-792.

Author

Jean-Marie Chateau is General Manager of Alpur & Casthouse equipment sales activity of Novelis PAE, based in Vore-ppe, France. He has a long experience in development of casthouse equipment and in sales of liquid metal treatment solutions.

Fig. 4: An IRMA gantry serving 2 furnaces

same as those obtained in an Alpur degasser. Their large total surface area ensures a very high probability of their interaction with the whole volume of the melt.

The process gas mixture contains chlorine. The use of chlorine is ben-eficial for the removal of alkaline el-ements as well as the inclusions. The percentage of chlorine is relatively low, around 10%, which encourages an inti-mate mixing with the melt but avoids the hazard of chlorine emission.

Typical results [1]

The efficiency of the IRMA process compared to an in-line degasser of the Alpur type is basically equivalent. However, IRMA offers an additional advantage as a result of the batch treatment effect, namely the duration of treatment can be varied as required. If the quality of the incoming metal charged in the furnace is inferior, it will always be possible to increase IRMA treatment time until final qual-ity specification is on target.

Hydrogen removal: For initial hy-drogen levels between 0.35 and 0.60 ml/100 g, measured using Alscan, the levels recorded after treatment are less than 0.20 ml/100 g in just less than 30 minutes. This gives a hydro-gen content reduction in the range of 40 through to 70%.

Inclusion removal: It is not the prin-cipal aim of IRMA to totally remove the inclusions, but, as with any proc-ess based on the flotation principle, it achieves a certain degree of efficiency which counts as a substantial pre-treatment. This is especially attractive if the remelted aluminium contains 'dirty' scrap. IRMA makes it possible to “ennoble” the metal.

Removal of alkaline elements: The addition of chlorine removes alkaline elements. The following curves il-lustrate sodium and lithium removal kinetics for a metal with an initial so-dium content of 60 ppm and a lithium content of 30 ppm.

Reduction of melt loss: Using the

Page 48: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

48

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Sekundär-Aluminium gewinnt innerhalb des gesamten Alumi-niumkreislaufs zunehmend an Bedeutung. Das führt dazu, dass immer mehr Schmelz- und Gieß-anlagen gebaut werden, die neben Primärmetall auch Aluminium-schrott einsetzen. Dabei handelt es sich aber nicht nur um definierten und sauberen Prozessschrott, son-dern mit steigender Recyclingrate auch um verunreinigtes Material wie Getränkedosen, Aufreißverpa-ckungen und anderes mehr.

Eine saubere und umweltverträgliche Verwertung von Aluminiumschrotten war seit jeher ein Schwerpunkt in der Entwicklung neuer Schmelzöfen von Thermcon Ovens, einem Unterneh-men der Otto Junker Gruppe. Die von Thermcon entwickelte „Greenmelt“-Technologie entstand mit dem Ziel, ein umweltfreundliches Verfahren für das Recycling von kontaminierten Aluminiumschrotten anbieten zu kön-nen. „Greenmelt“ setzte einen neuen Standard als beste verfügbare Tech-nologie und dies nicht nur im Hin-blick auf Emissionen, sondern auch in dem vielleicht noch bedeutenderem Bereich der Schmelzausbeute. Der verminderte Schmelzverlust hat aber nicht nur wirtschaftliche Vorteile für den Ofenbetreiber, sondern auch Vorteile für die Umwelt. Jedes dank hoher Ausbeute zusätzlich gewon-nene Kilogramm Aluminium aus den eingesetzten Schrotten muss nicht als Primäraluminium erzeugt werden.

Der Greenmelt-1 Ofen der ersten Generation ist seit 1996 bei Aleris Aluminum Duffel (ehemals Corus Aluminium) in Duffel, Belgien in Be-trieb. Der 80-Tonnen-Ofen mit einer Schmelzleistung von ca. 100 Tonnen pro Tag verarbeitet ausschließlich Alu-miniumschrotte in einem Mix aus Fo-lien, Lithoplatten und Aluminiumver-packungen mit einer Verunreinigung von ca. fünf Prozent. Seine Merkmale

sind die Schrott-Vorwärmung, die Zweikammerbauweise sowie eine thermische Nachverbrennung.

Dem Greenmelt-2 Ofen von Ther-mcon bei MAL Magyar Aluminium in Inotai, Ungarn kommt hinsichtlich der Stilllegung der Söderberganlage in In-otai eine besondere Bedeutung für die Erhaltung des dortigen Gießbetriebes zu. Er ist ausgelegt für den Einsatz von zugekauften Aluminiumschrotten so-wie Ingots. Der Schrott ist mit Folien, Aluminiumdraht, Verpackungen, Wär-metauschern und Bandmaterial sehr heterogen zusammengesetzt. Der Ver-unreinigungsgrad liegt zwischen zwei und sieben Prozent. Der 50-Tonnen-Ofen hat eine Schmelzleistung von ca. 65 bis 70 Tonnen pro Tag. Im We-sentlichen entspricht er der Anlage in Duffel. Dank einer Optimierung der Prozessführung besitzt er aber einen noch geringeren Gasverbrauch. Zusam-menfassend kann gesagt werden, dass die Greenmelt-Technologie seit 1996 einen neuen Standard gesetzt hat, der auch heute noch alle zur Zeit gültigen Umweltbestimmungen erfüllt.

Großauftrag für die Türkei

Erwähnenswert ist ein Großauftrag, den Thermcon zur Zeit als General-unternehmer innerhalb der Otto

„Greenmelt“

Umweltfreundlich und mit hoher SchmelzausbeuteB. Rieth, Meerbusch

„Greenmelt“-Ofen bei Aleris Aluminium Duffel

In the overall aluminium cycle secondary aluminium is becom-ing increasingly important. One result of this is that more and more melting and casting plants are built for processing aluminium scrap as well as primary metal. This, however, includes not only well-defined and clean processing scrap but also, and at an increas-ing recycling rate, contaminated material such as beverage cans, tear-open packs and much more.

Clean and environmentally tolerable recovery of aluminium scrap has al-ways been a focus in the development of new melt furnaces by Thermcon Ovens, a company belonging to the Otto Junker Group. The “Greenmelt” technology developed by Thermcon was created with the aim of providing an environment-friendly method for recycling contaminated aluminium scrap. “Greenmelt” sets new stand-ards as the best available technology, not only as regards emissions but also in the perhaps even more important respect of melt yield. Reduced melt loss, however, not only has economic advantages for the furnace operator, but also brings environmental advan-tages: every additional kilogramme of aluminium recovered from the scrap

“Greenmelt”

Environmentally friendly and with a high melt yieldB. Rieth, Meerbusch

“Greenmelt” furnace at Aleris Aluminium Duffel

Foto

s: T

herm

con

Ove

ns

Page 49: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

49 ALUMINIUM · 3/2007

S P E C I A L

49ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Junker Gruppe für ETI Alüminyum in Seydisehir, Türkei abwickelt. ETI gehört nach der Privatisierung des frü-heren Staatsunternehmens zu dem in der Türkei sehr erfolgreichen Bau-, Energie-, Bergbau- und Touristikkon-zern Cengiz Group. ETI betreibt eine Aluminiumhütte mit einer Kapazität von 65.000 jato, die das Bauxit aus ei-ner nahe gelegenen Mine bezieht. Zu-sätzlich betreibt ETI ein Warmwalz-werk für Aluminiumbänder mit max. 1200 mm Breite sowie ein Strang-presswerk mit zwei Strangpressen, die eine Presskraft von 12,5 und 25 MN aufweisen. Zur Erweiterung der Palette exportfähiger Produkte erfolgt zur Zeit der Ausbau der Schmelz- und

Thermcon Ovens B.V. entstand 1983 als Hersteller von Schmelzöfen und Gießanla-gen für die Aluminiumindustrie. Gegründet wurde das Unternehmen im holländischen Geldermalsen von Jan D. de Groot, dessen weitsichtige und fachkompetente Führung der Firma seitdem Weltgeltung in der Alu-miniumindustrie verschaffte.

Seit Januar 2004 ist Thermcon ein eigen-verantwortliches Mitglied der Otto Junker Gruppe: ein Zusammenschluss, der Therm-con mehr als nur den Rückhalt einer großen Unternehmensgruppe brachte. Die Nutzung des weltweiten Vertriebsnetzes und der ko-stenoptimierten Fertigungsstätten sowie die

Mitwirkung bei Großprojekten der Gruppe brachte Thermcon in den letzten Jahren einen deutlichen Aufschwung. Weiterhin unter der bewährten Leitung durch Jan D. de Groot wuchs das Unternehmen auf wich-tigen west- und osteuropäischen Märkten, daneben aber auch z.B. in China und der Türkei zu einem anerkannten Lieferanten einzelner Öfen oder Gießeinrichtungen bis hin zur Einrichtung schlüsselfertiger Gießereien für Pressbolzen, Walzbarren und Masseln.

Jan D. de Groot hat Ende 2006 die Lei-tung von Thermcon an ein junges Manage-ment-Team übergeben, die der Firma bereits

seit einigen Jahren angehören und dabei wertvolle Erfahrungen gewinnen konnten: Tom Schmidt zeichnet verantwortlich für Vertrieb und Marketing, Sander Weijde für Beschaffung, Logistik und Verwaltung, sowie Johan de Groot für Engineering und Auftragsabwicklung. Als Geschäftsführer wird das Team durch Heinz Teichert unter-stützt: Er ist Geschäftsbereichsleiter Wärme-behandlung der Otto Junker GmbH.

Jan D. de Groot bleibt dem Unterneh-men weiterhin verbunden als Berater für die technologische Weiterentwicklung der Thermcon-Produkte sowie für alle Fragen, die über das Tagesgeschäft hinausgehen.

Generationswechsel bei Thermcon Ovens

Gießanlage für Strangpressknüppel

Casting unit for extrusion billets

used thanks to a higher yield does not have to be produced as primary metal.

The “Greenmelt”-1 first-genera-tion furnace has been in operation since 1996 at Aleris Aluminium Duffel BV-BA (formerly Corus Aluminium) in Duffel, Belgium. The 80-tonne fur-nace, with a melt output of around 100 tonnes per day, processes exclusively aluminium scrap consisting of a mix of foils, litho plates and aluminium packaging with a contamination level of approx. 5%. Its features are scrap preheating, a two-chamber structure and thermal afterburn.

Thermcon’s “Greenmelt”-2 fur-nace at Magyar Aluminium in Inotai, Hungary, is particularly important for the preservation of the foundry opera-tion there because of the closure of the Söderberg plant. It is designed to process bought-in aluminium scrap and ingots. The scrap, consisting of foils, aluminium wire, packaging, heat exchangers and strip material, has a very heterogeneous composition with contamination levels ranging from 2 to 7%. The 50-tonne furnace melts around 65 to 70 t/day. Essentially, it is much like the plant in Duffel but its gas consumption is even lower thanks to process control optimisation.

In summary, it can be said that “Greenmelt” technology has set new standards since 1996 and still today complies with all the current environ-mental provisions.

A major order from Turkey

Worth mentioning is a major contract currently being completed by Therm-con, as general contractor within the Otto Junker Group, for ETI Alüminy-um in Seydisehir, Turkey. Following the privatisation of the previously state-owned company, ETI belongs to the Cengiz Group, a very successful building, energy, mining and tourism concern in Turkey. ETI operates an aluminium smelter with output ca-pacity 65,000 tpy, which processes bauxite from a nearby mine. It also operates a hot-rolling mill for alumin-ium strip up to 1200 mm wide, and an extrusion plant with two presses hav-ing extrusion loads of 12.5 and 25 MN respectively. To expand the range of products for export, the melting and casting facilities are currently being extended.

The contract awarded to Therm-con is intended to reinforce supplies of rolling slabs and extrusion billets to the semis production plant. The cast-ing machine for rolling slabs is being supplied by the US company Wagstaff, consortium partner to Thermcon in this project. All the other equipment comes from Thermcon and includes:• two melting and casting furnaces each of 30-tonne capacity• the casting launders with level regulation• ceramic foam filters• degassing unit ➝➝

Page 50: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

50

S P E C I A L

ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Gießanlagen. Der Auftrag an Therm-con dient zur Versorgung der Halb-zeugfertigung mit Walzbarren und Strangpressknüppeln. Die Gießanlage für die Walzbarren liefert die US-Fir-ma Wagstaff, die bei diesem Auftrag Konsortialpartner von Thermcon ist. Alle übrigen Einrichtungen kommen von Thermcon und umfassen• zwei Schmelz- und Gießöfen mit einer Kapazität von 30 Tonnen • die Gießrinnen mit Niveauregulie- rung• Schaumkeramikfilter• den Entgaser• die automatische Bolzenhand- habung• die Bolzenaufgabe• einen 50-Tonnen-Homogenisie- rungsofen mit 50 Tonnen Kühl- kammer vom Konsortialpartner Otto Junker GmbH • eine Bolzensägeanlage• die Automatisierung und Prozessführung.Der Auftrag von ETI ist nicht die erste Referenz von Thermcon in der Türkei. In Betrieb sind bereits Anlagen bei Asas Alüminyum sowie in beiden Werken von Assan Alüminyum. Um-weltaspekte spielten eine große Rolle bei der Verlegung der Produktion von Asas Alüminium, die ein Presswerk mit drei Strangpressen mit 12,5, 16 und 35 MN Presskraft betreiben, an den neuen Standort Akyazi/Adapa-zari. In diesem Kontext lieferte Ther-mcon eine hoch moderne Schmelz-

und Gießanlage, die nicht nur das Asas-Presswerk, sondern auch an an-dere Werke mit Bolzen versorgt. Der Schmelz- und Gießofen mit einer Lei-stung von 120 Tonnen pro Tag wird maschinell beschickt.

Hinter der Gießanlage ist ein automatisches Bolzenhandhabungs-system von Thermcon mit einem 30-Tonnen-Homogenisierungsofen, Kühlkammer und automatischer Bol-zensägeanlage installiert.

Assan Alüminyum, ein Unterneh-men der türkischen Kibar Gruppe, ist ein weit über die Grenzen der Türkei hinaus bekanntes Walzwerk für bis zu 2200 mm breite Aluminiumfolien. Das Vormaterial wird mit Zweiwalzen-Gießmaschinen für eine Bandbreite bis 2400 mm erzeugt. Zum Schmelzen des Aluminiums lieferte Thermcon einen stationären Schmelzofen mit einer Kapazität von 50 Tonnen mit regenerativen Brennern sowie einen 35-Tonnen-Halteofen für das Stamm-werk in Istanbul. Ferner lieferte Ther-mcon regenerative Brennersysteme für die Schmelz- und Halteöfen im Zweigwerk Assan Dilovasi.

Autor

Dipl.-Ing. Bernhard Rieth ist Marketing-spezialist und freier Fachjournalist. Als Inhaber der Marketing Xpertise Rieth in Meerbusch berät er Ausrüstungspartner der NE-Metall-Halbzeugindustrie in Mar-ketingfragen.

Homogenisierungsofen Homogenisation furnace

• automatic billet handling, billet supply• a 50-tonne furnace with 50-tonne cooling chamber from the consor- tium partner Otto Junker GmbH• a billet sawing machine• the automation and process control systems.The ETI contract is not Thermcon’s first reference in Turkey. Units are already in operation at Asas Alüminyum and at the two plants of Assan Alüminy-um. Environmental considerations played a major role in the relocation of production by Asas Alüminyum, which operates an extrusion plant with three presses, respectively with extrusion loads of 12.5, 16 and 35 MN, to the new location at Akyazi/Adapa-zari. In this connection Thermcon is supplying a highly modern melting and casting plant which will not only supply the Asas extrusion plant with billets, but will also deliver billets to other plants. The melting and casting furnace, with an output of 120 t/day, will be charged mechanically.

Behind the casting unit Thermcon will provide an automatic billet han-dling system with a 30-tonne homog-enisation furnace, cooling chamber and automatic billet sawing machine.

Assan Alüminyum, a company be-longing to the Kibar Group in Turkey, is a rolling plant known far beyond the borders of Turkey as a supplier of aluminium foils up to 2200 mm wide. The starting material is produced by a two-roll casting machine produc-ing strip widths up to 2400 mm. For melting the aluminium Thermcon is supplying a static melt furnace of 50 tonnes capacity with regenerative burners and a 35-tonne holding fur-nace for the parent plant in Istanbul. Thermcon is also supplying regenera-tive burner systems for the melting and holding furnaces at the branch plant Assan Dilovasi.

Author

Dipl.-Ing. Bernhardt Rieth is a market-ing specialist and freelance journalist. As proprietor of Marketing Xpertise Rieth in Meerbusch, he advises equipment part-ners of the NF metal semis industry on marketing matters.

Page 51: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

51 ALUMINIUM · 3/2007

S P E C I A L

51ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Das Recycling von Metallen ist wichtiger Bestandteil der Rohstoff-versorgung eines Landes. Gera-de für Industrienationen wie Deutschland ohne nennenswerte eigene Erzvorkommen sind ge-schlossene Stoffkreisläufe von großer volkswirtschaftlicher Bedeutung. Metallschrotte sind unverzichtbare Rohstoffe für die Herstellung neuer Produkte.

Neben dieser volkswirtschaftlichen Dimension gibt es noch die ökolo-gische. Recycling spart Energie und andere knappe Ressourcen. Es prägt die Ökobilanz gerade im Falle von metallischen Produkten wesentlich. Im Fachjargon wird in diesem Kon-text vom End-of-Life-Recycling von Produkten gesprochen. Dem steht eine ökologische Betrachtung gegen-über, die für einen möglichst hohen Anteil wiederverwerteter Schrotte in Produkten plädiert; die Fachwelt spricht hier vom Recycled-Content-Ansatz. Beide Ansätze treten mit dem Anspruch an, die Umwelt zu entla-sten, kommen aber zu durchaus un-terschiedlichen Ergebnissen.

Den Zielen der Nachhaltigkeit verpflichtet

Dieser Sachverhalt wurde inzwischen von der internationalen Metallge-meinschaft mit dem spezifischen Fokus daraufhin aufbereitet, wie das Recycling in Lebenszyklusanalysen bzw. Ökobilanzen berücksichtigt wer-den sollte, um den Zielen einer nach-haltigen Entwicklung zu entsprechen. Auch die deutsche Aluminiumindus-trie unterstützt die Grundsatzerklä-rung der internationalen Metallindu-strie zum Recycling.

Stefan Glimm, Geschäftsführer des Gesamtverbandes der Aluminiumin-dustrie (GDA) in Düsseldorf, erläutert den kontroversen Sachverhalt fol-gendermaßen: „Im Rahmen von pro-

duktbezogenen Umweltanalysen und daraus abgeleiteten Entscheidungen unterstützt die Metallindustrie das End-of-Life-Recycling. Denn dieser Ansatz hat den gesamten Lebenszy-klus eines Produktes und die damit verbundenen Stoffströme im Blick. So können die Umweltwirkungen der Metallerzeugung ebenso erfasst werden wie die der Nutzung von Produkten und ihrer Entsorgung bzw. Wiederverwertung. Auf diese Weise lassen sich Ökobilanzen erstellen, die die Umweltwirkungen der Produkti-on und des Konsums von Produkten umfassend abbilden. Sie geben zu-gleich Antwort auf die Frage nach dem verantwortungsvollen Umgang

Internationale Metallindustrie zu Umweltanalysen von Metallen:

Den gesamten Lebenszyklus eines Produktes betrachtenGDA: „Die Frage nach der Materialherkunft greift zu kurz“

mit Ressourcen, denn nur sie geben Auskunft über den Erhalt oder den Verlust des eingesetzten Metalls im Stoffkreislauf.“

Der Recycled-Content-Ansatz, der einen hohen Recyclinganteil in Produkten mit hoher Umweltverträg-lichkeit gleichsetzt, kann eine sol-ch umfassende Umweltbetrachtung nicht leisten. Stefan Glimm zu den Nachteilen dieses Ansatzes:

GDA-Geschäftsführer Stefan Glimm: Primär-erzeugung eine unverzichtbare Vorausset-zung für hohe Schrottaufkommen in der Zukunft.

Life cycle management

Declaration by the metals industry on recycling principles

The metals industry works to-wards the establishment of an accurate understanding of metals recycling. Environmental models and policy discussions that con-cern product recycling should characterize material recycling in a manner that is appropriate and that promotes the objectives of sustainable development.

To this end, the metals industry sup-ports the characterization and mod-eling of recycling of metal-containing products in a way that: 1) Encourages good environmental practices;2) Aids assessment of the overall life cycle of products and understanding of materials; 3) Supports the management of the life cycle of products and stewardship of materials;4) Is consistent with scientific knowl-edge and technical practices; 5) Reflects economic realities with-out creating market distortions that impede environmental objectives.

About metal recycling

Metals are highly recyclable and in fact a large percentage of metallic ma-terial is effectively recycled. Collected metal scrap is converted to new mate-rial of equal or similar quality through metallurgical processes, including re-melting and refining. Some products require metal grades that demand minimal processing; other products may require more metallurgical and process controls to meet tighter speci-fications. Metal inputs for metal pro-duction are principally sourced via the most cost effective route, whether this is from primary ores or from re-cycling of recovered metal resources. The source of the metal however, whether primary or from recycling can not be determined by material properties. Therefore, scrap that is

GD

A

➝ ➝

Page 52: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

52 ALUMINIUM · 3/2007

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

„Die Frage nach der Materialherkunft greift zu kurz. Die Aluminiummärkte wachsen stetig und die meisten Alu-miniumprodukte haben eine lange Haltbarkeit. Dies verringert das zu-nächst verfügbare Schrottaufkommen und damit kurzfristig den möglichen Recyclinganteil in Produkten. Au-ßerdem bleibt bei diesem Ansatz die Umweltwirkung, die von der Nutzung eines Produktes ausgeht, außen vor. Man denke zum Beispiel an den Fahr-zeugbau und möglichen Kraftstoffein-sparungen durch die Verwendung von Leichtmetallen. Die Fixierung auf den Recyclinganteil von Produkten hilft Entscheidern nicht dabei, den Einsatz von Metallen und Metallprodukten ganzheitlich zu optimieren.“

Eine solch verengte Sichtweise übersieht, dass die Primärerzeugung unverzichtbare Voraussetzung für ein späterhin hohes Schrottaufkommen ist. Angesichts einer weiter wachsen-den Nachfrage nach Metall und einer oftmals langen, über Jahrzehnte rei-chenden Lebensdauer von Metall-produkten sind Primärmetalle unver-zichtbar, um die Lücke zwischen Ver-fügbarkeit von Sekundärrohstoffen und Nachfrage zu schließen.

Ökonomische und ökologische Fehlallokationen vermeiden

Die Konzentration auf den Recyc-linganteil kann zudem Marktstörun-gen hervorrufen und höhere volks-wirtschaftliche Kosten verursachen. Wenn ein Konstrukteur oder Pro-duktdesigner einen hohen Recycling-anteil für sein Produkt festlegt, um in bester Absicht die Umwelt zu ent-lasten, kann dies dazu führen, dass Schrotte in eine Produktion gelenkt werden, wo sie weniger wirtschaftlich eingesetzt werden. „Bei metallischen Werkstoffen wie Aluminium, für die es funktionierende Schrottmärkte gibt, die Materialverluste ohnehin minimieren, können darüber hinaus ungewollt zusätzliche, eigentlich überflüssige Transporte entstehen“, so Glimm. Letzten Endes also ökono-mische und ökologische Fehlallokati-onen auftreten.

Gut gemeint ist eben noch nicht gut gemacht. ■

sorted and clean commands a higher market price owing to the ease of sub-sequent processing through recycling. The final economic value of the metal product is determined by its utility for applications and its recycled content may be high or low, depending on the availability of secondary material at the time of manufacture.

Metal scrap that is collected for re-cycling is material that does not have to be managed as a waste. It is a valu-able resource that is converted into value-added commodities. Perhaps even more importantly, recycled met-al substitutes or displaces the neces-sity to mine new metal. Consequently, metal recycling offsets primary pro-duction processes — and their asso-ciated energy and resource require-ments, environmental emissions, and other interventions (such as land use) — required to dig, crush, grind, smelt, refine and otherwise metallur-gically extract and refine virgin ore. Recycling increases the material and energy efficiency of product systems throughout the life cycle and thus is good management practice.

Facts

The following are relevant to metals recycling:a) Recycling of metals has environ-mental, economic and social value. Consequently, and for many years, metals from end-of-life products are

Sortierung von Schrotten in unterschiedliche Werkstofffraktionen

Sorting of scrap into various material fractions

widely recycled at high rates. b) Recycled metal is readily sold on the market. The constraint to greater levels of metal recycling is the avail-ability of feedstock material.c) Metals are characterized by me-tallic bonding that provides distinct structures and properties. As this type of bonding is not affected by melting, metals can be, and are, recycled over and over again.d) Material grade is determined by conformity to established specifica-tions. The origin of metal (whether primary or recycled) in a specific lot of material is driven by availability and economics.e) Metal may be lost during product use (e.g. via corrosion or wear), and some material may not be economi-cally recoverable at end-of-life due to material dispersion or difficulties in separating components.f) Since there is growth in the demand for metals and since metal products often have a long service life, there is a limited supply of used metals avail-able for recycling into new products. Primary metal production fills the gap between the availability of secondary material and total demand.

Comparison of approaches for modeling recycling

Two approaches for assessing the ben-efits of recycling are commonly used: the “recycled content” approach and ➝

Page 53: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

Giesel Verlag GmbHPostfach 120158D-30907 IsernhagenTel. +49 511 7304-122Fax +49 511 7304-157www.giesel.de · [email protected]

alu-bookshopwww.

.de

EINSCHLÄGIGE FACHLITERATUR

AUSSCHLIESSLICH RUND UM

NE-METALLE

ALLES AUS EINER HAND

SUCHEN, FINDEN, BESTELLEN

Page 54: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

54 ALUMINIUM · 3/2007

the “end-of-life” recycling approach. Their perspectives and purposes are different.

Recycled content approach

The recycled content approach uses a metric that looks back to where mate-rial feedstock was sourced, and pro-vides a measure of waste diversion. This approach is based on a waste management perspective, where the general aim is to promote a market for recycled materials that is otherwise limited, uneconomic or immature.

The recycled content approach as-sumes that the use of recycled material is a good indicator of environmental benefit. However, the metric uses sta-tistical information on material flows and is not based on an actual assess-ment of environmental performance. For example, if product durability is improved, less scrap material will be available in the short term. This, in turn is reducing the possibility of a high recycled content in the short term.

The recycled content approach may be a useful metric for material that would otherwise be incinerated or landfilled as waste (assuming that these waste management treatment processes would result in higher en-vironmental impacts than the materi-als recycling), which can be diverted to recycling and reuse. Importantly, this is not the case for metals — as discussed above, metal recycling is economical and the recycled metal market is mature.

Unfortunately, application of the recycled content approach may create market distortions and environmental inefficiencies. If a designer specifies

high recycled content in a well-mean-ing effort to reduce environmental impacts, it may stimulate the market to direct recycled feedstock towards designated products and away from production where recycling is most economical. For metals, where there is a limited supply of recycled feed-stocks, market stimulation is inef-fective and may result in inefficient processing and unnecessary transpor-tation.

End-of-life recycling approach

The end-of-life recycling approach is based on a product life cycle and ma-terial stewardship perspective. It con-siders the fate of products after their use stage and the resultant material output flows.

In characterizing a product system using this approach, the environmen-tal consequences of the product of interest are studied, including its end-of-life management. Possible changes to improve the product system can be considered. The specific origin of input material (whether primary or recycled) is not relevant because it is the net conservation of material that typically minimizes total environ-mental impacts. Under this frame-work, consistent with ISO 14040, it is acknowledged that material not recy-cled needs to be replaced by primary material feedstock.

A designer using an end-of-life re-cycling approach focuses on optimiz-ing product recovery and material recyclability. By facilitating greater end-of-life recycling, the decision-maker mitigates the loss of material after product use. This approach as-sesses the consequences at end-of-

life of the product based on technical practices, and supports decisions for an efficient market. This concept al-lows design for recycling.

Conclusion

For purposes of environmental mod-eling, decision-making, and policy discussions involving recycling of metals, the metals industry strongly supports the end-of-life recycling ap-proach over the recycled content ap-proach.

The weakness of the recycled con-tent approach arises from the fact that a simple account of the history of a material provides no assessment of actual environmental performance. The recycled content metric does lit-tle to guide decision-makers wishing to better manage metals and metal containing products. Moreover, and of particular concern, pursuit of re-cycled content may generate market distortions and result in environmen-tal and economic inefficiencies.

The end-of-life recycling approach encourages manufacturers, policy-makers and other decision-makers to evaluate real performance and improve the design and management of products, including their disposal and recycling. This forward-looking perspective supports sustainable de-velopment.

By supporting solutions where high amounts of metal are made available for the future by recycling, it assists society in meeting “the needs of the present without compromising the ability of future generations to meet their own needs” (WCED, Our com-mon future, 1987).

Die in der Produktion und Vermark-tung von Aluminiumsalzschlacke tä-tige Agor AG, Köln, hat in den ersten drei Quartalen 2006 einen Umsatz von 36 Mio. Euro erwirtschaftet, der zu mehr als 80 Prozent von den deut-schen Anlagen stammt. Um den kon-tinuierlich steigenden Entsorgungs-bedarf der Sekundäraluminiumindu-

Agor erweitert Aluminium-Salzschlackeaufbereitung

strie zu decken, liefen die in Lünen und Hannover von der Agor-Tochter Alsa betriebenen Aufbereitungsanla-gen (Gesamtkapazität 300.000 t/a) bei maximaler Auslastung rund um die Uhr. Auch die beiden kanadischen Betriebe waren ausgelastet und lie-ferten mit ihrem operativen Geschäft erstmalig einen positiven Ergebnisbei-

trag. Eine dritte, neu gebaute Anlage der Alsa Süd im bayerischen Töging hat zum Jahresanfang ihre Produkti-on aufgenommen. Die Neuinvestition mit einer Produktionskapazität von 100.000 Tonnen wird bis zum Ende des ersten Quartals 2007 vollständig in Betrieb sein.

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 55: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

S P E C I A L

Die Innsitec Laser Technologies GmbH aus Linz hat ein Tauchson-de für die Schmelzanalyse entwi-ckelt, die sich für den flexiblen Einsatz in Gießereien eignet. In Kombination mit einer laserindu-zierten Plasmaspektroskopie (LIPS) bietet die Tauchsonde eine einfache und schnelle Kontrolle der chemischen Zusammenset-zung von flüssigem Metall.

Die Tauchsonde „Quantalizer TS“ erlaubt eine Analyse direkt in der Schmelze, ein freier Zugang zur Ma-terialoberfläche ist nicht erforder-lich. Oberflächenverunreinigungen wie Krätze, Schmelzsalze oder Oxid-schichten stellen keine Beeinträchti-gung für die Messung dar.

Die Tauchsonde macht es möglich, Analysen an verschiedenen Stellen im Schmelz- bzw. Gießofen durchzufüh-ren. Die flexible Einsatzmöglichkeit in

Mobile Tauchsonde für die Schmelzeanalyse

punkto Analysestelle und Eintauchtie-fe gibt dem Gießer ein Instrument in die Hand, das auf einfache Weise die Homogenität der Schmelze überprüft und sicherstellt. Laufende Kontrollen der Homogenität tragen zur Gewähr-leistung der Prozessstabilität bei.

Das Messgerät, das rund um die Uhr Analysen im flüssigen Metall durchführen kann, ermöglicht eine lückenlose Qualitätskontrolle in der Produktion. Der Quantalizer TS kann unmittelbar in den Produktionspro-zess integriert werden, so dass von jedem Guss bzw. Gussteil eine che-

mischen Analyse vorliegt.Die manuelle Handhabung des

Messkopfes (Lasermodul inkl. Tauch-sonde) ist ebenso möglich wie der sta-tionäre Einsatz, z. B. als permanente Installation in einem Schmelzaggregat zur Überwachung des Aufschmelz-verhaltens bzw. der Badqualität oder für die Chargenfreigabe an der Im-pellerstation. Einsatzgebiete können Aggregate wie Schmelzöfen und -wan-nen sowie Gieß- und Warmhalteöfen, Transporttiegel, Überführ- und Gieß-rinnen sein.

Lasermodul und Tauchsonde

„Quantalizer TS“

ALCUTEC Engineering GmbHForstweg 7 – 9 l D-52382 Niederzier, Germany l Fon: +49 (24 28) - 9 05 68 - 0 l Fax: +49 (24 28) - 9 05 68 - 29 eMail: [email protected] l www.alcutec-gmbh.de

EngineeringSolutionsServices

Aluminium Solution Provider

ALCUTEC Engineering

Professional service to ensure conducive Engineering from feasibility engineering to plant design and construction.

ALCUTEC Solutions

Complete tailor made plants for the secondary aluminium industry based on state of the art components such as tiltable rotary drum furnaces, casting furnaces, casting machines, chip dryers with the related auxiliary equipment.

ALCUTEC Services

Professional Project Management for erection, commissioning and plant maintenance as well as training of operation personnel and plant management.

A L U M I N I U M R E C Y C L I N G I N D U S T R Y

Page 56: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

56 ALUMINIUM · 3/2007

Alcoa to invest in Brazil hydropower project

Alcoa will invest in the Serra do Fa-caño hydroelectric power project to be built on the Sao Marcos River in Brazil’s central region. Alcoa will hold 35% of the new company. Other members are: Brazilian federal power company Furnas Centrais Electricas SA with 49.5%; the Poços de Caldas Municipal Electricity Department with 10%; and construction group Camargo Correa SA with 5.5%. Con-struction of the project, budgeted at US$372m, is expected to start in early 2007, and power generation from the 210 MW power plant is expected to begin in 2010. The investment is part of Alcoa’s long-term strategy of developing energy projects in Latin America to support its smelters and to move toward self-sufficiency for its energy needs.

Australia’s ABARE forecasts 11% fall in aluminium price in 2007

Aluminium prices are expected to fall by 11% to an average US$2,260 per tonne in 2007 from an expected US$2,540/t in 2006. Global consump-tion growth is expected to remain healthy, coming in just under 7% next year after 7% expansion in 2006. China will remain the driver with expected consumption growth of around 19% in 2007, while the US will

Sual Group production continues stable growth: 2006 results

In 2006 Sual Group’s enterprises mined 5.78 million tonnes of bauxite, a growth of 6,9% over the results of 2005. Positive production dynamics was a result of significant rates of production growth in Middle Timan bauxite mine and stable volume of production at Sual’s north Urals baux-ite mining unit SUBR.

In 2006 Sual produced 2.31 million tonnes of alumina, (+0.9%). Primary aluminium production grew to 1.06 million tonnes (+1,4%) due to con-tinued investment in technical up-grades of the smelters and improved operating conditions.

Continuing modernization of pro-duction capacities and effective mar-keting policies guaranteed an increase in quantity and quality of Sual Group downstream activities. Output of rol-led and semi-finished products excee-ded 2005 levels by 21.3% thanks to an investment programme, which inclu-ded the launch of new cast houses and modernization of rolling mills and ex-trusion facilities. Foil and aluminium strip production rose by 4% due to a programme of production develop-ment and market promotion.

Russian aluminium production up 1.9 per cent in 2006

Russian aluminium production rose by 1.9% to 3,718 million tonnes last year. This is only a marginal accelera-tion from growth of 1,5% in 2005 and, as in that year, reflected incremental capacity creep at both producers – Rusal and Sual – thanks to ongo-

ease further after an anticipated 5% decline in consumption in 2006 due to weaknesses in the key automotive and residential home sectors. Global pro-duction growth is expected to acceler-ate to 8% in 2007 on a combination of new capacity (Russia and Iceland), capacity restarts (USA and Germany) and low alumina prices encouraging greater capacity utilisation in China.

The alumina price is expected to average US$213/t in 2007, represent-ing a 51% slide from the 2006 expected average of US$443/t. After touching highs of US$650/t earlier in 2006, the price has fallen to around US$200/t as of November 2006. China’s explosive growth in alumina production and in-cremental expansions in other parts of the world have been the twin driv-ers of the price decline.

Brazil’s CBA has completed next stage of smelter expansion

Brazilian aluminium producer CBA brought on stream the next 70,000 tpy capacity increase at its Sorocaba alu-minium smelter in February 2007. The expansion stage will lift the plant’s ca-pacity from the current 405,000 tpy to 475,000 tpy. It is part of a longer-term goal of lifting its capacity to 615,000 tpy by 2011. That will be done in two further incremental 70,000 tpy hikes. CBA is also considering building new alumina capacity to lift its in-house resources.

Aluminium smelting industry

Company news worldwide

Period Reported primary aluminium production(Thousands of metric tonnes)

Africa North America

Latin America

Asia West Europe

East/Central Europe

Oceania Total Dailyaverage

Year 2002 1,372 5,413 2,230 2,261 3,928 3,825 2,170 21,199 58.1

Year 2003 1,428 5,495 2,275 2,475 4,068 3,996 2,198 21,935 60.1

Year 2004 1,711 5,110 2,356 2,735 4,295 4,139 2,246 22,592 61.7

Year 2005 1,753 5,382 2,391 3,139 4,352 4,194 2,252 23,463 64.3

Year 2006 1,864 5,333 2,493 3,494 4,175 4,232 2,274 23,865 65.4

Source: IAI

C O M P A N Y N E W S

Page 57: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

57ALUMINIUM · 3/2007

ing technology upgrades. However, production in December itself grew at a faster 2,4%, and there will be a further acceleration in 2007 as Rusal’s new 315,000 tpy Khakaz aluminium smelter comes on stream. The first potline was fired up in December 2006, and the schedule calls for the second line to come on stream in Jan-uary, the third in May and the fourth in November.

National alumina production rose by 0.2% to 3,265 million tonnes. It only caught up with year-earlier levels in November after being depressed by lower output at the Pikalevo refinery earlier in 2006. That resulted from a long-running stand-off with the sup-plier of the nepheline raw material, on which the 250,000 tpy plant operates.

Azeral to double Sumgait capacity to 60,000 tpy

Azerbaijan Aluminium (Azeral) plans to double production at its Sumgait smelter to 60,000 tpy in the first half of 2007. Output will rise after Azeral builds the second potline at Sumgait, which is expected to cost around US$ 28m. Starting the second potline will create 500 new jobs. The company is also reportedly about to start preparing to build a new 100,000 tpy aluminium plant in Gandja. The proposed expan-sion has been under consideration for a long time, but has been delayed from 2006 by the prolonged and continued wrangling over the plant’s ownership between the government and Dutch company Fondel.

Moscow regulator and EU Com-mission approves United Compa-ny Rusal deal

Russia has, in principle, approved the planned merger between Rusal, Sual and the alumina assets of Swiss trading company Glencore, with state authorities planning to complete their deliberation shortly. The decision, just two months after the companies applied for approval in mid-Novem-ber 2006, has come significantly more quickly than many had anticipated. The new company – United Com-

pany Rusal – will produce 4 million tpy of aluminium and 11 million tpy of alumina, with a work force of some 110,000 people in 17 countries on five continents. The companies will also need to obtain approvals from anti-trust authorities outside Russia. In February the EU Commission ap-proved the planned merger as well.

Chinese smelters post strong profits on drop in alumina prices

Profits at top Chinese aluminium smelters Chinalco, Yunnan Aluminium and Jiaozuo Wanfang Aluminium Co surged in 2006 as alumina prices fell and aluminium prices stayed strong. Chinalco announced net profit off 22.5 billion yuan (US$2.9b) and revenue of 105.5 billion yuan (US$13.6b) in 2006.

Chinalco’s profit rose 50% from the 15 billion yuan (US$1.93b) it declared in 2005, while revenue rose 44.5 bil-lion yuan (US$5.73b) from 2005. Yunnan Aluminium expects a profit to surge 100 to 150% from the 141 million yuan (US$18.2m) it earned in 2005. Jiaozuo returned to profit in 2006 with a profit of 275 million yuan (US$35.4m) after making losses of 122 million yuan (US$15.7m) in 2005. Its revenue increased by 39% to 4.04 bil-lion yuan (US$520.6m) last year.

Chalco will buy more smelters to boost capacity

Aluminium Corporation of China (Chalco) plans to buy three other al-uminium smelters after it completes the share buyout of its two listed sub-

Combined U.S. and Canadian primary aluminium production totalled 5,332,043 metric tonnes during 2006, a decline of 0,8% from the 2005 total of 5,374,691 tonnes. Production in Canada rose by 5.4% to a record total of 3,051,127 tonnes but these gains were offset by an 8.0% reduction in U.S. production which totalled 2,280,916 tonnes at year end.

Source: The Aluminum Association & Aluminium Association of Canada

Hydro might build an aluminium smelter in Greenland with a capacity of up to 300,000 tpy, requiring power-generating capacity of 500 MW. The Norwegian company has joined forces with the government of Greenland to carry out a preliminary fea-sibility study covering the environmental, social and economic issues related to a potential industrial development based on hydroelectric power supply. Both parties will take full consideration of Greenland’s unique natural and environmental condi-tions, as well as other priorities, in this non-binding study. In its first phase, the

cooperation will focus on producing the information needed to decide whether to initiate a more comprehensive alu-minium project. It will review Greenland’s hydroelectric potential, hydrological data, environmental issues, as well as protected and restricted areas. Hydro will outline the physical and technical requirements for a primary aluminium smelter, the need for personnel, and the scope for cooperation with local businesses in Greenland. Hydro will also present its programme for per-sonnel training in the primary aluminium production field.

Hydro looks at Greenland as 300,000 tpy smelter location

C O M P A N Y N E W S

Page 58: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

58 ALUMINIUM · 3/2007

sidiaries. Chalco will buy Baotou Alu-minium Co (BAC), Tongchuan Xin-guang Aluminium Co and Lanzhou Liancheng Aluminium Co from Chal-co’s largest shareholder Chinalco. The acquisition will increase Chalco’s alu-minium capacity and market competi-tiveness. Chinalco is to buy 80% of the Inner Mongolian government’s whol-ly owned Baotou Aluminium group, which in turn owns 55% of BAC. Chi-nalco received government approval to buy a 72% stake in Shaanxi Non-ferrous Metals group, which in turn owns 70.9% of Tongchuan, and also to buy 100% in Liancheng. BAC pro-duced 307,000 tonnes in 2006, Tong-chuan 270,000 tonnes and Liancheng 155,000 tonnes. Chalco is looking to

take full ownership of SAIC and LAC in a US$ 1 billion deal that will en-able it to list on the Shanghai Stock Exchange.

China halts building of six metal projects

China has suspended construction of six metal projects, including Feicheng Mining Group’s 800,000 tpy alumina refinery in northern Shanxi province and Qiya Aluminium Industry Group’s 150,000 tpy aluminium smelter, be-cause they do not have the necessary environmental approval. With the exception of Qiya, the projects are all deemed to have started construc-

tion without proper environmental assessments, and must now complete the necessary appraisals and await government approval before resum-ing construction, said the State Envi-ronmental Protection Administration (Sepa). Qiya’s construction started in May 2006, but it has pollution problems, and the local government had overstepped its authority to ap-prove the project. According to Sepa, Feicheng had started construction of its 800,000 tpy alumina project even though its environmental appraisal had not been approved. Feicheng must not resume construction until Sepa ap-proves its environmental appraisal.

Bauxite and alumina activities

Rusa

l

Guinea bauxite operations so far unscathed by strike

Alcoa and Rusal have played down the impact on their bauxite and alumina operations of the nation­wide general strike that has swept Guinea during the third week of the year 2007 (15 January), as the alumina market watched for signs of any disruption to supplies.

The West African country fell into the grip of an indefinite general strike which was called by trade unions to protest at hyperinflation. The unions claim the government has failed to control inflation and President Lansa-na Conte allegedly freed two promi-nent corruption suspects. So far, bauxite mining appears to be continu-ing, but the unions have threatened

to bring production at Compagnie des Bauxites de Guinée SA (CBG) to a halt and any disruption is likely to push up prices. Rusal’s operations in Guinea, which include the Friguia bauxite and alumina complex, have not so far been affected by the strike, and no work-ers have crossed the picket line. How-ever, an undisclosed number of staff has downed tools at CBG. Alcoa has a 45 per cent share in Halco Mining, a partnership that owns 51 per cent of CBG, which exports about 12 mil-lion tpy of bauxite. While the alumina market appears to have bottomed out from the four-year low of US$ 200 per tonne late in 2006, traders do not rule out a drop below these levels once these short-term bullish conditions have passed.

Bauxite and alumina production restarted in the West African Repub-lic of Guinea after unionized workers called off their general strike after 18 days. The strike was not limited to the bauxite sector but covered by all in-dustries. Workers demanded an end to Conté’s tenure to protest against hyper-inflation and corruption. Around 60 people have been killed in civil unrest related to the strike, which started on 10 January.

Yunnan Aluminium postpones refinery project

China’s Yunnan Aluminium Co has postponed building its 800,000 tpy alumina refinery in Wenshan city in southern Yunnan province as a result of low alumina prices. Yun-nan Aluminium had planned to start work on the first 400,000 tpy phase in 2006 with completion scheduled for the end of 2007 and commissioning in 2008. However, the company de-cided to delay the project because of disappointing alumina prices and the need to ascertain the level of baux-ite reserves at a new mining project in Wenshan. Even if the company reaches its required bauxite reserves at Wenshan it may not start mining immediately.

Alcan delays Gove alumina expansion

Alcan has updated its cost estimates and start-up schedule for the Gove alumina refinery expansion and up-grade in the Northern Territory, re-flecting progress in the fourth quarter of 2006, additional tie-in requirements

C O M P A N Y N E W S

Page 59: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

59ALUMINIUM · 3/2007

and weather related delays. Alcan has revised its cost estimates to US$ 2.3 billion and moved the start-up date from the first to the second quarter of 2007. The latest increase means costs have increased by some 53% from the original estimate. The project was approved in September 2004 and is now almost complete, with estimated capital spending in 2007 of US$ 400 million. It will increase the refinery’s capacity from 2 to 3.8 million tonnes per year and is expected to bring Al-

can’s internal alumina production ca-pacity into balance with current re-quirements, and reduce cash costs at Gove by US$ 30 per tonne. Expanded production ramp up will start pro-gressively during the second quarter of 2007 and continue through the first quarter of 2008. Saleable production in 2007 is forecast between 2.3 and 2.4 million tonnes, representing an in-crease of 500,000 to 600,000 tonnes compared to 2006’s level of 1.8 mil-lion tonnes.

turing upgrades in 2007. Indalex also detailed some of the improvements it plans to make, including the in-stallation of a new 600-tonne extru-sion press in the second quarter of 2008; the acquisition of an advanced Brite Dip operation at the company’s Modesto, California, facility, which will be operational by March; and the completion of a press upgrade at the company’s Burlington, North Caro-lina, plant.

Venezuela

Aluminium plant construction to begin in March

Construction works on Venezuela’s so-called aluminium rolling and smelt-ing social production company will kick off in March 2007. The plant, a subsidiary of national basic industries company Coniba, will have installed capacity of nearly 130,000 tpy to be divided between 60,000 tpy at the roller and 70,000 tpy at the smelter. It will be built at Caicara del Orinoco in eastern Venezuela’s Bolivar state. The technical feasibility study is complete and earth works are starting in order to begin basic and detailed engineering. All the equipment will be installed for testing before end-2008 with a view to beginning operations in the first quarter of 2009. The new plant will manufacture soft aluminium sheets designed for the pharmaceutical and food industries as well as corrugated sheets and beams for construction.

Aluminium semis

Novelis has appointed two new independ-ent directors, Patrick J. Monahan and Sheldon Plener. The appointments bring the size of the board to 13 members. Alcan has appointed Yves Bouchard as General Manager for projects and opera-tions, especially for the AP50 pilot project in Jonquière. Jean Simon has been ap-pointed President, Primary Metal-North America. He will be responsible for the Kitimat expansion project. Yvon d’Anjou has been appointed Vice President, Busi-ness Development, Primary Metal. In this function he will be responsible also for the Coega project in South Africa, for the Sohar Aluminium (Oman) project, for the administration of Alcan Ningxia in China, and for the Tomago smelter in Australia.

Guy Authier has been appointed Vice President, Primary Metal, including Quebec South and United States of America and co-enterprises. Jeffrey E. Garten has been appointed as a director of Alcan. Tim Coe has been appointed regional Sales and Service Manager for California at Seco/Warwick. Hilde Merete Aasheim leaves Hydro’s Cor-porate Management Board to concentrate on leading the planning of the integration of the company’s oil and gas activities with Statoil. US private equity group KKR Financial Corp. announced that Willy Strothotte, a director of Century Aluminum Corp. and Minara Resources Ltd., has been elected to serve on its board.

On the move

New Indian alumina refinery at final commissioning stage

The new 1.4 million tpy Lanjigarh alumina refinery in the eastern Indian state of Orissa is in the final commis-sioning stage and is due to be fully commissioned by the end of March. Vedanta’s lengthy permitting should shortly receive a recommendation to India’s Supreme Court from the Cen-tral Ministry for Environment and Forests. ■

United Arab Emirates

India’s Darvesh plans aluminium fabrication plant in Dubai

India’s Darvesh Group will invest US$ 860 million to build a 135,000 tpy aluminium products plant in Du-bai. The new plant, called Noval, will be the world’s largest single products facility once completed in 2010. First production will be in 2008, when out-put is budgeted at 30,000 tpy of prod-ucts with this figure rising to 45,000 tpy in 2009 before hitting capacity in 2010. Darvesh wishes to tap into primary metal supplies from the big aluminium producers in the United

Arab Emirates – Dubai’s Dubal and Alba in Bahrain.

U.S.A.

Indalex to close Californian extrusion plant

Indalex Holding Corp. plans to close its Watsonville, California, aluminium extrusion plant by the end of March or early April, resulting in 99 job losses, in order to align manufactur-ing with the needs of the market. In-dalex, Lincolnshire, Illinois, made the announcement while unveiling plans to invest US$ 20 million in manufac-

C O M P A N Y N E W S

Page 60: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

60

Brazil

Alcan Composites targets higher revenues in 2007

The Brazilian unit of Canadian alu-minium giant Alcan’s composite arm Alcan Composites expects revenues to rise 18% in 2007. Revenues for last year totaled some US$ 10 million on sales of roughly 300,000 m2. Demand in the civil construction segment in countries such as Brazil, Chile, Ar-gentina and Venezuela are expected to see an increased need for Alcan Composites’ production in 2007. In 2007, the target is to increase exports from 26% in 2006 to 35% of total sales volume.

nese convenience store chain. Sun-tory will get Alcoa’s 38 mm VT-Lok aluminium closures for the “Ginza Cocktail”, Suntory’s new alcoholic drink introduced in September 2006. FamilyMart will get 38 mm closures for its Iki (fashionably chic) series of sake beverages, which began selling October 2006.

Russia

Rusal transfers extruded pro-ducts business to Glavstroy

Rusal transfered its Extruded Prod-ucts division to Glavstroy, a company which is managing the construction assets of Basic Element. The hando-ver is part of the merger agreement between Rusal, Sual and Glencore. Rusal’s Extruded Products division supplies a wide range of products including aluminium profiles and systems for the construction indus-try, interior design developers and machine-building enterprises. The division will become part of Glav-stroy, adding to a full range of con-struction related activities including investment, project development, production of construction materials and engineering equipment, facility launch and management.

Norway

Hydro maintains leading role in automotive bumper beams market

Hydro has increased its share of the global market for automotive crash management systems. Product devel-opment capacity and complete value-chain management are two reasons. Engineering capability within prod-uct and process development has been an important success factor for Hydro, which delivered approx. 7.5 million extruded aluminium bumper beams in 2006 and 7 million bumper beams in 2005. Hydro delivers crash management parts and systems, struc-tural components and assemblies, as well as fuel filler pipes and rollover protection systems through its struc-tures business unit, which has pro-duction and development facilities in

The AuthorThe author, Dipl.-Ing. R. P. Pawlek is founder of TS+C, Technical Info Services and Consulting, Sierre (Switzerland), a new service for the primary aluminium industry. He is also the publisher of the standard works “Alumina Refineries and Producers of the World” and “Primary Aluminium Smelters and Producers of the World”. These reference works are continually updated, and contain useful technical and economic information on all alumina refineries and primary aluminium smelters of the world. They are available as loose-leaf files and/or CD-roms from the Aluminium-Verlag, Marketing & Kommunikation GmbH in Düsseldorf, Germany.

Europe and North America. As part of an internal reorganisation, Hydro is in the process of divesting the structures business unit. Hydro will remain an important supplier to the automotive industry within precision tubing, al-loys, and rolled and extruded semi-finished products, with sale volume of approximately 1 billion euros.

When customers choose aluminium-made crash management systems, they often choose Hydro.

Anzeige

www.inotherm-gmbh.de

China

Alcoa opens Chinese brazing sheet joint venture

Alcoa has opened Kunshan Alu-minium Products Co. Ltd., a 50,000 tpy aluminium brazing sheet facility in Kunshan City, China. The plant, a joint venture with Yencheng Engrav-ing ND Alcoa’s third flat-rolled facil-ity in China, will manufacture brazing sheet primarily for the Asian automo-tive market. Alcoa also produces alu-minium rolled products at Alcoa Bo-hai Aluminium Industries Company Ltd., a joint venture with China Inter-national Trust & Investment (CITIC), based in Qinghuangdao, China and at its Alcoa (Shanghai) Aluminium Prod-ucts Ltd. facility. The Bohai plant is the largest foil producer and exporter in China.

Japan

Alcoa unit wins Japanese bever-age contracts

Alcoa Closure Systems International (CSI) Japan has received contracts to supply aluminium closure systems to Japanese beverage producer Suntory Ltd. and FamilyMart Co. Ltd., a Japa-

C O M P A N Y N E W S

Nor

sk H

ydro

ALUMINIUM · 3/2007

Page 61: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

61ALUMINIUM · 3/2007

Auf der Suche nach einer Leicht­baukonstruktion wird der Anwen­der früher oder später zwangs­läufig beim Werkstoff Aluminium ankommen. Aber er wird dort nicht stehen bleiben; der näch­ste Schritt führt ihn nicht selten zu Verbundwerkstoffen, die ein Leichtmetall, meist Aluminium, mit Kunststoffen, Schäumen oder auch Holz kombinieren. Welche Bedeutung dieses Arbeitsgebiet inzwischen besitzt, mag die Tat­sache verdeutlichen, dass Alcan dieses Geschäft mit einer eigenen Geschäftseinheit, der Alcan Com­posites, betreibt.

Neu ist diese Entwicklung nicht. Sie wurde bereits vor mehr als einem Jahrzehnt aufgegriffen, zum Beispiel von der früheren Alusuisse. In dieser Zeitschrift wurde über Anwendungen im Schienenfahrzeugbau ausführlich berichtet.

Verbundwerkstoffe kombinieren eine Reihe attraktiver Eigenschaften, wie geringes Gewicht, mechanische Festigkeit, Steifigkeit, Zähigkeit, Dau-erfestigkeit, Umformbarkeit, ther-mische Stabilität und andere. Dabei lassen sich all diese Eigenschaften

durch Kombinieren verschiedener Materialien und durch Modifikati-onen der unterschiedlichsten Art in einem weiten Bereich ausprägen. Je nach Anwendungsfall und Belastung stehen heute spezielle, maßgeschnei-derte Werkstoffe zur Verfügung.

Die Nutzung von Verbundwerk-stoffen macht offensichtlich Fort-schritte. Wurden diese zunächst ganz überwiegend in Verkehrsmitteln ein-gesetzt, wo es große Massen zu be-schleunigen und abzubremsen gilt, werden jetzt auch Anwendungen ganz anderer Art vorgestellt. Beispielswei-se für Windkraftanlagen, für die Alcan Composites leichte und dennoch sta-bile Rotorblätter liefert.

Das Geschäft mit der Windkraft boomt derzeit. Allein in Deutschland waren Ende 2005 17.574 Turbinen installiert. Während sich mittler-weile schon Widerstand gegen eine „Verspargelung“ der Landschaft regt, bieten der Ersatz alter durch lei-stungsstärkere, modernere Anlagen, aber auch die Errichtung von Wind-kraftwerken auf See weitere Ausbau-potenziale. Die Bundesregierung hat bereits Eignungsgebiete für Offshore-Windparks identifiziert.

Im übrigen Europa steigt die Zahl der installierten Anlagen ebenfalls kontinuierlich. Die Zuwachsraten seit 2005 betragen jährlich rund 16 Prozent. Auch in Amerika und Asien stehen die Signale auf Wachstum. Bei Alcan dürfte man ob dieser Entwicklung für das eigene Geschäft positiv ge-stimmt sein. ■

Maßgeschneiderte Leichtbauwerkstoffe

für Windkraftanlagen

Tailor-made light-weight materials for wind turbines

In the search for lightweight con­struction, users will sooner or later necessarily come across the material aluminium. However, they will not stop there; the next step often leads on to composite materials, which combine a light metal – usually aluminium – with plastics, foams or even wood. The importance gained by this field of work is indicated by the fact that Alcan has a business division of its own – Alcan Composites – ded­icated to it.

This development is not new. It was taken up already more than a decade ago, for example by the former Al-usuisse, and detailed reports have appeared in this journal about appli-cations in the construction of railway vehicles.

Composites combine a series of attractive properties such as low weight, mechanical strength, rigidity, toughness, fatigue resistance, form-ability, thermal stability and others. All these properties can be produced in a wide range by combining differ-ent materials and by modifications of the most varied kinds. Depending on the application and the loading, nowa-days special tailor-made materials are available.

The use of composites is clearly advancing. Whereas to begin with they were mainly used in the trans-port sector where large masses have to be accelerated and braked, now ap-plications of quite different kinds are being proposed. For example, Alcan Composites supplies light but stable rotor blades for wind turbines.

The wind turbine business is thriv-ing. In Germany alone, 17,574 turbines were erected in 2005. In Europe the number of units installed since 2005 has increased annually by 16%. The wind energy market is also expected to grow strongly in the Americas, as well as in Asia, over the next sever-al years. The mood at Alcan is corre-spondingly positive about the further development of this business sector.

Windkraftanlagen werden immer effizienter. Ein Schlüs-selfaktor sind die größeren Rotorblätter. Ermöglicht wird dies durch leichte Sandwich-Paneele, wie sie Alcan Com-posites herstellt.

The performance of wind turbines is steadily increasing. One key factor for this suc-cess is the larger blade size produced with light weight cored sandwich panels from Alcan Composites.A

lcan

M A R K E T S A N D T E C H N O L O G Y

Page 62: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

62 ALUMINIUM · 3/2007

M A R K T U N D T E C H N I K

Die deutschen Hersteller von Tu­ben und Aluminium­Aerosoldosen erfreuten sich 2006 einer sehr leb­haften Nachfrage. Die Auftragsein­gänge in der Branche konnten zwischen zwei und neun Prozent zulegen, so dass die Produktions­kapazitäten gut bis sehr gut aus­gelastet sind. Die Lieferzeiten bei Aluminium­Tuben und ­Aerosoldo­sen liegen bei 10 bis 20 Wochen.

Die Nachfrage wird durch verstärkte „Relaunch“-Aktivitäten insbesondere von Kunden aus der kosmetischen Industrie beflügelt, aber auch der pharmazeutische Markt ist durch eine weiterhin stabile Nachfrage gekenn-zeichnet.

„Angesichts dieser angespannten Nachfragesituation spielen die Fak-toren Versorgungssicherheit und Zuverlässigkeit der Lieferanten eine immer größere Rolle für unsere Kun-den“, schildert der Vorsitzende des Fachverbandes Tuben, Dosen und Fließpressteile, Oliver Höll, die Situ-ation am Markt. Für die Kunden sei es in einer solchen Situation wichtig, eine „Out-of-Stock“-Situation zu ver-meiden, die mit unnötigen Kosten und im schlimmsten Fall sogar mit dem

Abwandern der Verbraucher zu an-deren Marken verbunden sein kann.

Tuben und Aluminium-Aero-soldosen gewinnen bei den Konsu-menten weiter an Attraktivität, nicht zuletzt wegen immer höherwer-tigerer Ausstattungen: dazu zählen anspruchsvolle Druckbilder, pfiffige Verschlusssysteme und markante Formgebungen. Der vor allem in Teilbereichen der kosme-tischen Industrie zu beo-bachtende Trend zu Pack-mittelveredelungen lässt sich nur mit modernster Fertigungstechnologie um-setzen, die ihren Preis hat. Diese Innovationen haben maßgeblich dazu beigetra-gen, das Image dieser Ver-packungen zu heben und Kunden und Verbrauchern einen Mehrwert zu bieten.

Die Markterwartungen für das erste Quartal 2007 sind mehrheitlich von Op-timismus geprägt. Die An-fang 2007 erhöhte Mehr-wertsteuer wird Branchenexperten zufolge keinen negativen Einfluss auf die Nachfrage nach Tuben und Alu-minium-Aerosoldosen haben.

Solide Auftragslage bei Tuben und Aerosoldosen

The European tube industry looks at a new record production output of 10 billion tubes in 2006 based on a sharp rise in deliveries to 5 billion tubes in the first half of the year and a satisfactory level of new orders in the second.

European tube manufacturers have recently launched several new applications and innovations. For instance, cult bever-ages, herbal butter and cheese are three more products that can now be found in tubes on the shelves of European grocery stores. The outward appearance of tubes has also been enhanced with elaborately designed closures and decorative processes as well as appealing shapes. For instance, it is now possible to combine 8-colour offset and silk screen printing with foil stamping in a single work operation on cylindrical

or oval tubes. Luxury closures for cosmetic products enhance the packaging, putting it on the same level as a fine perfume bottle. Finished soft-touch surfaces on tubes make them easier to grip and caress the hand that uses them. All these features create a more compelling presentation on the store shelf and make a more lasting impression on the consumer in terms of look and feel.

With all their convenient features, tubes are the logical choice of packaging for tra-velling, whether to hold dental care, phar-maceutical, cosmetic or body care products. The new hand luggage regulations the EU introduced in November 2006 will promote sales. According to the new standard rules, any liquids, gels and creams passengers take into the cabin with them are limited to containers of 100 ml each. Tubes offer cu-

stomized solutions for addressing this situa-tion. The positive development of volumes in the European tube industry in 2006 is overshadowed by two-digit cost increases for raw materials, energy and transport services. For this reason the pressure on margins has substantially risen. Against this background European tube manufacturers try to pass on cost increases in the market.

The cosmetics industry accounts for 42 per cent of sales, making it the largest buyer of tubes. It is followed by dental care with 22 per cent, pharmaceuticals with 20 per cent, the food industry with 9 per cent and the household product market with 7 per cent. Aluminium tubes make up 43 per cent of the total production output, follo-wed by plastic tubes with 31 per cent and laminate or polyfoil tubes with 26 per cent.

European tube industry successful in 2006

Die boomende Mengenentwick-lung wird jedoch von erheblichen Kostensteigerungen bei Roh- und Hilfsstoffen überschattet. Nach Aus-sagen verschiedener Branchenunter-nehmen hat sich der Ergebnisdruck weiter verstärkt. Die zusätzlichen Kostenbelastungen können nicht durch Produktivitätssteigerungen auf-gefangen werden. Eine Beibehaltung

der hohen Innovationskraft der Unter-nehmen macht es immer dringender erforderlich, die Kostensteigerungen in den Markt weiterzureichen. ■

GD

A

Page 63: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

63ALUMINIUM · 3/2007

To produce high­strength alloy ma­terial for aerospace applications, the Chinese Southwest Aluminium Group has ordered a complete casting line from Thermcon Ovens B.V. for the manufacture of rolling slabs and extrusion billets.

The line will comprise two high-ca-pacity tiltable melting resp. pouring furnaces with modern regenerative burners and a dedicated burner used only in pouring mode. Regenerative burners represent the most advan-ced burner technology available and effectively minimize the furnace en-ergy consumption. Both furnaces are equipped with the latest in-furnace degassing technology to minimize hy-

Die zur Otto Junker Gruppe gehö­rende Thermcon Ovens B.V. aus den Niederlanden hat von der chi­nesischen Southwest Aluminium Group den Auftrag über eine kom­plette Gießstraße für Walzbarren und Strangpressbolzen erhalten, die zur Fertigung hochfester legier­ter Produkte für die Luft­ und Raumfahrt bestimmt ist.

Die Anlage umfasst zwei energie- und umweltoptimierte kippbare Schmelz- bzw. Gießöfen, die mit modernen Re-generativ-Brennern ausgestattet ist. Hinzu kommt ein weiterer Brenner, der ausschließlich im Gießbetrieb eingesetzt wird. Regenerativ-Brenner stellen den modernsten Stand der heu-tigen Brennertechnik dar und senken wirksam den Brennstoffverbrauch des Ofens. Beide Öfen werden mit modernsten internen Entgasungssy-stemen ausgestattet, um die Wasser-stoffkonzentration bis zum Abgießen möglichst gering zu halten.

Die vollautomatische Anlage ist SPS- und SCADA-gesteuert und er-laubt so einen vollständig rezeptur-gestützten metallurgischen Prozess, der eine konstante Produktqualität gewährleistet. Die Steuerung der Kipp-funktion erfolgt automatisch über eine Laserüberwachung der Überfüh-rungsrinne, die für einen gleich blei-benden Metallspiegel in der Rinne und damit für ein optimales Gießer-gebnis sorgt.

Das eigentliche Rinnensystem ist so ausgelegt, dass Turbulenzen in der zur Gießanlage strömenden Schmel-ze vermieden und die Oxidation und Wasserstoffaufnahme des flüssigen Metalls auf ein Minimum reduziert werden. In dem Rinnensystem zwi-schen Schmelz- und Gießofen sind spezielle Entgasungssysteme vorgese-hen. Diese Einrichtungen sorgen er-gänzend zu der Entgasung innerhalb des Ofens für eine weitere Senkung der Wasserstoffkonzentration und verhindern somit Porosität im Guss.

Eine zuverlässige Abscheidung selbst feinster Feststoffe wird durch Tiefbettfilter gewährleistet, die sich in dieser Anwendung gegenüber anderen Lösungen als überlegenes

Thermcon Ovens liefert Walzbarren-Gießstraße nach ChinaKonzept erwiesen haben. Die Anlage entspricht somit vollauf dem Ziel des Betreibers, Produkte von höchster Qualität und Reinheit für anspruchs-volle Anwendungen in der Luft- und Raumfahrt zu fertigen.

Die direkt gekühlte Vertikal-Stranggießanlage verfügt über einen innengeführten Zylinder, der für eine exakte Bewegung des Absenktisches sorgt, auf dem der Block beim Gieß-vorgang ruht. Diese Bauweise macht eine externe Führung des Absenk-tisches überflüssig und sorgt für op-timale geometrische Gleichmäßigkeit der Blöcke. Die Barrenformsysteme sind mit einer kontinuierlichen Schmierung ausgestattet, die für eine optimale Geometrie der Barrenober-fläche sorgt und die Dicke der Guss-haut minimiert, so dass der Fräsauf-

Thermcon Ovens delivers casting line to China

wand reduziert und die Ausbringung der Gesamtanlage erhöht wird.

Zum Lieferumfang gehören auch Strangpresswerkzeuge von großem Durchmesser, die beim Verpressen der Bolzen zu Profilen von entschei-dender Bedeutung sind. Letztere sind ebenfalls für Anwendungen in der Luft- und Raumfahrtechnik bestimmt. Auch die Gießspiegelüberwachung für die Barrenformen basiert auf La-sertechnik, so dass ein vollautoma-tischer Betrieb der Gießanlage über den gesamten Gießzyklus gewährlei-stet ist. Der Auftrag befindet sich der-zeit in der Phase der Layout-Planung und Konstruktion; auch erste Vorfer-tigungsmaßnahmen sind bereits im Gange. Die Montage ist für die zweite Jahreshälfte 2007 vorgesehen.

drogen levels before the start of the pouring cycle.

Operation is fully automatic, re-lying on PLC and SCADA control for an entirely recipe-based metallurgical process that will deliver consistent product quality. Tilting is automati-cally controlled via laser-type launder monitoring systems which automati-cally ensure a constant metal level in the launder for optimum casting results.

The launder system itself is desi-gned to eliminate turbulence in the metal flow to the casting machine, thus reducing melt oxide levels and hydrogen pick-up rates. Special de-gassing systems are provided in the launder system between the melting

M A R K E T S A N D T E C H N O L O G Y

Ansicht eines kipp-baren Schmelzofens

View of a tiltable melting furnace

Ott

o Ju

nker

Page 64: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

64 ALUMINIUM · 3/2007

A L U M I N I U M I M A U T O M O B I L

4. VDI-Tagung, 6. und 7. Februar 2007 in Magdeburg

Gießtechnik im MotorenbauUmweltanforderungen und Kun­denwünsche nach akzeptablen Fahrleistungen bestimmen die aktuelle Motorenentwicklung, die noch dazu angehalten ist, mög­lichst leicht zu bauen. Eine un­mögliche Quadratur des Kreises? Nicht unbedingt, wie aktuelle Lösungsansätze auf der nunmehr 4. VDI­Tagung „Gießtechnik im Motorenbau“ belegen.

Aluminium hat aufgrund seiner ge-ringen Dichte einen entscheidenden Vorteil gegenüber Grauguss, der sich aber keineswegs abhängen lässt. Auch die Graugießer haben ihre Hausaufga-ben gemacht und können mit neuen werkstoff- und verfahrenstechnischen Lösungen aufwarten. Sie bieten bei-spielsweise ein „Downsizing“ durch Verwendung des hochfesten Guss-eisens mit Vermiculargraphit – vor-gestellt von Dirk Radebach von der Halberg Guss GmbH in Saarbrücken. Durchaus eine Herausforderung für Aluminium, der sich der Werkstoff jedoch zu stellen weiß, wie mehrere Übersichtsvorträge zu aktuellen Mo-torenentwicklungen bekannter Zulie-fergießereien zeigten. Herbert Sme-tan von Hydro Aluminium in Köln berichtete zu Erfahrungen mit dem in Dillingen angewandten Kernpa-ketverfahren, während Stephan Beer von KS Aluminium Technologie AG in Neckarsulm auf einen weiterent-wickelten Druckgussprozess setzt, bei

dem Lokasil als verschleißbeständige Laufflächentechnologie zum Einsatz kommt. Zur Versteifung des Zylinder-decks präferiert der Redner das sonst verfahrensbedingt im Druckguss nicht mögliche Closed-Deck-Design durch druckgussfeste verlorene Kerne auf der Basis von Sand oder Salz. Erste Versuche liefen bereits Ende der 1980er Jahre mit dem sog. „Doehler-

core“. Die Technologie konnte sich jedoch nicht durchsetzen, was nach Ansicht des Vortragenden vor allem daran gelegen habe, dass die Notwen-digkeit dieser Technologie in der Mo-torenentwicklung noch nicht gegeben war. Angesichts der heutigen hohen Leistungsansprüche komme künftig kein Motorenentwickler mehr an der Closed-Deck-Bauweise vorbei, da

and pouring furnaces. Supplementing the in-furnace degassing capabili-ty, these systems further reduce the hydrogen concentration to minimize casting porosity. Deep-bed filtration units, known to be superior to other filtration systems, are used to remove even the finest so-lid particles. The equipment thus fully meets the operator‘s objective to pro-duce the highest-quality, purest grade metal for aerospace applications.

The vertical-type direct chill ca-sting machine is equipped with an

internally guided cylinder providing a closely toleranced movement of the platens carrying the ingots during the casting operation. This design elimi-nates the need for external platen guides and maximizes the geometri-cal uniformity of the ingots. The slab mould systems are equipped with continuous lubrication to optimise the slab surface geometry and mini-mize the thickness of the shell zone, thus reducing the scalping depth and improving line yield.

Large diameter billet extrusion

dies are part of the contract; they are key to the extrusion of billets into pro-files and sections that will likewise be used for aerospace purposes. The slab mould level control system is likewi-se based on laser technology and per-mits a fully automatic operation of the caster from the start to the end of the casting cycle. The project is currently in its layout and engineering design phase, with pre-fabrication now on-going as well. Erection is scheduled for the second half of 2007.

Vorteile AI­ZKG gegenüber Fe­ZKG Nachteile AI­ZKG gegenüber Fe­ZKG

geringere Dichte höhere Fertigungskosten (Material-preis)

sehr gute Zerspanbarkeit (bes. bei unter-eutektischen Legierungen)

niedrigere Festigkeitskennwerte

sehr dünnwandige Gussteile herstellbar höhere Korrosionsneigung

hohe Wärmeleitfähigkeit Gefügeänderungen und Kriechnei-gung bei Temperaturen über 150 °C

vergleichbarer Wärmeausdehnungs-koeffizient des Zylinderkopfwerkstoffs

Untereutektisches Al ist nicht als di-rekte Zylinderlaufbahn geeignet

Tab. 1: Bedeutende Vor- und Nachteile von AI- gegenüber Fe-Zylinderkurbelgehäusen (ZKG) nach Heikel, VW

Alle

Fot

os:

MET

ALL

Page 65: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

65ALUMINIUM · 3/2007

sie Garant einer höheren Steifigkeit sei. Realisieren ließe sich dies auch im Druckguss durch eine Modifizie-rung des Doehlercore-Konzeptes mit einem organischen Warmboxbinder zusammen mit Cerabeads-Sand. Der Alumosilikatsand mit kugelförmiger Kornform zeichnet sich nach Erfah-rungen Beers durch eine sehr gute Fließfähigkeit, hohe Gasdurchlässig-keit, hohe Druckbeständigkeit und hohe Packungsdichte aus, so dass eine große Gestaltungsfreiheit erreicht werde. Die Entkernbarkeit könne durch den Zusatz von Additiven ver-bessert werden.

Kurbelgehäuse aus dem Baukasten

Spektakulär, da sehr wirtschaftlich, war der Ansatz, den Thomas Uhr von DaimlerChrysler, vorstellte. Seine Lösung: Ein „Baukasten“ für Alumi-nium-Kurbelgehäuse, der es erlaubt, für den jeweiligen Anwendungs-fall die jeweils optimale Lösung zu finden. Möglich wird das mit einer Druckgussform, die auf einem univer-sellen Grundrahmen basiert, in den verschiedenste Schieber eingefahren werden können. So lassen sich mit ein und dem selben Grundrahmen ver-schiedene Hubraumgrößen erzielen. Weitere Vorteile sind der schnellere bzw. vorausschauende Werkzeug-wechsel sowie die Minimierung von Rüst- und Ausfallzeiten. Das Konzept funktioniere, so der Referent weiter, bei Gewährleistung enger Toleranzen durch Einhaltung einer strengen Messstrategie, kombiniert aus den 3 Elementen CT, optische Messtechnik und taktile Messtechnik.

Kriechen unerwünscht

Nach Ansicht von Christian Heikel von VW Wolfsburg, ist der Wettstreit der Zylinderkurbelgehäuse (ZKG) „Eisenguss kontra Aluminium“ keines-wegs entschieden. Aluminium habe sowohl Vorteile als auch Nachteile im Vergleich zu Fe-ZKG (Tabelle 1). Dies gelte auch für Werkstofflösungen bei ZKG für Dieselmotoren. Derzeit führen hier die Eisengusswerkstoffe deutlich, wenngleich es auch einige wenige Lösungen in Aluminium gibt.

Als theoretisch denkbar benannte der Redner auch Verbundlösungen von Al/Mg. Vor dem Hintergrund deut-lich steigender Anforderungen an die Leistungsausbeute von Dieselmotoren bestünden hohe Anforderungen an die Motoren, dem als Problem die geringe Kriechbeständigkeit des Aluminiums gegenüber steht. Be-reits ab 150 °C sei mit der Aktivierung von Kriechvorgängen zu rechnen, ein Umstand, dem bei der Konstruk-tion leicht bauender Al-ZKGs Rechnung zu tragen sei.

Eine Verbesserung der Eigenschaften lässt sich bei aushärtbaren Aluminiumlegierun-gen bekanntermaßen durch eine Wärmebe-handlung erreichen, die jedoch einen zu-sätzlichen Fertigungs-schritt und damit einen Kostenfaktor darstellt. Bianka Hornig-Vorbau von der Otto-von-Guericke-Universität in Magdeburg erläuterte Möglichkeiten, die Wärmebehandlung zu optimieren oder gar ganz einzusparen. Denkbar werde dies durch das Zulegieren von Elementen, die eine Kaltaushärtung begünstigen und zugleich festigkeits-steigernd seien (Magnesium, Kupfer) oder durch festigkeitssteigernde Ele-mente (Nickel, Cobalt). Im ersten Fall könnten die Wärmebehandlungsko-sten gesenkt werden, im zweiten kann die Wärmebehandlung sogar entfallen. Jedoch müsse mit zum Teil hohen Kosten für die Legierungsele-mente gerechnet werden.

Sprühkompaktierte Buchsen nun auch im Sandguss

Die Lauffläche eines Motorblocks muss erhöhten Belastungen stand-halten, was im Falle des Aluminiums durch einen erhöhten Siliziumgehalt erreicht wird. Nach dem Honen ge-währleistet die dann freiliegende Siliziumphase Verschleißfestigkeit und Ölaufnahme. Notwendig dazu sind hoch übereutektische Al-Si-Gusslegierungen, die sich aufgrund ihrer Dünnflüssigkeit jedoch nicht im

hochproduktiven Druckguss gießen lassen. Daher werden in diesem Fall naheutektische Legierungen vergos-sen. Die gewünschten Eigenschaften der Lauffläche lassen sich z. B. durch das Eingießen von Zylinderlaufbuch-sen aus sprühkompaktierten, über-eutektischen Hochleistungsalumini-

umlegierungen erreichen – eine seit einigen Jahren etablierte Technologie. Aufgrund der gestiegenen Anforde-rungen durch höhere Zünddrücke und größere Hubräume stellt sich je-doch die Frage, ob es auch möglich ist, im Sandguss sprühkompaktierte Zylinderlaufbuchsen einzugießen. Wie Peter Krug von der PEAK Werk-stoff GmbH in Velbert zeigte, ist ein einfaches Übernehmen der bisher im Druckguss verwendeten Buchsen aus DISPAL (AlSi25Cu4Mg1) nicht möglich. Seine Vorversuche erga-ben, dass die Buchsen im Sandguss aufgrund der hohen Temperatur-belastung bei der Formfüllung und der langen Erstarrungszeiten extre-men Belastungen ausgesetzt sind. Teilweise schmolzen ganze Bereiche der Buchse weg, teilweise verformte sich die Buchse unter dem Einfluss von Temperatur und Speisergewicht. Notwendig war es, eine neue Legie-rung zu entwickeln, die die guten Eigenschaften der Druckgussvariante beibehält, aber dennoch die erhöhten Gießbelastungen ertragen kann.

Hierzu wurden verschiedene Le-gierungsvarianten sprühkompaktiert, die jeweils 25 Gew.-% Silizium ent-hielten. Da das Silizium durch die hohe Erstarrungsgeschwindigkeit voll-

A L U M I N I U M I M A U T O M O B I L

Page 66: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

66 ALUMINIUM · 3/2007

ständig primär ausgeschieden wird, stand genügend Silizium-Oberfläche als Reibpartner für den Kolbenring zur Verfügung. Der durch den Silizi-umgehalt bereits erhöhte E-Modul konnte durch die Zugabe von Eisen und Nickel nochmals deutlich gestei-gert werden und lag im Bereich von 100 GPa. Durch Anpassung des Cu/Mg-Verhältnisses konnte die Solidus-temperatur auf über 530 °C gesteigert werden. Da sandgegossene Kurbelge-häuse gängigerweise wärmebehandelt werden, wurde für Gusslegierungen des Typs AlSiMg eine kupferfreie Va-riante entwickelt, die mit einer Soli-dustemperatur nahe 550 °C eine Wär-mebehandlung des Blockes bei 540 °C ohne innere Anschmelzungen über-steht. 5 Legierungsvarianten wurden in zahlreichen Versuchen sowohl im Sandguss als auch im Kokillenguss ge-nauestens geprüft. Im Ergebnis wurde eine geeignete Oberflächenstruktur entwickelt, die eine optimale metal-lurgische Anbindung der Buchse an den Grundwerkstoff gewährleistet.

Zylinderköpfe: Gekippt gegossen

Während sich die Vorgängertagungen hauptsächlich mit dem Zylinderkur-belgehäuse befassten, standen in die-sem Jahr verstärkt Zylinderköpfe im Mittelpunkt des Interesses, die heute fast ausschließlich aus Aluminiumle-gierungen erzeugt werden.

Ein eigens für Hochleistungszylin-derköpfe entwickeltes Gießverfah-ren stellte Hans-Christoph Saewert von der Rautenbach AG/Nemak Europe in Wernigerode mit dem Ne-mak-Dynamic-Casting-System vor.

Hierbei handelt es sich um eine Wei-terentwicklung des Kippgießverfahrens. Im Unterschied zum Rotacast-Verfahren, bei dem das komplett mit Kernen bestückte Werkzeug über einen Winkel von 180° ge-kippt wird, kommt beim NDSC nur ein reduzierter Kipp-bereich zur Anwen-dung. Dieser ist nach Aussage des Vortra-

genden abhängig von der Geometrie des jeweiligen Zylinderkopfes. Der auf maximal 90° beschränkte Kipp-bereich ermögliche eine deutlich ein-fachere und präzisere Kernlagerung sowie eine verbesserte Werkzeug-gestaltung und Werkzeugbewegung. Vorteilhaftes Resultat sei eine höhere Reproduzierbarkeit.

Reaktionsschicht – vorteilhaft oder schädlich?

Im Fall der Zylinderköpfe müsse, so Christian Heikel von VW Wolfsburg zudem die korrosive Beanspruchung berücksichtigt werden. Prüfungen zeigten bei Al-Zylinderkopfwerk-stoffen die Bildung einer Reaktions-schicht auf der Wassermantelober-fläche, hervorgerufen durch wäss-riges Kühlmittel. Es bewirkt eine chemische Umwandlung der Alumi-niumoberfläche. Edlere Legierungs-bestandteile, wie Silizium, werden in der Schicht eingelagert. Noch sei

nicht zweifelsfrei erwiesen, ob die Schicht nun einen Schutz bewirke oder eben nicht. Morphologie und Schichteigenschaften deuten auf ein Korrosionsprodukt hin, dessen Bil-dung – so zeigten es systematische Untersuchungen – von Temperatur und Zeit abhängen. Nach Meinung Heikels kann das Einreißen dieser Schicht sogar als Rissauslöser wirken. Der Einfluss der Schichten auf die Le-bensdauer des Bauteils, insbesondere bei zyklischer Belastung, ist Gegen-stand weiterer Untersuchungen.

Fazit

Die 4. VDI-Tagung „Gießtechnik im Motorenbau“ war im Gegensatz zu ihren Vorgängerveranstaltungen eine Bestandsaufnahme, die aufzeigte, wel-che Technologien heute in großem Maße Anwendung finden. Eine Ant-wort auf die Frage „Grauguss oder Aluminium“ konnte sie nicht bieten, da zu wenige Referenten aus dem Graugussbereich vertreten waren. Vielmehr zeigte sich, dass derzeit bei-de Konzepte durchaus ihre Berech-tigung haben. Deutlich wurde aber auch, dass ein deutliches Entwick-lungspotenzial besteht, um das von allen Referenten übereinstimmend benannte Ziel zu erfüllen: leistungs-starke, emissionsarme Motoren zu gießen. C. Kammer

Alle Vorträge auf der VDI-Tagung wur-den in einem Tagungsband zusam-mengefasst: VDI-Berichte Nr. 1949, 252 S., 189 Abb., 10 Tab., 58,- Euro, ISBN 978-3-18-091949-2. ■

Diesel-Kurbelgehäuse für DaimlerChrysler V6 3.0 l, Legierung A 319

A L U M I N I U M I M A U T O M O B I L

World leader in molten metal level control

PreciMeter Control AB, Swedenphone +46 31 764 55 20 fax +46 31 764 55 29

[email protected] www.precimeter.com

Page 67: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

67ALUMINIUM · 3/2007

A L U M I N I U M I M A U T O M O B I L

Das Geschäftsfeld Druckgießtech­nik der Müller Weingarten AG hat sich 2006 gut entwickelt. Mit Produktinnovationen, die auf der GIFA im Juni vorgestellt werden, strebt das Unternehmen 2007 ein deutliches Wachstum an. „Zwar stehen auch wir massiv unter Preisdruck, dennoch können wir über eine Vielzahl neuer Projekte,

vor allem in Indien und China, unser Geschäft profitabel ausweiten“, er­klärte Geschäftsfeldleiter Jürgen Lamparter.

Am Standort Erfurt prä-sentierte Lamparter jüngst Großprojekte, die kurz vor der Auslieferung standen. Dazu zählten mehrere Druckgießanlagen für das chinesisch-japanische Joint Venture Changan-Suzuki,

auf denen Blöcke für 4-Zylinder-Mo-toren und Getriebe- sowie Kupplungs-gehäuse aus Aluminium gegossen werden. Zum Einsatz kommen diese Motoren im weltweit erfolgreichen Suzuki Swift.

Bereits 2006 orderte Changan Suzuki bei Müller Weingarten kom-plette Systeme für die Herstellung von Motorblöcken sowie Getriebe- und

Kupplungsgehäusen. Die Lieferung umfasst zwei Druckgießmaschinen Opticast 2500 für die Herstellung von Motorblöcken sowie eine Maschine vom Typ Opticast 1750, die Getrie-be- und Kupplungsgehäuse fertigt. Vor allem die Peripherielösungen der Anlagen für Dosieren, Sprühen, Ent-nahme, Kühlen und Entgraten bzw. Sägen sowie die Formkonzepte sind bemerkenswert. Die Produktion aller drei Maschinen erfolgte im Müller Weingarten Werk in Erfurt. Produk-tionsstart in China ist für April 2007 geplant.

„Der Kunde wünscht sich kom-plette Anlagen aus einer Hand“, be-schreibt Lamparter den aktuellen Markttrend. Darauf habe sich das Geschäftsfeld frühzeitig eingestellt und mit Heck & Becker einen kom-petenten Partner für den Formenbau gewonnen.

Müller Weingarten AG

Druckgießtechnik für China

OptiCast Druckgießmaschine, die Ende 2006 an das ja-panisch-chinesische Joint Venture ausgeliefert wurde

Mül

ler

Wei

ngar

ten

Page 68: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

68 ALUMINIUM · 3/2007

Eine neue Studie belegt, dass die zunehmende Verwendung von Aluminium in europäischen Neu-fahrzeugen Gewicht spart und Kraftstoffverbrauch samt CO

2-

Emissionen senkt

Die von Knibb, Gormezano & Part-ners (KGP) zusammen mit der Euro-pean Aluminium Association (EAA) durchgeführte Studie kommt zu dem Ergebnis, dass die in europäischen Neufahrzeugen verwendete Menge an Aluminium von 50 Kilogramm (1990) auf 132 Kilogramm im Jahr 2005 gestiegen ist. Diese Menge wird bis 2010 voraussichtlich weiter auf 157 Kilogramm steigen. Im Jahr 2005 wurden 2 Mio. Tonnen Aluminium-bauteile in Neufahrzeugen auf die Straße gebracht. Die erzielten Ge-wichtseinsparungen werden zu einer jährlichen Kraftstoffeinsparung von einer Milliarde Liter und einer Re-duktion von ungefähr 40 Mio. Tonnen CO2-Emissionen während der gesam-ten Nutzungsdauer der Fahrzeuge führen.

Die Untersuchung enthält Daten von Autoherstellern und Zulieferern sowie von EAA-Mitgliedsfirmen und der KGP. Sie basiert auf der Analy-se von 15 Millionen im Jahr 2005 in Europa produzierten Pkw. Sie unter-sucht 20 Karosseriebauteile, 17 Fahr-gestell- und Aufhängungsteile sowie 25 Baugruppen für die Kraftübertra-gung. Die Studie konzentriert sich dabei auf Gussstücke, Strangpress- und Schmiedeteile sowie Bleche aus Aluminium.

Neue Studie belegt:

Aluminiumanteil in Neufahrzeugen steigtIn der Fahrzeugkarosserie machen Klimaanlagen, Motorhauben, Stoßfän-germittelteile und Lenksäulen das Gros der Bauteile aus Aluminium aus. Aluminiumteile im Bereich des Fahr-gestells und der Aufhängung eines Pkw sind in der Hauptsache Räder, Aufhängungsstreben und Baugruppen für die Lenkung. In der Kraftübertra-gung neuer Fahrzeuge sind vor allem Zylinderköpfe und Motorblöcke, Mo-torabdeckungen, Pumpen und Küh-ler aus Aluminium. Inzwischen wird mehr und mehr Leichtmetall insbe-sondere in Verschlüssen, im Karos-serierohbau sowie in Fahrgestellen verwendet; dies verbessert auch die Sicherheit von Fahrzeugen.

Roland Harings, Chairman des EAA Automotive Board, erklärte: „Eu-ropa spielt beim innovativen Einsatz von Aluminium in Fahrzeugen eine Vorreiterrolle. Da 100 Kilogramm Aluminium in einem Fahrzeug die CO2-Emissionen pro Kilometer um neun Gramm und sogar zehn Gramm reduzieren können, wenn man die Produktion von Kraftstoff berück-sichtigt, ist Aluminium als Werk-stoff für die Gewichtsreduktion von Fahrzeugen deutlich im Vorteil. Mit der fortwährenden Einführung neu-er Techniken, die weitere Vorteile in den Design- und Fertigungsprozessen mit sich bringen, wird sich der Trend zur Steigerung des Aluminiumanteils pro Pkw fortsetzen. Aluminium wird mit Sicherheit eine wichtige Rolle bei zukünftigen Generationen umwelt-verträglicher Fahrzeuge spielen“.

Environmental bene­fits in Hydro brazing technologyHydro’s new aluminium coating process is simplifying the brazing of sheet exchangers for automotive ap-plications, and achieving significant environmental benefits at the same time. The new process is safer than the previous technology, thus reduc-ing the potential for occupational health problems. It also requires less flux, reduces the amount of waste, and does not use as much energy as the previous best available practice. Hydro has registered “Hybraz” as the name of the process.

Passenger vehicles normally con-tain a handful of heat exchangers, ranging from engine and diesel fuel coolers to climate control systems

and the common radiator. Because of the need for a large effective sur-face area, a heat exchanger contains many fluid channels, fins, headers and other components. To connect all these in one step, brazing is the dominant technology. Flux, in metal-lurgy, is a substance that removes passivating oxides from the surface of a metal or alloy. The flux used by heat exchanger manufacturers is typically a fluoride flux, which needed to be applied to the entire surface of the components. Unfor-tunately, there are environmental and health issues associated with the use of flux, not least the potential problems that could be incurred due to particles in the working environ-ment. Hybraz resolves and simplifies this by applying a special coating to the aluminium before shipping to the customer. This application proc-ess – covering tubes, headers and/or sideplates – also eliminates the need for fluxing and flux stations on a heat exchanger manufacturing line.

Nor

sk H

ydro

Erneuter Rekord bei der Pkw-Produktion: 2006 liefen 5,4 Mio. Fahrzeuge (+1%) von den deutschen Bändern. Die deutsche Automobilindustrie zeigt damit ein-mal mehr, dass es ihr gelungen ist, am Standort Deutschland erfolgreich zu sein und dennoch die Globalisierung mit einer um 13 Prozent gestiegenen Aus-landsfertigung aktiv zu gestalten. Auch das Auslandsgeschäft war von neuen Exportrekorden geprägt. Die deutschen Hersteller führten knapp 3,9 Mio. Pkw (+2,5%) aus. Während die Neuzulassungen im Januar wegen der Mehrwertsteu-ererhöhung rückläufig waren, legten die Autobauer mit Blick auf Produktion und Export im Januar einen guten Start hin: Die Produktion übertraf mit 494.000 Pkw das Vorjahresvolumen um 16 Prozent. ■

Deutsche Autobauer 2006 mit neuen Rekorden

A L U M I N I U M I M A U T O M O B I L

Page 69: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

69ALUMINIUM · 3/2007

Eine Studie von Sapa Technology in Finspång, Schweden, ergab, dass Kühler aus Aluminium sehr widerstandsfähig gegen Korrosion sind.

Um zu ermitteln, auf welche Weise Aluminium korrodiert, bedient man sich bei Sapa Technology des Salz-spraytests SWAAT (seawater acetic acid test). Der Werkstoff wird dabei in einer Salznebelkammer Feuchtig-keit, Wärme und einem in Intervallen versprühten Salzspray mit niedrigem pH-Wert ausgesetzt. Ein Tag in diesem Milieu entspricht etwa einem Jahr Be-trieb des Wärmetauschers auf Straßen mit Straßensalz. Kühler aus Alumini-um überleben oft 30, 40 Tage.

Marja Melander, Forschungsinge-nieurin bei Sapa Technology, befasst sich mit der Frage, inwieweit die Tests der Realität entsprechen. Sie analysiert die Korrosion in Kühlern und Alumi-niumkomponenten bei Klimaanlagen in Autos, die zwischen vier und zehn Jahre alt sind. Hierzu wurden zehn verschiedenen Fahrzeugen mit einer Fahrleistung von 65.000 bis 380.000 km funktionsfähige Bauteile entnom-men. Nach vielen Kilometern Betrieb bei jeder Witterung und Straßensalz sind die Kühler schwarz und schmut-zig. Mit bloßem Auge war Korrosion daher kaum zu erkennen, weder au-ßen noch innen. Erst als Melander das Material in einem lichtoptischen Mikroskop untersuchte, entdeckt sie verschiedene Art von Korrosion, je-doch in sehr geringem Umfang. „Dass auf der Innenseite der Rohre so wenig Korrosion zu sehen ist, überrascht“, sagt sie.

Bei der Zusammenstellung des Materials stach das älteste Fahrzeug hervor, doch die eingesetzten Legie-rungen werden nicht mehr verwen-det. Die Legierungen sind das A und O. Wichtig ist die richtige Kombinati-on von Lamellen und Rohren. Die 0,1 mm starken Lamellen, die die Rohre galvanisch schützen sollen, bestehen aus einer unedleren Legierung als die Rohre. Die Rohre sind circa 0,3 mm stark und meist aus einem langlebigen Werkstoff gefertigt.

Die Studie von Melander besteht

Autokühler im Blickpunktaus vier Teilen, von denen sich der erste auf die Kühler bezieht. Anschlie-ßend werden die Kondensoren un-tersucht, dann sind die Evaporatoren und Ladeluftkühler an der Reihe. Die Ergebnisse der ersten Teilstudie* – es ist die erste in Europa veröffentlichte Studie zum Thema – haben bereits in-ternationale Aufmerksamkeit erregt. „Wenn diese Studie fertig ist, hoffe ich, auch Wärmetauscher von Autos untersuchen zu können, die in Asien gefahren wurden. Ich möchte heraus-finden, wie sich das Klima auf äußere Korrosion auswirkt und wie es um die Korrosion an der Innenseite der Rohre bestellt ist“, so die Forschungs-ingenieurin. Anna-Lena Rönn

Aluminium car radiators are high-ly resistant to corrosion, according to a new unique study from Sapa Technology in Finspång, Sweden.

To examine how aluminium corrodes, Sapa Technology uses a sea water ace-tic acid test. The material is tested in a salt fog chamber, where it is exposed to moisture, heat and a salt spray with a low pH sprayed at intervals. 24 hours in this environment is the equivalent of one year of real service life for heat exchangers on salted roads. Alumin-ium radiators can usually withstand 30 to 40 days in the chamber. Marja Melander, research engineer at Sapa Technology, has studied how well the tests correspond to reality in the first study to be published in Europe.

Melander studys corrosion in radiators and in aluminium compo-nents in air conditioners in cars that are between four and ten years old. Functioning components are collect-ed from ten different cars that have driven between 65,000 and 380,000 kilometres. The radiators are black and dirty after being exposed to the elements, road salt and many kilo-metres of driving. Hardly any corro-sion, internally or externally, could be seen with the naked eye. Only when Melander studied the material with an optical light microscope did

she discover various types of corro-sion, but to a very limited extent. “I am surprised to see there is so little corrosion on the inside of the tubes,” she says.

When the material was compiled, the most notable results pertained to the oldest car, but these alloys are no longer used. “Alloys are the all-important element. It is important to have the right combination of fins and tubes. The 0.1 millimetre thick fins that provide the tube with galvanised protection are of a more basic alloy than the tube, while the tube, which is approx. 0.3 millimetres thick, is often made from a long-life material.

Melander’s study comprises four sections, the first of which concerns radiators. Then the condensers will be examined, then the evaporators and the intercoolers. Results from the first sub study* have already attract-ed international attention. “When the study is complete, I hope to be able to examine heat exchangers from cars driven in Asia to see how the climate has affected the external corrosion and the status of internal corrosion on the inside of tubes,” says Melander.

Anna-Lena Rönn

*Corrosion study of brazed heat ex-changers in cars after real service life.

Car radiators in focus

Mag

nus

Gla

ns

Forschungsingenieurin Marja Melander

Research Engineer Marja Melander

A U T O M O T I V E

Page 70: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

70 ALUMINIUM · 3/2007

Mit einer zweiten Karosserieva-riante feiert der neue BMW 1er beim Internationalen Automobil-Salon in Genf am 8. März 2007 seine Weltdebüt. Erstmals ist der 1er dann als Dreitürer zu haben. Die neue Modellvariante setzt sich mit ihrer sportlich-eleganten Sei-tenlinie und ihren agilen Fahrei-genschaften in Szene. Eine beson-ders effiziente Dynamik erreicht der 1er mit der neuen Generation von Vierzylinder-Motoren.

Für zusätzliche Leistung und hohe Wirtschaftlichkeit sorgen ein Alumi-nium-Kurbelgehäuse und ein neues Common-Rail-Einspritzsystem für die Dieselantriebe bzw. die High Pre-cision Injection (HPI) bei den Benzi-nern. HPI, eine Direkteinspritzung der zweiten Generation, erlaubt eine ge-nauere Gemisch-Dosierung und hö-here Verdichtung. Dadurch lässt sich die Wirtschaftlichkeit und Leistung steigern und zugleich der Verbrauch senken.

Auch die Auto-Start-Stop-Funkti-on, die serienmäßig zum neuen BMW 118i/d und 120i/d mit 6-Gang-Schalt-getriebe gehört, senkt den Verbrauch und CO2-Ausstoß. Sobald der Fahrer hält, in den Leerlauf wechselt und die

Kupplung loslässt, schaltet sich der Motor ab. Um wie-der zu starten, genügt es, die Kupplung zu treten.

Energie spart auch die Brake Energy Regeneration. Dieses innovative System der Bremsenergie-Rückge-winnung speichert mit Hil-fe eines Generators die im Schubbetrieb frei werdende Energie direkt in die Batte-rie. So gewinnt der neue 1er zusätzliche Power für das Bordnetz.

Eine Klasse für sich ist im Kompaktsegment der BMW 130i. Sein Sechszylinder-Reihenmotor mit Magnesium-Aluminium-Verbund-kurbelgehäuse und Valvetronic-Technologie leistet 195 kW/265 PS und macht damit die dreitürige Mo-dellvariante des 1er zum absoluten Spitzensportler.

Auch für die Vierzylinder-Diesel-motoren steht ein Generationswech-sel an. Die Motoren zeichnen sich durch Leistungssteigerungen und Verbrauchsreduzierungen aus. Erzielt wurden sie u. a. mit Modifizierungen an den Brennräumen, der Luftfüh-rung, der Aufladung mit variabler Turbinengeometrie sowie am Com-

Der neue BMW 1er

Sportlich, innovativ, effizient

mon-Rail-Einspritzsystem. Darüber hinaus führt die Verwendung eines Aluminium-Kurbelgehäuses zu einer deutlichen Gewichtsoptimierung. Der neue Vierzylinder-Diesel mit einem Hubraum von 2,0 Litern steht für den 1er in zwei Leistungsstufen zur Verfü-gung (120d: 130 kW bzw. 177 PS, Ver-brauch 4,9 l auf 100 km / 118d: 105 kW bzw. 143 PS, Verbrauch 4,7 l auf 100 km) . In beiden Varianten wird die neue Antriebseinheit serienmäßig mit einem motornahen Dieselpartikelfil-ter ausgerüstet. Damit werden die Emissionsgrenzwerte der Abgasnorm Euro 4 deutlich unterschritten.

Der dreitürige BMW 1er: Ab 26. Mai 2007 im Handel

BMW AG

Launched at the Detroit Motor Show 2007: the Rolls-Royce Phantom Drop-head Coupé. Using the lightweight ri-

Rolls

-Roy

ce M

otor

Car

s Lt

d.

gidity of an all-aluminium space frame, it marries modern technology to a sleek, streamlined convertible body.

The space frame chassis is perhaps the most rigid one for convertibles today. The space frame is construct-ed at the BMW centre for aluminium competence in Dingolfing, Germany. Manufactured to within a tolerance of just 0.1 mm, each space frame is welded entirely by hand. One of the more interesting problems encoun-tered by the engineering team was the proximity of the optional brushed steel bonnet to the aluminium front wings. These materials are not nor-mally used alongside each other due to the adverse corrosion effects of alu-minium on steel.

Rolls Royce Phantom Drophead Coupé

A L U M I N I U M I M A U T O M O B I L

Page 71: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

71ALUMINIUM · 3/2007

Auf Basis der Micro Phase Clea-ning (MPC) Reinigungstechnologie von Zestron hat Dürr Ecoclean ein neues Anlagenkonzept ent-wickelt. Der Fokus des Systems liegt auf der Entfernung von Mischverunreinigungen (polare Emulsionen sowie unpolare Öle und Fette) in einem Schritt. Eine Referenzanlage des nun serien-reifen Verfahrens wurde vor kur-zem an einen international tätigen, französischen Hersteller aus der Luftfahrtindustrie ausgeliefert.

Das wasserbasierende, tensidfreie Verfahren ermöglicht neben der Ent-fernung von Mischverunreinigungen hohe Oberflächenreinheiten von > 50 mN/m. Es basiert auf einer fett-stofffreien Formulierung, wodurch der Reiniger gleichzeitig als Spülme-dium verwendet werden kann. Da-durch entfallen Wasserspülung und

Abwasseranschluss. Gleichzeitig er-möglicht die Fettstofffreiheit eine fle-cken- und rückstandsfreie Trocknung für maximale Oberflächenreinheit. In umfangreichen Tests wurde die erzeugbare Oberflächenreinheit im Zusammenhang mit anspruchsvollen Prozessschritten wie Härten, Kleben sowie PVD / CVD Beschichtungen bewiesen.

On the basis of Zestron MPC (Mi-cro Phase Cleaning) technology, Dürr Ecoclean has developed a new plant concept. The focus of the system is on the removal of mixed contaminants (polar emul-sions and non-polar oils and greas-es) in one step. A reference plant for the process, which is now

Ein neues wässriges Reinigungssystem

A new water­based cleaning system

Eine neue Generation von Hoch-leistungsfräsern, die mit einer Mi-schung aus Zirkonium, Stickstoff und Oxiden beschichtet sind, wirkt sich laut Anbieter (der Hoffmann Gruppe) günstig auf die Bearbei-tungszeiten und Prozesssicherheit bei der Aluminiumzerspanung aus.

Die besondere Herausforderung beim Zerspanen von Aluminium besteht darin, die Späne abzutransportie-ren. Die Fräser der Marke „Garant“ schaffen hier deutliche Leistungs-verbesserungen. Es handelt sich um eine Titan-freie Schutzbeschichtung, die aus einem Zirkonium-Stickstoff-Oxidgemisch besteht. Sie macht die Oberfläche der Fräser extrem glatt und sehr gleitfähig. Das sorgt dafür, dass die Späne besser abtransportiert werden und Aufbauschneiden nicht so leicht gebildet werden können.

Dies unterstützen die neuen Fräser zusätzlich durch spezielle Span-raummulden und große polierte Spanräume. Da Aufbauschneiden die Oberflächengüte beein-trächtigen, eignen sich die neuen Fräswerkzeuge besonders für die Bearbeitung von Werkstücken mit hohen Ansprüchen an die Oberflä-che.

Die neuen Fräswerkzeuge ha-ben im Praxistest bisher alle Werte verbessert. Die Zerspanungsdaten sprechen für sich. So wurde der VHM Schruppfräser HPC bei der Zerspanung von AlCuMg2 mit einer Schnittgeschwindigkeit von 1130 m/min, einem Vorschub von 0,224 mm und einer Schnitttiefe von 20 mm eingesetzt. Für Anwender heißt das geringere Bearbeitungszeiten und Fer-

Neuartige Beschichtung beflügelt Aluminium­Zerspanung

tigungskosten bei steigender Oberflä-chengüte der Werkstücke.

Mittlerweile stehen dem Anwen-der sieben verschiedene VHM HPC Fräser zur Verfügung. Die Palette um-fasst zweischneidige VHM und Torus Microfräser, zweischneidige Micro-Radiusfräser, drei- und vierschnei-dige Schruppfräser ohne Kordelpro-fil, sechs- und achtschneidige Schaft-fräser sowie zweischneidige Radius-fräser. Demnächst dürften weitere Fräserbauarten mit der innovativen Beschichtung versehen werden.

Der Garant VHM Fräser HPC für besonders hohe Ansprüche bei der Aluminium-Zerspanung

Hof

fman

n

ready for mass production, was recently supplied to an internation-ally active aviation industry manu-facturer in France

The water-based process, which is free from tensioactive agents, both enables the removal of mixed contam-inants and gives a high surface clean-ness level of > 50 mN/m. It is based on a formulation free from fatty sub-stances, such that the cleaner can at the same time be used as a rinsing me-dium. This eliminates water rinsing and connections for waste water. At the same time the freedom from fat-ty substances enables spot-free and residue-free drying for maximum sur-face cleanness.

In extensive tests the surface clean-ness has been demonstrated in the context of demanding process steps such as hardening, adhesive bonding and PVD/CVD coating. ■

60.000 Literaturangaben zum Thema Aluminium

Kontakt: [email protected]

M A R K E T S A N D T E C H N O L O G Y

Page 72: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

72 ALUMINIUM · 3/2007

The classical environmental policy role distribution between the poli-tical and economic spheres is usu-ally that governments pay conti-nually greater attention to environ-mental policy, while the economy warns of the dangers of restrictive environmental legislation. That is what happens in Europe, that is what happens in Germany.

In the ‘promised land’ of the freest of all market economies this well-rehearsed role distribution has been turned upside down. In America, it is representatives of the economy – not all, but at any rate some of the most notable – who are far ahead of Presi-dent George W. Bush in their environ-mental policy. As is known, Bush is rather deaf to environmental issues and only in the very recent past has he adopted a more conciliatory atti-tude towards them, having previous-ly shown scant regard for the Kyoto Protocol and the restriction of CO2 emissions. In contrast, critical opin-ions calling for a reconsideration of American climate policy have come mainly from the economic sphere.

One of the protagonists is Alain Belda, Chairman and CEO of the aluminium concern Alcoa.

On the occasion of Bush’s State of the Nation speech Belda and other leading players in the US-American economy called on the US Govern-ment to quickly enact strong national legislation to achieve significant re-ductions of greenhouse gas emissions. In a letter, these economic big-wigs demanded mandatory emission caps to reduce carbon dioxide and other greenhouse gas emissions. The aim: to reduce greenhouse gases com-pared with today’s levels by at least 10% within 15 years, and by 20 to 40% by 2050.

Alcoa and concerns such as BP America, Caterpillar, Duke Energy, DuPont, General Electric and some others along with leading non-gov-ernmental organisations have formed an unprecedented alliance called the U.S. Climate Action Partnership (US-CAP) to send a clear signal to lawmak-ers that legislative action is urgently needed.

“Each year that we delay action to control emissions increases the risk of

unavoidable consequences that could necessitate even steeper reductions in the future, at potentially greater eco-nomic cost and social disruption,” said Belda at congressional and national press briefings introducing USCAP.

Mandate for action

The USCAP partners have outlined specific recommendations that form “Call for Action”. The group believes a U.S. policy framework must include mandatory approaches to reduce greenhouse gas emissions from eco-nomic sectors with the highest emis-sions; flexible approaches to establish a price signal for carbon that varies by economic sector; and incentives for other countries to take action.

USCAP’s recommendations are based on six principles specifying that U.S. climate policy must:• Account for the global dimensions of climate change• Recognize the importance of tech- nology• Be environmentally effective• Create economic opportunity and advantage

America on the way to a new climate policy

Conversion of coal to electric power – difficult to do without for a country’s energy supply, but at the same time sharing responsibility for the warming of the Earth’s atmosphere

IAJ

E C O L O G Y

Page 73: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

73ALUMINIUM · 3/2007

Emerging giants China and India, among the world’s top greenhouse gas producers, could undermine ef-forts to secure a new global climate change accord unless granted special treatment. Any successor to the UN Kyoto Protocol on carbon emissions that lacks binding commitments from China and India would be inefficient in the fight against global warming.China’s blistering growth has made it the number two global carbon emit-ter, behind the United States, while India is in fourth place. Given the sheer size of these developing econo-mies and their heavy consumption of

• Be fair to sectors disproportion- ately impacted• Recognize and encourage early action.USCAP calls for mandatory reduc-tions of greenhouse gas emissions from major emitting sectors (includ-ing large stationary sources and trans-portation) and energy use in commer-cial and residential buildings. The cornerstone of its proposed approach is a “cap-and-trade” programme that places specified limits on greenhouse gas emissions. This will ensure emis-sion reduction targets are met while simultaneously generating a price signal that will provide market in-centives to stimulate investment and innovation in the technologies nec-essary to achieve the environmental goals. This programme sounds very familiar to European ears, since it corresponds to the emission rights trading introduced in the EU.

“We need major breakthroughs”

As regards its own efforts to reduce greenhouse gases, Alcoa can already point to a number of successes, for example:• Reducing greenhouse gas emis-sions by 25% since 1990, a goal reached seven years ahead of its 2010 target date mainly through aggressive reduction of Perfluorocarbon (PFC) emissions.• Efficiently using energy, thanks to the company’s energy efficiency net-

Developing powers seen critical to climate pactcarbon emitting coal they will make up an increasing share of global emis-sions in coming years. The rich world had to accept most responsibility for confronting global warming, and cop-ing with this effect, given that most of the heat-trapping carbon gases now in the atmosphere came from their cars and factories. A new climate change treaty must respect the right of merg-ing economies to grow and develop, while recognising that unrestricted emissions from China and India could intensify ecological pressures that are already severe.

Developing country leaders in-

work established in 2002 as a part-nership within the U.S. Department of Energy to conduct energy efficiency surveys at operating locations and identifying areas of possible improve-ment.• Investing in green power. Alcoa purchased renewable energy certifi-cates (RECs) to effectively power four of its corporate centres in the United States. These facilities are now effec-tively operating on electricity gener-ated by projects that produce elec-tricity from landfill gas, avoiding the emissions of more than 6,300 tonnes of carbon dioxide annually.• Building a cleaner future. Sched-uled to open in April, Alcoa’s 320,000 tpy smelter in Iceland will run on 100% hydropower, an abundant and renewable resource in Iceland, and has been built to comply with some

of the most stringent environmental regulations in the world.• Planting ten million trees, which can absorb more than 250,000 tonnes of carbon dioxide per year during their lifetime, by 2020.

“Even though we’ve made substan-tive changes to reduce greenhouse gas emissions, we can and should do bet-ter,” says Belda. “In fact, we must do better.” He explained that Alcoa must now use its leadership position to encourage others to change as well. “The changes that are needed can’t be incremental – we need major break-throughs,” he says. Meeting the chal-lenge ahead of us won’t be easy – we recognize it will call for significant change not only for others, but even for leaders such as ourselves. But I be-lieve there is no other option. Much greater is the risk of failing to act.” ■

Bush, bekanntermaßen Umweltfragen eher verschlossen und erst in jüngster Vergan-genheit ein wenig konzilianter gegenü-berstehend, hat mit dem Kyoto-Protokoll und einer Begrenzung der CO2-Emissionen wenig im Sinn. Kritische Stimmen, die ein Umdenken in der amerikanischen Klimapolitik fordern, kommen dagegen aus der Wirtschaft. Eine von ihnen gehört Alain Belda, dem Chairman und CEO des Aluminiumkonzerns Alcoa. Anlässlich Bush’s Rede zur Lage der Nation rief Belda

die US-Regierung gemeinsam mit anderen US-amerikanischen Wirtschaftsführern dazu auf, möglichst schnell US-weite Umwelt-gesetze zu erlassen, um die Emission von Klimagasen deutlich zu reduzieren. Ziel müsse es sein, innerhalb eines Jahrzehnts die Treibhausgase um zehn Prozent gegen-über dem heutigen Emissionsvolumen zu reduzieren und bis 2050 um mindestens 60 Prozent. „Wir brauchen einen wirklichen Durchbruch“, so Belda mit Blick auf eine neue Klimapolitik.

USA überdenken Klimapolitik

sisted in Davos that while they are open to using more renewable and clean energy, and would seek to adopt emission-saving technologies when possible, they could not accept strict caps that could threaten their growth. It would be a matter of fairness that developing countries should get some slack on emission limits under a new international treaty. Without dual-speed carbon restrictions it would be difficult to convince China and In-dia to join a new climate treaty. This could in turn make it harder to draw in the United States, which opted out of the original Kyoto deal. ■

E C O L O G Y

Page 74: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

74 ALUMINIUM · 3/2007

EAA launches Aluminium in Renovation

Award 2007The Aluminium in Renovation Award, to run throughout 2007, will involve 13 European coun-tries, a series of national com-petitions and a European final rewarding the most innovative and sustainable uses of aluminium in building renovation.

The winning entries will illustrate that whether used to preserve a piece of national heritage or to upgrade the en-vironmental performance of residen-tial or utility buildings, aluminium is the most sustainable solution.

Awards will be given in various categories:Residential• Private houses• Private collective housing and apartment buildings• Social housing: houses and apartmentsNon-Residential• Utility buildings: offices, commercial, industrial• Public buildings: museums, train stations, town halls etc.• Historical buildings: churches, ancient houses etc.Further to the six above categories, special prizes can be won for:

• Cladding and roofing• Doors, windows and curtain walls.Architects, principals or property owners, project developers and building-engineers are invited to enter. Projects or buildings must be located in Europe in order to be eli-gible and the location of the project determines which national competi-tion the project can enter.

The concept of “aluminium in reno-vation” will cover not only renovation, but also restoration and re-construc-tion provided the former structure of the building has been maintained such as changing the function of an existing building, e.g. turning a ware-house into apartments.

The following criteria shall be taken into account when assessing the entries:• Significant use of aluminium• Contemporary design• Life cycle thinking• Energy efficiency• Socio-economic impact• Added value to the original building.For more information, entry details and updates on country competitions go to the website: www.aluminium-award.eu.

Der von der European Aluminium Association (EAA) in Brüssel aus-geschriebene europäische „Alumi-nium in Renovation Award“ wird alle zwei Jahre für die Renovie-rung von Gebäuden verliehen, bei denen Aluminium auf innovative Weise zum Einsatz kommt.

Der Wettbewerb soll dazu beitra-gen, die Bedeutung von Aluminium als nachhaltige Werkstofflösung im Bauwesen weiter zu festigen – un-abhängig davon, ob es sich um den Erhalt nationaler Kulturbauten oder von Wohn- oder Nutzbauten handelt. Zunächst werden europaweit natio-nale Wettbewerbe durchgeführt, um jene Gewinner zu ermitteln, die dann automatisch für den europäischen Award nominiert werden. Die Preise werden in den folgenden Kategorien verliehen:Wohnbauten• Privathäuser• Private Wohnkomplexe und Mehrfamilienhäuser• Sozialer Wohnungsbau: Häuser und Wohnungen.Nicht-Wohnbauten• Wirtschaftsgebäude: Büros, Geschäftshäuser, gewerblich genutzte Gebäude• Öffentliche Gebäude: Museen, Bahnhöfe usw.• Historische Gebäude.Außer in den sechs oben genannten Kategorien können Sonderpreise ver-liehen werden für Wand- und Dach-verkleidungen sowie für Türen, Fen-ster und Fassadenverkleidungen.

Am Wettbewerb können Architek-ten, Auftraggeber und Eigentümer, Projektentwickler und Bauingenieu-re teilnehmen. Das Vorhaben bzw. Gebäude muss in Europa liegen. Der Standort des Bauprojektes definiert den Austragungsort des nationalen Wettbewerb.

Aluminium in Renovation ist in einem weit gefassten Sinn zu verste-hen. Das Konzept umfasst sowohl die Renovierung als auch die Sanierung oder den Umbau. Entscheidend ist, dass die ursprüngliche Bausubstanz

des Gebäudes erhalten bleibt. Die funktionelle Umwidmung eines be-stehenden Gebäudes, wenn z. B. ein Lagerhaus in Wohnungen umgebaut wird, spielt dagegen keine Rolle. Folgende Kriterien werden bei der Bewertung der Projekte berücksich-tigt:• Bedeutende Anwendung von Aluminium• Modernes Design• Lebenszyklusansatz• Energieeffizienz • Sozio-ökonomische Auswirkung• Wertzuwachs beim Original- gebäude.

EAA-Wettbewerb

Aluminium Renovation Award 2007 ausgeschrieben

Weitere Infos zum Wettbewerb unter www.aluminium-award.eu.

W E T T B E W E R B

Page 75: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry
Page 76: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

76 ALUMINIUM · 3/2007

The aluminium-lithium alloys are known to have a unique combina-tion of mechanical properties [1], such as light density, higher elastic modulus and considerable strength properties. The availability of these properties allows applying alloys of this system as a structural material for aerospace engineering, which enables to improve some of aircraft performance character-istics, particularly aircraft mass reduction, fuel saving, load capac-ity increase. However, compared to middle- and high-strength alu-minium alloys, aluminium-lithium alloys have one disadvantage – reduced processing ductility. The insufficient processing ductility of industrial Al-Li-Cu-Mg-system al-loys, particularly during the cold rolling, prevents them from being used for commercial production of light sheets (0.3 to 0.5 mm thick) without macro- and micro-fissures due to the increased band break-age during final passes.This article concerns the search for the ways to increase the pro-cessing ductility of Al-Li-Cu-Mg-system aluminium-lithium alloys by means of modification of zir-conium adding method, adjusting solution heat treatment conditions and changing alloy chemical com-position.

Possibilities of Al-Li-Cu-Mg alloy ductility increase by means of zirconium doping method modi-fication

It is known [2], that zirconium doping to aluminium alloys as Al-Zr hardener during their preparation results in the melt heterogenization due to entry of large churlish hardly soluble primary Al3Zr intermetallic compounds into it. There is a large worldwide experi-ence of zirconium doping by means of melt treatment by potassium fluozir-conate K2ZrF6 allowing zirconium en-try into the solution without primary

intermetallic compound formation. This method is not widespread due to difficulties related to fluozirconate mixing into the melt, the unstable zir-conium fixation and arising a number of environmental problems [3]. The equipment and the method of salt doping using a high speed argon jet developed by KUMW J.S.Co. allow to decide a problem of zirconium dop-ing directly into the melt by means of zirconium aluminothermic reduction from potassium fluozirconate.

Zirconium was doped to the Al-Cu-Mg-Li-system alloy (The Russian standard grade is 1441) during prepa-ration by two methods: • the first method refers to zirconium doping to the melt by means of Al-2%Zr hardener • the second method refers to zirco-nium doping to the melt by means of blowing the potassium fluozirconate powder into the melt by high speed argon jets.

The micro-X-ray spectroscopic analysis of microsections of both commercial and test ingots showed some clearly defined Cu-, Mg- and Si-containing interlayers included in the boundaries of grains and dendrite cells thereof. These interlayers form an almost solid skeleton. Besides these interlayers, the specimen microstruc-ture has some compact grains. Some of these grains include Cu, Mg, Si, while the others include Al, Cu, Fe. As to elements like Zr, Mg, Ni and Ti, they do not form any phase compo-nents within 1 to 2 micron localiza-tion of the micro-X-ray spectroscopic analysis method.

Moreover, the electronic micro-scope analysis (using electronic mi-croscope JEM-200CX) of Al3Zr zir-conium aluminide structures in com-mercial and test specimens was per-formed by means of thin foil method with magnification within the range of 60,000 to 100,000. The commercial specimen shows metastable β’-phase (Al3Zr) grains in a form of asterisk-shaped dendrite (Fig. 1a). The aver-

age dendrite size may almost double (half) depending on their location. Their distribution density changes likewise. The commercial specimen includes many plate-shaped Al2LiMg intermetallic compounds. The com-mercial specimen bright-field images contain some large complex-shaped grains with the average diameter of 200 to 400 nm, uniformly distributed throughout the specimen volume (Fig. 1b). These grains are lamellar metast-able β’-phase dispersion particle ag-gregations [4].

Metal sheets were produced from commercial and test specimens by means of cold rolling followed by hot rolling. The cold rolling was per-formed in two stages. At the first stage 2.8 to 3.2 mm thick coils were pro-duced from the 6.5 to 7.0 mm thick hot-rolled coils. These coils were exposed to interstage annealing to remove mechanical hardening. At the second stage the coils and con-sequently 0.5 to 1.2 mm thick sheets were produced from 2.8 to 3.2 mm thick annealed coils.

The results of the electron micro-

In search of ways to increase Al-Li-Cu-Mg system aluminum-lithium alloy processing ductilityBoris V. Ovsyannikov, Valery I. Popov, Victor M. Zamyatin

Fig. 1: The β’-phase bright-field image (Al3Zr) in a commercial (a) and a test (b) ingot made of alloy 1441, x60,000

a

b

R E S E A R C H

Page 77: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

77ALUMINIUM · 3/2007

scope analysis of 1.2 mm thick sheets, heat-treated at 535 ºC or more, are in-dicated below. The bright- and dark-field images of the commercial speci-men show non-uniformly distributed β’-phase grains 20 to 30 nm in diam-eter, formed due to the oversaturated solid solution decomposition. Their density occasionally changes by 2-3 times depending on their location. The distribution non-uniformity of the β’-phase grains and their low density affected sheet grain structure formation: mostly equiaxial recrys-tallized grains of at least 10 microns in diameter may be seen. There are grains up to 5 microns in diameter in some small locations. These locations are defined by a higher β’-phase grain density. Some of coarse distorted in-termetallic compounds may be found inside the grains and at their bounda-ries. Based on the electron-diffraction patterns, the intermetallic compound phase formed during melt crystalliz-ing in microvolumes with a higher copper concentration was found to be Li3CuAl5.

The test specimen bright-field im-ages show equiaxial grains 30 to 50 nm in diameter. Like in the molded condition, these grains represent Al3Zr metastable phase dispersion particle aggregations, however, con-siderably crushed due to deformation. These grains are uniformly distribut-ed throughout the specimen volume. At the same time, the dark-field im-ages show the uniformly distributed β’-phase precipitations up to 10 nm in diameter, at which the δ’-phase (Al3Li) precipitations may form. The test specimen features the uniform grain structure with the average grain diameter of 3 to 5 microns.

Mechanical proprieties of the sheets produced from commercial and test specimens are listed in table 1. The test-melted alloy 1441 sheets

have higher stretch ratio values com-pared with the commercial-melted alloy sheets. Sheet strength proper-ties depend on interstage annealing temperature. At the interstage an-nealing temperature of 380 to 420 ºC, the instantaneous strength and yield values of commercial coils are approx. 30 and 50 MPa higher than the corresponding values of test coils, while at the interstage annealing tem-perature of 440 ºC these differences are aligned.

Therefore, during analysis of test and commercial specimens of alloy 1441, the test specimen appeared to have a more fine-graded and uni-form structure, more dispersed and uniformly distributed zirconium alu-minide, resulting in improvement of alloy operational characteristics, such as failure viscosity, low-cycle fatigue and corrosion resistance.

Although the stretch ratio of 1.2 mm thick sheets was considerably increased, we failed to achieve a considerable increase in alloy 1441 processing ductility during cold roll-ing by means of zirconium doping in the course of potassium fluozirco-

nate reduction. With cold-rolled coil thickness reduction from 1.2 mm to 0.5 mm, development of cracks and ruptures in coils was still observed. Additional annealing of 1.2 mm thick coils followed by cold rolling failed to succeed.

Influence of ingot solution heat treatment conditions on Al-Li-Mg-Cu-system alloy processing

Analysis of influence of ingot heat treatment annealing conditions on al-loy properties at hot rolling tempera-tures was performed for Al-Li-Cu-Mg-system alloy processing ductility increase (The Russian standard grade is 1441).

The differential thermal analysis (DTA) of the melted alloy was per-formed for heat treatment annealing temperature selection. Fig. 2 shows the resulting temperature pattern. This temperature pattern shows the non-equilibrium solidus tempera-ture of alloy 1441 with the following chemical composition (mass %): 1.5 Cu; 0.9 Mg; 1.9 Li; 0.10 Zr; 0.03 Fe; 0.02 Si; 0.03 Ti, to be 531 ºC.

Tab. 1: Mechanical properties of heat-treated sheets in alloy 1441 of serial and trial heat lots

Dimensions, mm Direction Zr doping by master alloys Zr doping by potassium fluozirconate

Tensile strengthMPa

Yield strengthMPa

Elongation%

Tensile strengthMPa

Yield strengthMPa

Elongation%

0.8x1,200x4,000 L 435-450 355-375 10.0-15.0 435-455 350-380 10.0-13.5

LT 450-470 365-385 10.0-15.0 420-475 335-385 10.0-15.0

1.2x1,200x4,000 L 420-435 330-360 12.5-17.5 407-425 340-350 12.5-16.0

LT 445-465 345-380 10.0-16.0 425-455 340-390 10.0-15.0

Fig. 2: Al-Cu-Mg-Li-system alloy (1441) temperature pattern during heating at the rate of 14 degrees per minute

R E S E A R C H

Page 78: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

78 ALUMINIUM · 3/2007

Based on DTA data, metal heat treat-ment was performed at the following conditions: 510 to 520 ºC – 24 h, 540 to 550 ºC – 12 and 24 h.

Specimen microstructure analysis shows that alloy 1441 solution heat treatment temperature increase from 510 to 550 ºC results in better dissolu-tion of Cu-containing phase interlay-ers included in boundaries of grains and dendrites.

The interlayers imperfectly dis-solved at 510 ºC become thinner, more interrupted and split at 550 ºC. The solution heat treatment tempera-ture increase up to 570 ºC results in a considerable development of the secondary porosity.

Fig. 3 shows the mechanical prop-erties of alloy 1441 ingots at higher temperatures depending on the solu-tion heat treatment temperature. The best ductility is observed within the rolling temperature range of 440 to 460 ºC after a 24 h heat treatment an-nealing at the temperatures of 540 to 550 ºC.

0.5 to 0.6 mm thick sheets were produced from the ingots treated at the following industrial conditions: 490 to 510 ºC, 24 h and 540 to 560 ºC, 24 h. With the ingot hot rolling following the high-temperature solu-tion heat treatment, a higher metal

processing ductility was observed. During the following cold rolling, 1.2 mm thick sheets were successfully produced without any cracks. How-ever, the further sheet cold rolling up to the thickness of 0.5 to 0.06 mm resulted in formation of many cracks and ruptures.

Al-Cu-Mg-Li alloy processing duc-tility increase due to changing of its chemical composition.

Alloy processing ductility operations performed by means of zirconium adding technology improvement and the ingot heat treatment condition changing prevented production of 0.3 to 0.5 mm thick cold-rolled sheets, thus the following step was the study of the possibility of the alloy process-ing ductility increase due to changing of its chemical composition.

During analysis of aluminium alloy 1441 we found that in the course of the alloy crystallization some coarse Cu-containing irregular-shaped phas-es form inside and at the boundaries of grains with copper concentration within 1.5 to 1.8%. These phases have a weak effect on the process ductility during hot rolling, however their neg-ative effect on the alloy process duc-tility during the cold rolling becomes

prevailing. In addition, their negative effect still increases with cold-rolled coil thickness decrease from 1.2 mm to 0.3 mm.

Electronic microscope analysis showed that with the decrease of cop-per concentration in the alloy down to 1.3 to 1.5 mass %, copper may com-pletely transfer into the solid solution, resulting in a considerable lowering of the volume share of Cu-containing grains (Fig. 4) and, as a consequence, the increase in the alloy process duc-tility during cold and hot rolling.

In addition, we found that Ga and Na do not form any phases containing aluminium and are aggregated mainly at the grain boundaries, resulting in brittle grain-boundary crushing dur-ing alloy crystallization and shaping. We found that with concentration of Ga and Na below 0.001 and 0.0005 mass %, correspondingly, they almost completely transfer into the solid so-lution resulting in the process ductil-ity increase.

Calcium in the amount of 0.005 to 0.02 mass % is an additive, fixing the sodium surplus and other impurity elements of the alloy, resulting in for-mation of intermetallic compounds with a more round shape and in their coagulation. It improves shear strain and, as a consequence, increases the alloy processing ductility. Adding of one or more elements of vanadium or scandium group facilitates forma-tion of the uniform and fine-graded structure. Due to this, the importance of zirconium as a modifying agent providing structural hardening of the half-finished and finished products made of the alloy increases allowing the achievement of a necessary level of strength properties.

Based on analysis results we sug-gest a new chemical composition of the Al-Li-Cu-Mg-system alloy (mass %): Li – 1.6 – 1.9; Cu – 1.3 – 1.5; Mg – 0.7 – 1.1; Zr – 0.04 – 0.2; Be – 0.02 – 0.2; Ti – 0.01 – 0.1; Ni – 0.01-0.15; Mn – 0.01 – 0.2; Ga – up to 0.001; Zn – 0.01 – 0.3; Na – up to 0.0005; Ca – 0.005 – 0.02; and, at least, one of the elements, selected from the group, including V – 0.005 – 0.01 and Sc – 0.005 – 0.01; the remaining part falls to Al. The clad plates were produced from

Tab. 2: Mechanical properties of heat-treated sheets in new Al-Li-Mg-Cu alloy

Dimensions, mm Ageing Tensile strengthMPa

Yield strengthMPa

Elongation%

0.4x1,200x4,000 I stage 442-446 345-373 10.0-12.5

II stage 412-425 364-383 7.3-11.5

III stage 454-464 405-419 8.0-9.5

Fig. 3: Alloy 1441 ingot properties at deformation temperature depending on solution heat treatment conditions.

R E S E A R C H

Page 79: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

79ALUMINIUM · 3/2007

flat-shaped ingots of commercial alloy 1441 and of the new alloy. The plates were produced using the same flow chart consisting of hot rolling at 430 ºC up to 6.5 mm thick with coiling followed by the annealing at 400 ºC and the further cold rolling. Coils with-out ruptures were successfully produced from commercial alloy 1441, however, only up to 0.9 mm thick. The further rolling was stopped because of tears up to 30 mm deep on the coil side edges and two ruptures inside the coil. Crack- and rupture-free coils up to 0.5 mm thick were rolled from the new alloy. Mechanical test results are listed in Table 2. It shows that the sheets made of the new alloy have better ductility characteristics comparing with those of alloy 1441 sheets and the same strength properties. The new suggested Al-Li-Cu-Mg-system alloy may be used to pro-duce various semi-finished products: sheets, plates, die-forged parts and forgings. Various products, such as aircraft fuselage skin panels, framework parts, welded fuel tanks and other air-craft parts may be produced from semi-finished products made of this suggested alloy.

Summary

• Zirconium doping to the Al-Li-Cu-Mg-system alloy by means of potassium fluozirconate doping and heat-treatment of ingots made of this alloy facilitates the process ductility increase during hot rolling, however, it has almost no effect on the alloy process ductility during cold rolling up to thickness of 0.5 to 1.0 mm.• The optimal chemical composition allowing to eliminate or decrease the formation of the coarse crystal Cu-containing sur-plus share in the melt, and restricting the concentration of the microadditives of alkali-earth metals, vanadium and scandium is one of the most important factors resulting in a considerable increase in Al-Li-Cu-Mg-system alloy process ductility during cold rolling.• We have developed a new Al-Li-Cu-Mg-system aluminium-lithium alloy having a higher process ductility allowing produc-tion of thin sheets with thickness up to 0.3 mm, thin-walled sec-tion and doe-forgings with strength and operational properties necessary for aircraft structural materials.

References

1. N. I. Fridlyander, K. V. Tchuistov, A. L. Berezina, N. I. Kolobnev, Aluminium-lithium alloys. Structure and properties, Kiev: Nauk. dumka, 1992, p. 177.2. V. I. Napalkov, S. V. Makhov, Alloying and inoculation of aluminium and magnesium. M., MISIS, 2002, p. 374.3. A. V. Kurdyumov, S. V. Inkin, V. S. Thulkov, G. G. Shadrin, Metallic im-purities in aluminium alloys. M., Metallurgiya, 1988, p.p. 90, 99.4. V. I. Elagin, Doping transition metals in wrought aluminium alloys. M., Metallurgiya, 1975, p. 247.5. Tite C. N. Y., Gregson P. Y., Pitcher P. D. Further precipitation reactions associated with Al3Zr particles in Al-Li-Cu-Mg-Zr alloys. // Scr. Met., 1988, v. 22, #7, pp. 1005-1010.6. Kumar R. S., Brown S. A., Pickens Y. R. Microstructures evolution dur-ing aging of an Al-Li-Cu-Mg-Zr alloy. //Acta Mater., 1996, vol. 44, #5, pp. 1899-1955.

Authors

Boris V. Ovsyannikov – Ph.D, Advanced Materials Chief Specialist, KUMZ J.S.Co. Valery I. Popov – Master of Science, Deputy Director on Technology, KUMZ J.S.Co. Victor M. Zamyatin – Doctor of Engineering Science, Profes-sor, Ural State Technical University – UPI, Ekaterinburg.

Fig. 4: Secondary-electron and characteristic X-radiation im-ages of sections of commercial (a) and test (b) specimens of the Al-Cu-Mg-Li-system alloy

a

b

R E S E A R C H

Page 80: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

80 ALUMINIUM · 3/2007

Not only in today’s car develop-ment but also in every safety relevant construction, the mate-rial forming behaviour because of working load is highly considered. Depending on the respective ap-plication on the one side a dimen-sional accuracy or on the other side a well-tempered compensa-tion of stress peaks is preferred. To manifest this daily necessity in a quantitative parameter new more valid ductility criterions have to be developed.

At the state of the art the ductility is often used to characterize the form-ing behaviour until fracture of sheet, cast and extrusion profile metal in a mainly qualitative way. Nevertheless the ductility affects attractive in dif-ferent points of view:• To evaluate the deformation until fracture for primary and secondary forming like rolling, extrusion, wire drawing and sheet metal forming. Though there is no quantitative cor-relation between ductility and form-ability or workability in these proc-esses, more ductile materials often guarantee a better workability.• To indicate the ability of the metal to flow plastically before fracture. Al-though ductility measurements are not used quantitatively in design, a high tensile ductility indicates the capacity to compensate local strain peaks more homogeneous to neigh-bouring areas.• To evaluate sensitively material properties according to the applica-tion as a quality criterion.

For the structural designer of alu-minium-weight tension structures, ductility is of great importance be-

cause of its role in a relief of stress concentrations. To characterize mate-rial properties concerning the ductil-ity for forming simulation based on the law of plasticity and crash test basically the yield strength, tensile strength and the ultimate strain are used. In this case it is only possible to get an impression of a ductile or brit-tle material behaviour. But in many cases this impression deceives. As comprehensible in table 1 the T6 state features the least fracture necking but at T7 the ultimate strain takes a mini-mum value. Because of this a clear estimation of ductility is practically impossible and can be interpreted in different ways.

Because of this fact a lot of real part testing is indispensable. Today every structural part has to be checked on the forming behaviour correlating the material properties to the part ge-ometry and kind of workload. After testing the separation of the respec-tive share of these parameters to the fracture is practically not feasible. As a result of this, crash tests of different geometries are not comparable relat-ed to their ductility. But for structural car body optimization in the stage of vehicle development but also for the running quality assurance in produc-tion a proper material characterisa-tion is just as well inevitable as the objective quantification of ductility parameters. Both the objective quan-tification of ductility and the descrip-tion in scalar values are the basic requirements for the crash simula-tion based on the laws of plasticity inclusive the material failure predic-tion. The researched failure limits are described on the one hand by forced rupture in achievement of the ductil-

ity limit which is due to the increase and unification of micro-cracks and -pores and on the other hand by fail-ure because of necking which is due to an insufficient strain hardening an the consequential membrane instabil-ity of thin-walled structures. Similar to the formability, the dependence of ductility to the dominant state of stress, temperature, strain rate and the geometry of the specimen has to be considered accurately. As the Fig. 1 shows, the resulting shape of crashed specimen can drastically differ.

General approach in ductility measurement

The simplest approach in ductility measurement uses the ultimate ten-sile strain from the uniaxial tensile test as the main criterion of ductil-ity measurement. A larger ultimate tensile strain often corresponds with a more ductile material property [ALU06]. In spite of the easiness of

Potentials of new ductility criterions in car development with lightweight materialsR. Schleich, M. Sindel, M. Liewald, Neckarsulm/Stuttgart

Heat treatment Rp0.2

[MPa] Rm [MPa] A

g [%] A

50 [%] Z [%]

AA 6014 T4 106 206 20.4 26 37

AA 6014 T6 220 265 10.7 12.8 17

AA 6014 T7 201 233 7.6 11 31

Tab. 1: Measured material properties with different heat treatments [LEP03]

Fig. 1: two crashed profiles, same geom-etry, two different ductilities

R E S E A R C H

Aud

i

Page 81: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

81ALUMINIUM · 3/2007

this approach there are two disadvan-tages to distinguish. On the one hand neither the strain hardening nor the kind of necking is considered and on the other hand there can exist clearly different material properties which would be seen subjective with differ-ent ductilities but are misinterpreted with the same properties.

Approach In ductility measure-ment according to Dieter/Lange

The approach according to Dieter/Lange adopts that materials with large ductility not only are characterized by a large ultimate tensile strain but also posses the ability to compensate lo-cal stress peaks to a wider area and because of this fact sustain to stronger necking. In praxis this approach can act as an indicator for slight variation of material properties of similar al-loys very well. At alloys with a highly different strain hardening behaviour, many examples with different sub-jective interpretations but the same ductility values according to this approach are detectable. Because of this the approach according to Diet-er/Lange is not for all relevant cases well-defined.

The limits of previous ductility measurement using the ultimate ten-sile strain show the necessity of fur-ther approaches and definitions.

New approach in ductility measurement

The main aim in developing new duc-tility criterions consists in improving the prediction of ductile material be-haviour and estimating a non time and money expansive measuring method-ology. Referring to former researches and made approaches results the consideration of a ductility criterion with regard to the uniform elonga-tion, strain hardening effects, form of necking and the ability to compensate local stress peaks by using objective indicators. With additional considera-tion of strain hardening and with this the closely linked increase of tensile force, the logarithmic ratio of yield strains until ultimate tensile strain is used. In this place this new approach offers the possibility of inserting the

most adequate and material specific flow criterion. In all mentioned exam-ples here the flow criterion according to Ludwik is inserted. Because of the usage of the necking width and the anisotropy of the material, this pro-ceeding is nearly alike the description of a formability.

Conclusion

The new developed non dimensional ductility value offers the opportunity for objective material characterisa-tion and evaluation. In order to this numerous sheet, cast and extrusion profile metals in different alloys and heat treatments have been researched to their ductility and the correlation between form of failure and the ma-terial ductility. Fig. 2 shows the com-parison of two uniaxial tensile tests of aluminium sheet metal (AA6016) in T4-condition upon delivery and T6-condition after twenty minutes of ar-tificial aging and 2% of pre-straining. Evaluating the ductility by a subjective point of view, the T4 state would be re-garded as the more ductile. This is very well reflected by the ductility rating ac-cording to this new methodology.

In this way it’s also possible to com-pare ductility of sheet, cast and ex-trusion profile metal alloys which were hardly comparable with former approaches in past. Fig. 3 shows a comparison of these ductility values. Sheet metal alloys are subject to lit-tle variations of ductility and are on a higher level as the researched alu-minium cast alloys at the same time. It is conspicuous that the largest vari-ation of ductility appears at extrusion profiles which can be due to the dif-ferent heat treat-ments and the larger material thickness.

A further improvement of these considerations can be attained with using the material properties at the most critical state of stress, the plane-strain, instead of the measured prop-erties from the uniaxial tensile test. Because in a dominant state of plane-strain stress materials suffer the small-est strains until failure. Correlating to this the ductility is also at a minimum value. For common aluminium sheet alloys both the forming limit curves and yield loci for the description of formability is extensively available. In this case an analytical calculation of the most critical ductility value in

Fig. 2: Usage of the new ductility criterion

R E S E A R C H

Page 82: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

82 ALUMINIUM · 3/2007

the plane-strain-stress-state is im-aginable. Furthermore the creation of a “ductility-map”, so called ductil-ity limit curve (DLC), for all relevant states of stress is desirable and also realisable.

The main advantage in using valid ductility criterions consists on the one hand in a more precise description of material forming behaviour for simu-lation and on the other hand in the now feasible reduction of real part testing both in car development and later for quality assurance. For guar-anteeing failure safety only in the early state of material preselection real part testing has to be made. In dependency of the respective material behaviour, for each geometry and state of stress a minimum tolerable ductility value can be easily defined. A correlation between simulation and the minimum necessary ductility is also imaginable but an experimental evaluation prom-ises more reliable results. In reverse the ductility value can also serve as a design guideline in the early state of part development on the one hand for a specific material preselection and on the other hand for specific prese-lection of crash profile geometries. After specification of part and load depended minimum necessary duc-tility value the later measurement of

ductility can be done by laboratory tests. The respective test application can also be chosen in comparison to the state of stress of the real work load situation. A test application which is very easy to accomplish is the uniaxial tensile test with a clear stress state. By this laboratory tests the material de-pended ductility values can be meas-ured for a long spell, documented and be used for analysing quality trends.

This new approach is actually in further validations at Audi Neckars-ulm. Previous retrospective investiga-tions and testings with existing mate-rial data have been done and showed significant possibilities of estimating the ductility properties of sheet, ex-trusion profile and cast aluminium alloys. Furthermore on the one hand more data has been accumulated by comparing ductility properties with the results of the corresponding crash tests. And on the other hand this ap-proach is used accompanying to the series production in quality assurance and in development of semi-finished products for the new car models.

These ductility approaches offer the possibility of a cost- and time-ef-fective quantitative correlation be-tween workability and ductility for sheet, cast and extrusion profile ap-plications. Thus for the crash-simula-

tion in car development now exists an objective evaluating criterion which has to be seen in addition to the laws of plasticity and with best possible ob-jectivity to forecast a failure because of cracking.

References

[DIE67] Dieter, George E., Introduction to Ductility, Paper presented at an Ameri-can Society for Metals seminar, Ohio, Oct. 1967.[ALU06] N.N., Alumatter Aluminium Wis-sensdatenbank, http://www.alumatter.info; 2006.[LEP03] Leppin, C., Duktilität und Um-formbarkeit von Werkstoffen – Werkstoff-charakterisierung, aber wie?, Forschungs-bericht Alcan Technology, 2003.

Authors

Dipl.-Ing. Ralf Schleich: Ph.D. student Hochschulinstitute Neckarsulm (HIN), an academic cooperation between the Audi AG and the Institute for metal forming technology, University of Stuttgart, explor-atory focus on materials and test methods aluminium technology

Dr.-Ing. Manfred Sindel: Head of quality assurance aluminium technology, Alu-minium- und Leichtbau-Zentrum Audi AG Neckarsulm

Prof. Dr.-Ing. Mathias Liewald: Director Institute for metal forming technology, University of Stuttgart

Geesthachter Schweißtage ’06: Festphase FügeverfahrenErfolgreicher Tagungsverlauf der „Geesthachter Schweißtage ’06“ unter Leitung von Dr. S. Sheikhi und Dr. J. F. dos Santos am 22. und 23. November 2006: Die Gruppe Fügetechnologie des Institutes für Werkstoffforschung der GKSS-Forschungszentrum Geesthacht

GK

SS

GmbH begrüßte 76 Teilnehmern aus Industrie und Forschung. Durch die Teilnehmer aus der Uk-raine, Polen und Rumänien bekam die Tagung ein internationales Flair.

Die industrielle Bedeutung von Fest-phase-Fügeverfahren wird deutlich, wenn Werkstoffe nicht bzw. mit erhöhtem Aufwand mittels Schmelz-schweißprozessen gefügt werden können. Daraus er-gibt sich ein Forschungsbe-darf auf diesem Sektor. Mit den Vorträgen im Rahmen der Geesthachter Schweiß-tage ’06 konnte das Innova-tionspotenzial und die Ak-

tualität von Fügeprozessen in fester Phase gezeigt werden.

Das Fügen artgleicher und artun-gleicher Werkstoffe bedarf angepasster bzw. geeigneter Fügeverfahren. Dem wurde mit den in vier Blocks unter-teilten Beiträgen Rechnung getragen. Im Rahmen der Veranstaltung wurden in den Beiträgen sowohl die Grundla-gen der Fügeprozesse in fester Phase (Reib-, Rührreib-, Diffusions-, Magne-timpuls- und Ultraschallschweißen) als auch deren Anwendung bzw. ak-tuelle Forschungsaktivitäten wieder-gegeben. Die Aktualität der Fügepro-zesse in fester Phase wurde besonders durch den Beitrag von Prof. Wilden, „Neuartige „Lösungswege zum Fügen durch Ausnutzung von Größeneffek-ten“, untermauert. ➝

R E S E A R C H

Page 83: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

83ALUMINIUM · 3/2007

Neue Entwicklungen, Anwendungen und Trends im Reib- und Diffusions-schweißen zeigten u. a. Beiträge wie: • Hochgeschwindigkeitsreibschwei-ßen von metallischen Verbindungen• Präzisionsreibschweißen erschließt neue Anwendungsfelder• Reibpunktschweißen von Alumini-umlegierungen• Anwendungsbeispiele für das Dif-fusionsschweißen von Stahl- und Ti-

tanwerkstoffen• Strategien zur Erhöhung der Bau-teilfunktionalität durch Diffusions-schweißen.

Das Fügen von meist in Misch-bauweise (z. B. aus Stahl, Aluminium, Magnesium und Polymere) geplanten Strukturen ist eine große Herausfor-derung für die Industrie. Mit dem Ultraschallschweißverfahren konnte ein Lösungswegs für die Herstellung

Das aec – aluminium engineering cen-ter aachen, die RWTH International Academy GmbH und der Gesamt-verband der Aluminiumindustrie e.V. veranstalten in Kooperation vom 26. bis 28. März 2007 ein Fortbildungsse-minar zum Thema „Einführung in die Technologie des Aluminiums“.

Namhafte Professoren der Rhei-nisch-Westfälisch Technischen Hoch-schule (RWTH) Aachen referieren über Metallurgie, Herstellung und Verarbeitung von Aluminium. Im Lau-fe der Veranstaltung wird von metall-kundlichen Grundlagen ausgehend die gesamte Prozesskette durchlau-fen, angefangen von der Erzeugung von Primäraluminium über die Gieß-

prozesse, die Bandumformung bis hin zur Beschichtung und Prüfung fertiger Bauteile. Die Teilnehmer erhalten so-wohl auf theoretischer als auch auf praktischer Ebene einen umfassenden Überblick über die einzelnen Schritte in der Prozesskette.

Die Teilnehmer werden durch Präsentationen in die jeweiligen The-mengebiete eingeführt, deren theore-tischer Inhalt später in praktischen Versuchen nachvollzogen wird. Die Praktika setzen sich dabei aus Vor-führversuchen von Gieß-, Umform-, Schweiß- und Beschichtungsprozes-sen für Aluminiumlegierungen, wie sie in der Industrie Anwendung fin-den, und abschließend aus einer dy-

Einführung in die Technologie des AluminiumsRWTH Update-Seminar, 26. bis 28. März 2007, Aachen

namischen Bauteilprüfung am Fall-turmprüfstand zusammen.

Das Seminar richtet sich vor allem an Naturwissenschaftler, Ingenieure und Techniker aus der Aluminiumin-dustrie und der Aluminium verarbei-tenden Industrie ohne ausgeprägten werkstoffwissenschaftlichen Hinter-grund, ist aber auch für Kaufleute z. B. aus Vertrieb und Einkauf geeignet, die sich einen technischen Überblick über Aluminium verschaffen wollen.

Anmeldeunterlagen und weitere In-formationen: RWTH International Academy GmbH, Friederike Wolter, Tel: 0241 8099 367, E-Mail: [email protected]

solcher Mischverbindungen gezeigt werden. Die Besichtigung des Fü-getechnologielabors des GKSS-For-schungszentrums mit Schweißversu-chen an unterschiedlichen Anlagen rundete die Veranstaltung ab. Hier wurde den Tagungsteilnehmern Ultra-schall-, Reib-, Rührreib- und Reibauf-tragschweißen präsentiert.

S. Sheikhi

A total of 300 exhibitors from 16 coun-tries presented their latest products and technologies at the concurrent staging of Tube Russia 2006, Metal-lurgy-Litmash 2006 and Alumini-um/Non-Ferrous 2006 in Moscow. More than 8,000 visitors from the

Russian Federation and neigh-boring states participated to view the equipment displayed on over 34,000 square feet of exhibit space. The three trade fairs were organized by Messe Düsseldorf in cooperation with leading national and interna-tional associations. The annual event has established itself as

the leading international platform for the casting, metallurgy, aluminum and tube and pipe industries in the Russian Federation. National pavil-ions from Germany, Austria and Italy will be represented with joint stands at Metallurgy-Litmash, Tube Russia,

Metallurgy-Lithmash 200728 to 31 May 2007, Moscow, Russia

Joha

nnes

The

imer

Aluminium/Non-Ferrous 2007. The exhibitors were pleased with their participation and reported promising business contacts. The next staging of Tube Russia, Metallurgy-Litmash and Aluminium/Non-Ferrous will take place in May 2007 in Moscow – this time concurrently with wire Russia 2007. For further information on vis-iting or exhibiting the fair, contact

Messe Düsseldorf North America, 150 North Michigan Avenue, Suite 2920, Chicago, IL 60601 Tel: (312) 781-5180e-mail: [email protected].

E V E N T S

Page 84: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

84 ALUMINIUM · 3/2007

The demand for properties and qual-ity in extruded profiles stretches to the limit the ability of extruders and die makers: ever more complex sec-tions, hard alloys, emerging technolo-gies, microstructure control, are just some of the every-day manufactur-ers’ concerns. Key factors for innova-tion as well as competitiveness are a skilled engineering analysis and reli-able software; however, no reference community exists for the extrusion analyst and a common basis for eval-uating commercial codes capabilities is absent.

This two-in-one event provides a unique opportunity: • to know the state of the art of the emerging technologies, innovation

and simulation capabilities in the ex-trusion of light alloys • to get guidelines for best process analysis and product optimization• to understand the potential of your current simulation tool • to have the widest information on extrusion simulation today.

The workshop will be focused on the latest advances in the extrusion of light alloys and the related simula-tion issues. Invited papers by leading industries will give the state of the art about ongoing research in extru-sion technology. Workshop deadline for abstract submission is 20 March 2007.

2nd Extrusion Benchmark: Par-ticipants are asked for simulating the

extrusion of an industrial case (an es-pecially designed multi-hole die for emphasizing process-related issues), on the base of die geometry, material properties, temperature of billet and die system, ram speed. The results will be compared to the experiments, as performed by the organizers, on the base of extruded length, profile tem-perature, profile distortions, press load. The event addresses to extrud-ers (R&D, production managers), aca-demic and industrial researchers, die builders, software houses, press and equipment builders.Further information:Tel: +39 051 2090 [email protected]://diemtech.ing.unibo.it/extrusion07

Call for papers

Extrusion Workshop and 2nd Extrusion Benchmark20 to 21 September 2007, Bologna, Italy

The variety of products and solu-tions that include aluminium makes this metal a perpetual source of new businesses. The companies in the industry search, inside and outside Brazil, technological developments that add value and increase the use of aluminium. This will be shown at the 2007 edition of the International Aluminium Exhibition in São Paulo, 22 to 24 May 2007 – ExpoAlumínio. After the successful launch of a series of international aluminium shows held in Germany, Shanghai and Chi-cago, German Reed Exhibitions and the Aluminium Association of Brazil (Abal) are joining forces to launch an Aluminium International Pavilion during this event.

At the trade fair, around 100 expected exhibitors from South and North America, Europe, and the rest of the world will present products, technologies, and services for aluminium production and processing. The pavilion was specially designed to receive Brazilian and interna-

tional companies that will be able to show new equipment and machines. It will be an excellent opportunity to disseminate institutionally your com-pany, generate new businesses and introduce products, equipment, serv-ices and technological innovations. The same place will join companies, professionals from the entire alumin-ium chain and its consumer sectors, such as packaging, civil construction, machinery, equipment and consumer goods, etc.

The concept of the Aluminium In-ternational Pavilion includes a high quality full service stand in a good hall location, networking and lounge facil-ities, business centre and professional preparation and on-site-services from

ExpoAlumínio 2007 in São Paulo, Brazil22 to 24 May 2007, Exhibition Centre Imigrantes

the German aluminium team. A conference, organised by Abal,

will take place alongside the ExpoA-lumínio. Estimated 1,000 attendees, including international delegates are expected. The conference programme will cover the latest developments in aluminium markets, technologies and applications. Themes are: smelt-ing, casting, mechanical processing, surface treatment, sustainable devel-opment, recycling, refractories, tech-nological innovations in process and products.

Organiser of ExpoAlumínio is Abal.Further information: Tel: +55 11 5084 1544, [email protected]

Organiser of the Aluminium Interna-tional Pavilion ist Reed Exhibitions Deutschland. Further information:Tel: +49 (0)211 90 191 232 / -265,e-mail: [email protected] (Ul-rike Hülbach, project manager) or [email protected] (Olga Schick, project assistant), www.reedexpo.de

MFO

E V E N T S

Page 85: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

85ALUMINIUM · 3/2007

6th Aluminium Two Thousand World Congress13-17 March 2007, Florence, Italy

Aluminium Two Thousand is already considered the event of 2007 in the aluminium industry. The subjects range from markets and analysis of the aluminium industry in future to foundry, casting, extrusion, anodizing and coating, automation, architecture, transport industry, environmental pro-tection and recycling, measuring, test-ing and quality techniques. In other words: It is the large aluminium world for an international audience.Further information:Tel: +39 059 2823 [email protected]

16. Symposium: Verbundwerkstoffe14. bis 16. März 2007, Bremen

Innovative Verbundlösungen entwi-ckeln sich zunehmend als Träger technologischer Fortschritte. Die Verbundwerkstofftechnik umfasst heute zahlreiche Vertreter moderner Hochleistungswerkstoffe und Ferti-gungstechniken. Dabei reicht das Spektrum von faserverstärkten Leicht-bauwerkstoffen, zellularen Strukturen bis zum Kleben hoch beanspruchter Flugzeugteile und zu neuen Hybriden und Kompositen an der Schnittstelle Materialtechnik/Biosphäre.Further information:DGM Deutsche Gesellschaft für Mate-rialkunde

birgt große Einspar- und Rationalisie-rungspotenziale.Weitere Informationen:Tel: + 49 (0)211 6214-403www.vdi-wissensforum.debö[email protected]

World Energy Dialogue17. bis 19. April 2007, Hannover

Energieeffizienz ist das Schwerpunkt-thema des World Energy Dialogue, der 2007 erneut zentrales Technologie-Event im Rahmen der Hannover Messe sein wird. Auch der zweite Fachkon-gress versteht sich als Plattform für die relevanten energietechnologischen Fragestellungen und Lösungsansätze unserer Zeit. Der World Energy Dialo-gue 2007 wird vom BDI und der Deut-schen Messe AG veranstaltet. Weitere Informationen:Deutsche Messe AGTel: +49 (0)511/[email protected]

Alumex 200722 to 24 April 2004, Dubai, U.A.E.

Alumex 2007 is the 4th Middle East aluminium exhibition with focus on the state-of-the-art technologies and strategies in manufacturing, process-ing, surface treatment and conversa-tion of aluminium to structural prod-ucts. The exhibiton will be accompa-nied in parallel by a conference that will place emphasis on applications in building.

Tel: 069 75306 [email protected]

DFO-Leichtmetall-Tagung20. und 21. März 2007, Neuss

Thema der Tagung: Die Oberflächen-behandlung von Leichtmetallen. Im Vordergrund stehen die Vorbehand-lung, anodische Oxidation und PVD-/Plasmabeschichtung von Aluminium. Es werden moderne Korrosions- und Verschleißschutzsysteme vorgestellt. Weitere Tagungsthemen betreffen den Werkstoff Magnesium.Weitere Infos:Deutsche Forschungsgesellschaft für Oberflächenbehandlung e. V. (DFO) Tel: +49 (0)2131 40 811 [email protected]

16. Deutscher Materialfluss-Kongress29. und 30. März 2007, Garching

Unter dem Motto „Intralogistik bewegt – mehr Effizienz, mehr Produktivität“ werden mehr als 600 Experten über die Zukunft der Logistiktechnologie diskutieren, Forschungsergebnisse vor-stellen und Pilotanwendungen demons-trieren. Praxisberichte über Innovati-onen aus Industrie und Handel über logistische Technologien, Verfahren und Konzepte werden die Zukunfts-fähigkeit der Trends der Intralogistik unter Beweis stellen. Im Fokus des Kongresses: die Kostensenkung und Effizienzsteigerung. Die Intralogistik

Die erfolgreiche Entwicklung und An-wendung von Leichtbaustrukturen ist immer auch eine Frage der geeigneten Fügeverfahren für (dünnwandige) Bauteile. Einen Überblick zum Stand der Technik und zu neuen Entwick-lungen gibt das Seminar „Fügen von Aluminiumprofilen und -blechen“, das der Gesamtverband der Alu-miniumindustrie (GDA) am 21./22. März 2007 gemeinsam mit der SLV Schweißtechnischen Lehr- und Ver-suchsanstalt Duisburg veranstaltet.

Verarbeitungstechniken vorgestellt. Darüber hinaus werden praktische Vorführungen und Demonstrationen von Geräten angeboten.

Das Seminar richtet sich in erster Linie an Anwender aus Automotive, Bauwesen und Maschinenbau. De-tails des Programms sowie Anmel-deunterlagen sind über den GDA, Mo-nika Fuchß, Tel. 0211/4796-285, Fax: 0211/4796-410, zu erhalten. Weitere Informationen zum Inhalt gibt Wolf-gang Heidrich, Tel. 0211/4796-271.

Unter der Leitung von Wolfgang Heidrich, GDA-Referent für Maschi-nenbau, informieren Spezialisten aus der Industrie über die diversen Fügeverfahren vom Kleben über das Schrauben und weitere kalte Füge-verfahren bis zum Schweißen und Löten. Es werden korrosionstech-nische Aspekte der verschiedenen Verfahren, insbesondere bei Multi-metallkonstruktionen, thematisiert sowie Aspekte des Verfahrensab-laufs, der Qualitätssicherung und der

GDA-Seminar, 21. bis 22. März 2007

Fügen von Aluminiumprofilen und -blechen

E V E N T S

Page 86: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

86 ALUMINIUM · 3/2007

Further information:Tel: +971 4 [email protected]

Int. Minor Metals Conference 200725 to 27 April 2007, Tallinn, Estonia

The MMTA‘s conference is held bien-nially and brings together the world’s minor metals industry to discuss cur-rent and future trends. The programme focuses on emerging technologies in electronics, automotive, energy and terrestrial uses, as well as the role of renewable resources and energy - all areas where there is the potential for exciting growth in demand for a wide range of minor metals. Further information:Tel: +44 (0)20 7659 [email protected]

14. DFO Automobil-Tagung8. und 9. Mai 2007, Bad Kissingen

Zum 14. Mal treffen sich Fachleute der Automobilbranche zu dieser drei-sprachigen Veranstaltung mit hoch-karätigen Fachvorträgen und den per-sönlichen Gesprächen der Fachwelt am Rande der Tagung. Thematische Schwerpunkte sind: Neue Lacksyste-me und Beschichtungsaufbauten, Ent-wicklung innovativer Beschichtungs-konzepte, Berichte aus europäischen Automobillackierereien, Online-Mess-technik in der Serienlackierung.Weitere Informationen:Deutsche Forschungsgesellschaft für Oberflächenbehandlung e. V. (DFO) Tel: +49 (0)2131 40 811 [email protected]

European Coatings Show 20078 to 10 May 2007, Nuremberg, Germany

The European Coatings Show 2007 plus Adhesives, Sealants, Construction Chemicals and the Nürnberg Congress (7 to 9 May 2007) present a broad range of top information and contact oppor-tunities for the international coatings and paint industry. Products on display: Coating, printing ink and adhesive raw materials, intermediates for construc-tion chemicals, laboratory and produc-tion equipment, testing and measuring equipment, application, evironmental protection and safety at work.

Fortbildung

Rechte und Pflichten des Immissionsschutz- und Störfallbeauftragten, 13. März 2007, HamburgTÜV Nord Akademie, Tel.: 040 8557-2290 E-Mail: [email protected]

Wirtschaftliche und technologische Aspekte endkonturnaher Fertigungs-verfahren, 13. bis 14. März 2007, StuttgartVDI-Wissensforum, Tel: 0211 6214-201E-Mail: [email protected]

Professionelle Informationsbeschaffung aus Internet und Datenbanken,13. bis 15 März 2007, RegensburgOstbayer. Technologie-Transfer-Institut (Otti), Tel: 0941 29688 27, E-Mail: [email protected], www.otti.de

Qualitätswerkzeuge: Methoden und Instrumente für die Verbesserungs-arbeit, 13. bis 14. März 2007, DüsseldorfVDI-Wissensforum, Tel: 0211 6214-201 E-Mail: [email protected]

Führen ohne Vorgesetzen-Funktion, 20.-22.03.2007, MünchenEuroforum, Tel: 0211 9686 3641, E-Mail: [email protected], www.euroforum.de

Der Entwicklungsleiter, 23. bis 25. April 2007, BeilngriesOstbayer. Technologie-Transfer-Institut (Otti), Tel: 0941 29688 21, E-Mail: [email protected], www.otti.de

Controlling im Einkauf, 23. bis 24. April 2007, EssenHaus der Technik, Tel: 0201 1803 345, E-Mail: [email protected]

Vermeidung von Fehlern bei Konstruktion, Verarbeitung, und Betrieb von Bauteilen und Anlagen aus metallischen Werkstoffen, 3. bis 4. Mai 2007, EssenHaus der Technik, Tel: 0201 1803 344, E-Mail: [email protected]

Key Account Management, 24. bis 26. April 2007, DüsseldorfEuroforum, Tel: 0211 9686 3648, E-Mail: [email protected], www.euroforum.de

Further information:Tel: +49 (0)911 8606 [email protected]

IMA’s 64th Annual Magnesium Con-ference13 to 15 May 2007, Vancouver, Canada

Main topics: Automotive and non-au-tomotive applications, environmental considerations, new emerging tech-nologies, new process technologies, part processing.Further information:Tel: ++ [email protected]

Schweißen & Schneiden Russia28. bis 31. Mai 2007, Moskau

Die Nachfrage nach Schweißtechnik westlichen Standards nimmt in Russ-land stark zu. Die erstmals in Moskau stattfindende Messe dreht sich rund um das Schweißen, Schneiden und die verwandten Verfahren. Sie findet be-wusst im Umfeld themenverwandter Messen der Metallverarbeitung und -bearbeitung (u. a. Metallurgy-Litmash, Tube/Wire Russia, Aluminium-Non Ferrous) statt.Weitere Informationen:Tel: +49 (0)201 [email protected]

E V E N T S

Page 87: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

Nichols, Sarah

Aluminum by Design

Als Aluminium im 19. Jahrhundert erstmals entdeckt

wurde, war es so selten und kostbar wie Gold. Von sei­

nen Anfängen bis heute hat das silbern glänzende Metall

einige der größten Künstler, Designer, Ingenieure und

Architekten zu außergewöhnlichen Arbeiten inspiriert.

Nichts, was nicht auch in Aluminium entworfen und er­

probt wurde: Kartenspiele, Staubsauger Tennisschläger,

Lampen Wohnmobile, Schmuck, Mode, Kunstobjekte bis

hin zu außergewöhnlichen Entwürfen für Häuser, Auto­

mobile und unendlich viel mehr.

Die versammelten Arbeiten in dem Katalog „Alumi­

num by Design“ sind von bestechender Schönheit. Der

Band ist nicht neu, wird aber im Zweitausendeins­Verlag

zu einem Schnäppchenpreis angeboten. Er ist allen zu

empfehlen, die eine kultur­ und designgeschichtliche

Entdeckungsreise anhand von hervorragend fotografier­

ten Bildern und vielfältigen Textbeiträgen unternehmen

wollen. Der Band basiert auf einer Ausstellung des Car­

negie Museum of Art in Pittsburgh, die von Oktober 2000

bis Februar 2001 mit Unterstützung der Alcoa Founda­

tion stattfand.

Mit dem Design und den Entwürfen von Frank Lloyd

Wright, Otto Wagner, Buckminster Fuller, Marcel Breu­

er, Charles Eames, Philippe Starck u. a. Text englisch.

240 Farb­ und 120 Duotone­Bilder. 296 Seiten.

Großformat 25x 33 cm. Fadenheftung. Fester Einband.

Preis: 14,99 €.

Bestellungen unter www.zweitausendeins.de

Page 88: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

88 ALUMINIUM · 3/2007

Konstruktive Ingenieurbauten sind Tragwerke, die auf der Grundlage von Ingenieurmethoden entworfen, be­messen und ausgeführt werden. Ihre Gebrauchstauglichkeit und Sicherheit müssen den baurechtlich vorgeschrie­benen Mindestanforderungen genü­gen. An Stellen mit komplexer Ge­stalt und besonderer Beanspruchung kommen bei derartigen Konstrukti­onen Gussstücke zur Anwendung. Die Zusammenhänge, die beim Entwurf, bei der Bemessung, Konstruktion, Beschaffung und Verarbeitung von Gussstücken hilfreich sind, werden

Guss im konstruktiven Ingenieurbau Bauteile aus Eisen- und Aluminiumwerkstoffen in Tragwerken

in diesem praxisbezogenen Fachbuch ausführlich beschrieben. Die Lektüre dieses Titels trägt zu einem gegensei­tig besseren Verständnis der beiden Fachkreise – dem konstruktiven In­genieurbau und der Gießereitechnik – bei. Noch nicht ausgeschöpfte Po­tenziale bei der Anwendung von Guss­stücken in Metallkonstruktionen zur besseren Gestaltung und wirtschaft­licheren Fertigung können dadurch optimaler genutzt werden.

DVS­Verlag GmbH, Schweißtechni­sche Praxis Band 33, 2006, 150 Seiten,

GmbH­Geschäftsführer müssen mehr als 100 wichtige Gesetze und Vor­schriften beachten. Tatsächlich aber kennen sie durchschnittlich höch­stens ein Fünftel davon wirklich und nicht nur dem Namen nach, so der WRS Verlag München/Planegg. Viele Neuregelungen und Änderungen 2007 machen das Dickicht büro­kratischer Regelungen für die rund 850.000 GmbHs in Deutschland noch unüberschaubarer. Dabei auch noch immer neue Gerichtsurteile im Blick zu haben, ist vielen Geschäftsführern kaum mehr möglich. Der WRS Verlag hat mit der CD­ROM „Die GmbH“

eine Praxis­Software entwickelt, die den Paragrafendschungel lichtet. Ver­bunden damit sind praxis­ und fall­orientierte Entscheidungshilfen bis hin zur eigenen Karriereplanung samt privater Absicherung und Vorsorge. Rechtssicherheit und Aktualität ha­ben dabei oberste Priorität. Die On­line­Aktualisierung sorgt dafür, dass der Geschäftsführer stets up­to­date ist. Somit versäumt er z. B. keine neue für ihn wichtige Rechtsprechung.

Egal, ob es um Personalführung, den besten Überblick über die Finan­zen des Unternehmens samt Con­trolling­Instrumenten‚ Steuern und

„Die GmbH“-CD

Per Mouseklick rechtssicher schnell entscheiden

broschiert, € 29,­ Bestell­Nr. 200033, ISBN 3­87155­548­0

Betriebsprüfung, Krisenmanagement, Haftungsfragen oder den Beirat geht, „Die GmbH“ gibt mit ein paar Mou­se­Klicks Auskunft und macht Hand­lungsvorschläge. Rechner, Verträge, Formulare und Checklisten vervoll­ständigen den Nutzwert. Grundge­danke ist laut WRS Verlag die Alltags­erfahrung jedes GmbH­Geschäftsfüh­rers: Wie entscheide ich möglichst schnell rechtssicher richtig.

WRS Verlag, „Die GmbH“ (CD­ROM), Preis € 68,00, Bestell­Nr. 06163, Be­stellungen: Tel: 089/89517­288, E­Mail: [email protected]

The standard reference work for eve­ryone who works with aluminium. The directory has more than 5,000 source references, encompassing 800 com­panies in the aluminium producing, processing and supply industry and a wide range of service providers. The companies present their products and services from production via equip­ment to applications. Technical mar­ket information, comprehensive deal­er references and addresses of testing

institutes, expert assessors complete this directory. It is now available at no charge, freely accessible on www.alu­lieferverzeichnis.com. Here com­prehensive search functions facilitate structured and easy research. The directory is published as a combined German/English edition and costs 16 euros plus postage and packing.It can be ordered from: Fax: +49(0)211­1591­379, e­mail: a.tappen@alu­verlag.de,

The current Aluminium Suppliers Directory 2007

N E U E B Ü C H E R

Page 89: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

89ALUMINIUM · 3/2007

Dannbauer, H., Gaier, C., Dutzler, E., Halaszi, C.Development of a model for the stiffness and life time prediction of self piercing riveted joints in automotive com­ponents / Entwicklung eines Modells zur Vorhersage der Steifigkeit und Lebensdauer von Stanznietverbindungen bei AutomobilteilenMP Materialprüfung 11­12/2006, S. 576­581

Steifigkeit und Festigkeit von Leichtbauteilen in der Automobil­industrie werden massiv durch die Eigenschaften ihrer Füge­verbindungen beeinflusst. Die verwendete Fügetechnologie, die Anzahl und die Lage der Punktfügungen haben dabei sowohl ei­nen großen technischen als auch wirtschaftlichen Einfluss. Das Festigkeitsverhalten von Punktschweißungen lässt sich allein durch die Erhöhung der Festigkeit des Blechs nur sehr gering erhöhen. Durch die Verwendung von hochfesten Stählen ist da­her die Verwendung von mechanischen Fügetechnologien wie Stanznieten oder Durchsetzfügen empfehlenswert, da sie sich durch höhere Festigkeitswerte auszeichnen. Durch Leichtbau­weise und Sicherheitsaspekte wird die Bedeutung von höher­festen Stählen in der Karosserieentwicklung immer größer. Für eine effiziente Konstruktion und Optimierung dieser komple­xen Strukturen werden zuverlässige CAE­Techniken benötigt. Bei Punktschweißungen bestehen bereits gute Modelle für die Bewertung der Steifigkeit und der Lebensdauer für komplexe Strukturen, wie z.B. Karosserien. Es gibt jedoch noch keine aus­reichenden Berechnungsmodelle für Stanznietverbindungen, da die Festigkeitseigenschaften für mechanische Fügungen we­sentlich schwieriger abzubilden sind. Daher wurde ein Ersatz­modell entwickelt, das die korrekte lokale Steifigkeit abbildet und eine Bewertung der Lebensdauer ermöglicht. Basierend auf Daten aus Probenversuchen wurde das Ersatzmodell ähnlich dem, das bereits bei Punktschweißungen Verwendung findet, unter der Berücksichtigung von zusätzlichen Parametern ent­wickelt, um eine gute Übereinstimmung mit dem Versuch zu er­reichen. Zusammenfassend deckt das Ersatzmodell jene Größen ab (Blechdicke, Stanznietdurchmesser), die im Automobil­ und leichten Nutzfahrzeugbau Verwendung finden. 9 Bild., 5 Que, in engl.

ALUMINIUM 3 (2007) Umformen, Verbinden

Kießling, R., Hübner, P., Biermann, H.Bruchverhalten von ultrafeinkörnigen Werkstoffen bei stati­scher und zyklischer BeanspruchungMP Materialprüfung 11­12/2006, S. 547­552

An ultrafeinkörnigen Werkstoffen aus Aluminium, Kupfer, Ti­tan und Al­1,5MgScZr wurden statische und zyklische Bruch­mechanikkennwerte ermittelt. Bei statischer Beanspruchung wiesen alle untersuchten ultrafeinkörnigen Werkstoffe Riss­widerstandsverhalten auf, das durch duktile Bruchflächen­morphologien bestätigt wurde. Bei zyklischer Beanspruchung wurden verringerte Schwellenwerte und geringere Risswachs­tumsgeschwindigkeiten im Bereich II der Risswachstumskurve ermittelt. 10 Bild., 21 Que.

ALUMINIUM 3 (2007) Materialprüfung

Eckstein, J., Ruther, M., Roll, K., Roos, E., Seidenfuß, M.Analyse der Versagensformen beim HalbhohlstanznietenSchweißen und Schneiden 58 (2206) Heft 11, S. 594­601

Die konsequente Umsetzung innovativer Leichtbaukonstruk­tionen im Automobilbau stellt immer komplexere Anforde­rungen an die Fügetechnologie. Kommen bei artgleichen Stahl­verbindungen vor allem thermische Fügetechnologien zur Anwendung, werden bei Verbindungen zwischen Stahl und Aluminium mechanische Fügetechnologien wie Clinchen und Halbhohlstanznieten eingesetzt. Beim Halbhohlstanznieten gilt

prinzipiell das Fügen von Blechen mit Festigkeiten unter 600 N/mm² als prozesssicher. Ab dieser Festigkeit kommt es ver­einzelt und beim Fügen von Blechen noch höherer Festigkeiten vermehrt zu Radialrissen im Fuß des Standnietelements. Die Ursachen der häufigsten Bruchentstehungen und deren Charak­terisierung werden im Artikel bestimmt. 11 Bild., 4 Que.

ALUMINIUM 3 (2007) Umformen, Verbinden

Kättlitz, W.On­line Messung des Wasserstoffgehaltes in Aluminium­schmelzenGiesserei­Praxis 11/2006, S. 339­342

Die Qualität eines Gussteils steht in direktem Zusammenhang zur Qualität der Schmelze, aus der das Produkt gefertigt wird. „To pour or not to pour“ fragt sich der Gießer oft; dies unter­streicht das Dilemma, die Schmelzequalität vor dem Gießen richtig zu bewerten. Gießereien werden nur dann wettbewerbs­fähig bleiben, wenn die Ursache für Ausschuss früh genug im Herstellprozess erkannt wird und Gegenmaßnahmen ergriffen werden, um den Ausschuss auf einem technisch und wirtschaft­lich akzeptablem Anteil zu halten. In Aluminiumschmelzen haben zwei externe Verunreinigungen einen großen Einfluss auf die endgültige Qualität der Gussteile: nicht­metallische Einschlüsse und gelöster Wasserstoff. Daher muss es das Ziel zukünftiger Entwicklungen sein, den Wasserstofflevel in der Schmelze quantitativ zu bestimmen und bis zum Gießvorgang unter Kontrolle zu halten. In dem Beitrag wird ein neues Mess­verfahren vorgestellt, das eine Wasserstoffbestimmung on­line in der Schmelze vornimmt und somit eine reale Prozesskon­trolle erlaubt. 9 Bild.

ALUMINIUM 3 (2007) Schmelzen

Egner­Walter, A.Vorhersage des Verzuges dünnwandiger DruckgussteileGiesserei 93 12/2006, S. 26­31

Die Beherrschung des Verzugs gegossener dünnwandiger Struk­turbauteile stellt eine große Herausforderung für die Fertigung dar. Voraussetzung hierfür ist eine genaue Kenntnis der Mecha­nismen der Verzugsentstehung sowie ihrer bauteilspezifischen Auswirkungen. Mit Hilfe moderner Simulationsmethoden ist man heute in der Lage, sowohl den Verzug aufgrund des Gieß­prozesses und des Stanzens als auch aufgrund der Wärmebe­handlung genau vorherzusagen. Basierend auf diesen Ergebnis­sen können dann Optimierungsmaßnahmen abgeleitet werden: hinsichtlich des Fertigungsprozesses, der Gestalt des Werkzeugs sowie der Vorkorrektur des Verzugs im Werkzeug. Der Verzug bei der Wärmebehandlung kann durch simulationsunterstützte Entwicklung geeigneter Lagergestelle minimiert werden. Mit den neuen Programmentwicklungen unterstützt die Simulation den Druckgießer bei der Fertigung dünnwandiger Strukturbau­teile. 15 Bild., 2 Que.

ALUMINIUM 3 (2007) Formguss, Gütekontrolle

Mao, H., Brevick, J. R.Untersuchungen zu extern erstarrten Bestandteilen beim KaltkammerdruckgießenDruckgusspraxis 7/2006, S. 285­292

Das Druckgießverfahren ist ein endabmessungsnahes Formge­bungsverfahren, bei dem flüssiges Metall in eine mehrfach nutz­bare metallische Form eingebracht wird. Der Anteil der Schmel­ze, welcher in der Gießkammer erstarrt, bevor das Metall im Formhohlraum ist, wird als „extern erstarrter Bestandteile“

L I T E R A T U R E S E R V I C E

Page 90: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

90 ALUMINIUM · 3/2007

Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA) der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Aus­schnitt aus dem umfassenden aktuellen Bestand der GDA­Bibliothek. Die von der Aluminium­Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fachbibliothek wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen Interessenten offen. Ansprechpartner ist Dr. Karsten Hein, E­Mail: [email protected]

(externally solidified products – EPS) bezeichnet. Diese vorzei­tig erstarrten Bestandteile haben Auswirkungen auf das Fließ­verhalten der Schmelze, die Formfüllung, die Mikrostruktur und die mechanischen Eigenschaften der hergestellten Guss­teile. Gegenstand der vorgestellten Forschungsarbeiten war die Durchführung von Versuchen und die Entwicklung eines Computermodells zur Vorhersage des Gehalts und die Vertei­lung der ESP, die sich während der Gießkammerfüllung und der anschließenden Stillstandszeit bilden. 14 Bild., 10 Que.

ALUMINIUM 3 (2007) Druckguss

Pohl, C., Sonsino, C. M., Weise, J., Haesche, M.Kennwerte der neuen Mg­Legierung MRI­3 unter Miss­brauchs­, Sonder­ und zyklischen BelastungenGiesserei 93 12/2006, S. 20­25

Neue Magnesiumlegierungen für die Herstellung von Chassis­Komponenten für PKW wurden für die Verfahren Sandgießen, Druckgießen und Squeeze­Casting entwickelt und hinsichtlich ihrer technologischen und Werkstoffeigenschaften getestet. Ein Schwerpunkt lag hierbei auf Untersuchungen der Betriebsfe­stigkeit von Bauteilen (Getriebelagerung) bzw. bauteilentnom­menen Proben. Bei der vorgestellten Squeeze­Cat­Legierung MRI­3 zeigten die Kennwerte aus Zug­ und Wirkversuchen eine große Abhängigkeit von Gefügeungänzen. Die Auswertung der tatsächlichen Schadenssumme bei Bauteilversuchen ergab ein Dtat im Bereich von 2. Allerdings liegt dieser Wert im Rahmen der bekannten Streuungen der tatsächlichen Schadenssumme; deswegen wird für eine Vorbemessung eine Schadenssumme von Dzul = 0,5 empfohlen. Eine plastische Vorverformung im Anrissbereich des Bauteils bis 0,75 % reduzierte dessen Lebens­dauer nicht. 6 Bild., 6 Que.

ALUMINIUM 3 (2007) Materialprüfung, Mg­Legierungen

Heikel, C., Ambos, E.Wichtige PKW­Motorenbauteile im Spiegelbild des Wett­bewerbs der Werkstoffe und Fertigungsverfahren – Zylin­derköpfeKonstruieren + Giessen 31 (2006) Nr. 4, S. 2­12

Zylinderköpfe für PKW­Motoren sind geometrisch komplizierte und hoch beanspruchte Bauteile. Sie werden vorwiegend aus Aluminiumlegierungen im Kokillengießverfahren gefertigt. Um den hohen Beanspruchungen im Motor gewachsen zu sein, nutzt man vielfältige Prüfverfahren für die Entwicklung der Zylinder­köpfe. Diese reichen von der einfachen statischen Zugprüfung bis zu komplexen Untersuchungen unter betriebsnahen Tem­peraturen. Wegen der Kompliziertheit der Betriebsbedingungen ist jedoch die Prüfung im befeuerten Motor und im Versuchs­fahrzeug nach wie vor unerlässlich. Die Werkstoffwahl für die Zylinderköpfe richtet sich nach der Höhe der Beanspruchung. Unter Bezug auf die spezifische Leistung der Motoren wird eine grobe Einteilung der Werkstoffe vorgenommen. Nach wie vor dominieren die Al­Legierungen: AlSi6Cu4, AlSi7Mg(Cu) und AlSi10Mg(Cu). Für die Fertigung der Zylinderköpfe kommen zahlreiche Verfahrensvarianten zum Einsatz, die vorgestellt und auf deren wichtigste Vor­ und Nachteile eingegangen wird. Wei­terhin werden die komplizierten technologischen Bedingungen beim Gießen der Zylinderköpfe erläutert und daraus Schluss­

folgerungen für die unterschiedlichen stofflichen Eigenschaften über den Querschnitt eines Zylinderkopfes gezogen. Aus einer kombinierten Bewertung von Werkstoff und Gießverfahren auf der Grundlage umfänglicher Untersuchungen wird auf die Do­minanz des Gießverfahrens verwiesen. Abschließend werden Entwicklungstendenzen für die Zylinderköpfe abgeleitet. Mit der weiteren Steigerung der Leistung der Verbrennungsmo­toren werden sowohl weiterentwickelte Al­Legierungen als auch Gusseisenwerkstoffe zum Einsatz gelangen. Auf mögliche Verbesserungen des Fertigungsprozesses wird verwiesen. 23 Bild., 31 Que.

ALUMINIUM 3 (2007) Verkehr

Lin, G., Zhang, Z., Zhou, J., Peng, D.The Effects of High­Temperature Treatment on the Stress Corrosion Resistance of 7175 Aluminum AlloysLight Metal Age, Oct. 2006, S.28­29

The effects of a kind of special high­temperature treatment (HITT) on the stress corrosion resistance of 7175 aluminium alloy forgings were studied, and its mechanism attempted to be explained. The results show that HTT facilitates precipitation of the fine particles containing Cr­rich phases and forming of a precipitate free zone (PFZ). According to analysis, HTT is one of the fundamental mechanisms for enhancing the property of stress corrosion resistance of 7175 aluminum alloys forgings. 4 images., 11 sources.

ALUMINIUM 3 (2007) Korrosion

Grund, T., Trommer, F., Wielage, B.Entwicklung eines „Controlled­Atmosphere­Brazing“­Verfah­rens zum Fügen von Aluminiumguss­ und Aluminiumknet­legierungenSchweißen und Schneiden 58 (2006) Heft 11, S. 608­613

Der Einsatz von Zinkbasisloten macht es temperaturseitig möglich, Aluminiumlegierungen jeder Legierungsgruppe zu fügen. Für verschiedene Grundwerkstoffe und Zinkbasislote wurde dazu das Ofenlötverfahren „Controlled­Atmosphere­Brazing“ (CAB) bezüglich der Prozessführung weiterentwickelt und qualifiziert. In den Lötversuchen wurden die vom einge­setzten Lot abhängige Zeit­Temperatur­Führung, die Qualität der Ofenatmosphäre und die auf die Bauteiloberfläche un das Ofenvolumen bezogene Flussmittelbeladung variiert. Lötver­bindungen wurden anhand ihrer Morphologie, Mikrostruktur, Verbindungsfestigkeit und Korrosionseigenschaften charakte­risiert. Bei den untersuchten Zinkbasisloten handelte es sich um Rein­Zink, ZnAl3, ZnAl6Cu1,5 und ZnAl15 mit Arbeitsbe­reichen zwischen 400 und 450 °C. Die eingesetzten Alumini­umwerkstoffe waren Knetlegierungen der Legierungsgruppen 1000 (Al99,5), 3000 (AlMn1) und 5000 (AlMg3) sowie eine Gusslegierung (Al­Si10Mg). Als Lotapplikationsformen wurden Draht, Folie und Plattierung gewählt. Die Forderungen nach der Entwicklung und Qualifizierung eines Ofenlötprozesses zum Fügen von Aluminiumguss­ und ­knetlegierungen unter Einsatz von Zinkbasisloten konnte erfüllt werden. 4 Bild. 3 Que.

ALUMINIUM 3 (2007) Formguss, Verbinden

L I T E R A T U R S E R V I C E

Page 91: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

91ALUMINIUM · 3/2007

Patentblatt Dezember 2006

Fortsetzung aus Heft 1-2/07

Vorrichtung zur Herstellung von Form­teilen aus Aluminium­ oder Magnesium­legierungen, insbesondere zur Herstel­lung von Kraftfahrzeugteilen. Drache Umwelttechnik GmbH & Co. KG, 65582 Diez, DE. (B22D 21/04, GM 20 2004 014 151, AT 09.09.2004)

Kabel mit Innenleiter aus Aluminium. Nexans S.A., Paris, FR. (B32B 15/20, EPA 1 717 020, EP­AT 19.04.2006)

Heißversiegelungsmasse für Alumini­um­ und Polyethylenterephthalatfolien gegen Polypropylen­Polyvinylchlorid­ und Polystyrolbehälter. Röhm GmbH, 64293 Darmstadt, DE. (C09D 123/00, OS 10 2005 042 389, AT 06.09.2005)

Verfahren zur Herstellung von Alumini­um. Technological Resources Pty. Ltd., Melbourne, Victoria, AU. (C22B 3/36, EPA 1 716 261, EP­AT 16.02.2005)

Chargenschmelzen von Aluminium­Le­gierungsschrott in einem Drehtrommel­ofen. Karl Konzelmann Metallschmelz­werke GmbH & Co.KG, 30179 Hannover, DE. (C22B 7/00, OS 10 2005 027 320, AT 13.06.2005)

Verfahren zum Recycling des metal­lischen Anteiles von vornehmlich auf der Basis von Aluminium hergestellten Metallmatrix­Verbundwerkstoffen und von Aluminium mittels Tiegelschmelz­extraktion. Deutsches Zentrum für Luft­ und Raumfahrt e.V., 53175 Bonn, DE; Fraunhofer­Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 München, DE. (C22B 7/00, PS 197 11 764, AT 21.03.1997)

Verzahnung aus Aluminium. GKN Sin­ter Metals GmbH, 42477 Radevormwald, DE. (C22C 1/04, OS 10 2005 027 135, AT 10.06.2005)

Werkstoff auf der Basis einer Aluminium­Legierung, Verfahren zu seiner Herstel­lung sowie Verwendung hierfür. Mahle GmbH, 70376 Stuttgart, DE. (C22C 21/00, EPA 1 718 778, EP­AT 15.02.2005)

Werkstoff für stranggepresstes Rohr aus Aluminium­Legierung für Wärme­tauscher mit natürlichem Kühlmittel. Denso Corp., Kariya, Aichi, JP; Furuka­wa­Sky Aluminum Corp., Tokio/Tokyo, JP. (C22C 21/00, EPA 1 721 998, EP­AT 09.05.2006)

Verfahren zur Verarbeitung von Alumi­nium in einem Rotations­ oder Flamm­ofen. L‘Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l‘Etude et l‘Exploitation des Procédés Georges

Claude, Paris, FR. (F27B 7/20, EPA 1 721 111, EP­AT 07.02.2005)

Aluminium­Gusslegierung. Aluminium Rheinfelden GmbH, 79618 Rheinfelden, DE. (C22C 21/02, EPA 1 719 820, EP­AT 28.04.2006)

Warmfeste Aluminium­Silizium­Kolben­legierung. KS Kolbenschmidt GmbH, 74172 Neckarsulm, DE. (C22C 21/04, EPA 1 721 022, EP­AT 11.01.2005) Geschmiedete Aluminium­Legierung, die ausgezeichnete Dauerfestigkeit auf­weist. Kabushiki Kaisha Kobe Seiko Sho, Kobe, Hyogo, JP. (C22C 21/12, EP 1 522 600, EP­AT 26.09.2003)

Verfahren zur Herstellung einer Alu­minium­Zinkat­Schicht. Tyco Printed Circuit Group LP, Enfield, Conn., US. (C23C 18/18, EPA 1 718 785, EP­AT 16.02.2005)

Gliederheizkessel aus Gusseisen oder Aluminium. Robert Bosch GmbH, 70469 Stuttgart, DE. (F24H 1/32, PS 10 2005 014 616, AT 31.03.2005)

Wärmetauscher aus Aluminium mit verlötetem Verbindungsbereich. Denso Corp., Kariya, Aichi, JP. (F28F 3/00, OS 100 48 212, AT 28.09.2000)

Aluminium­Wärmetauscher. Willy Voit GmbH & Co. KG Stanz­ und Metallwerk, 66386 St. Ingbert, DE. (F28F 9/02, GM 20 2006 013 389, AT 31.08.2006)

Sammelrohr für Aluminium­Radiatoren mit nietartiger Befestigungskonstruk­tion. Delphi Technologies, Inc., Troy, Mich., US. (F28F 9/04, EPA 1 715 280, EP­AT 06.04.2006)

Aluminium­Substrat für einen elek­trophotographischen Photoleiter und elektrophotographischer Photoleiter, der das Aluminium­Substrat enthält. Fuji Electric Co., Ltd., Kawasaki, Kana­gawa, JP. (G03G 5/10, OS 198 32 082, AT 16.07.1998)

Aus einer Aluminiumlegierung herge­stelltes Schwellerstrangpressprofil eines Kraftfahrzeugs. AUDI AG, 85057 Ingol­stadt, DE. (B62D 25/02, OS 10 2004 002 297, AT 16.01.2004)

Aluminiumlegierung geeignet für Bleche und ein Verfahren zu deren Herstellung. Furukawa­Sky Aluminum Corp., Tokio/Tokyo, JP; Honda Giken Kogyo K.K., To­kyo, JP. (C22C 21/00, EP 1 260 600, EP­AT 15.05.2002)

Verfahren zur Herstellung eines Form­körpers aus Aluminiumlegierung, Form­körper aus Aluminiumlegierung und Herstellungssystem. Showa Denko Ka­

bushiki Kaisha, doing business as Showa Denko K.K., Tokio, JP. (C22F 1/043, EPA 1 716 265, EP­AT 17.12.2004)

Aluminiumlegierung, stabförmiges Ma­terial, geschmiedeter Formkörper und zerspanter Formkörper und daraus hergestellte verschleißfeste Aluminium­legierung und Gleitteil mit hervorragen­der Härte, einer anodischen Oxidbe­schichtung, Herstellungsverfahren dafür. Showa Denko Kabushiki Kaisha, doing business as Showa Denko K.K., Tokio, JP. (C25D 11/04, EPA 1 715 084, EP­AT 21.04.2004)

Umgusskörper zum Eingießen in ein Gussteil aus Leichtmetall, Verbund­gussteil daraus und Verfahren zur Herstellung des Umgusskörpers sowie Verfahren zur Herstellung des Verbund­gussteiles. DaimlerChrysler AG, 70567 Stuttgart, DE. (B22D 19/04, OS 103 15 382, AT 04.04.2003)

Verbundmaterial aus Leichtmetall und mit Kohlenstofffasern verstärktem Kunststoff. Toray Industries, Inc., Tokio/Tokyo, JP. (B32B 15/08, EP 0 938 969, EP­AT 20.08.1998)

Fahrzeugstrukturelement aus Leichtme­tall. DaimlerChrysler AG, 70567 Stuttg­art, DE. (B62D 25/00, PS 103 33 037, AT 21.07.2003)

Kühlkokille zum Vergießen von Leicht­metall­Gusswerkstoffen und Verwen­dung einer solchen Kokille sowie eines Gusseisenwerkstoffs. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. C22C 37/00, PS 10 2005 004 481, AT 31.01.2005)

Schleuderstrahlanlage zum Strahlen von Werkstücken aus Leichtmetalllegie­rungen. Disa Industrie AG, Schaffhausen, CH. (B24C 3/18, EPA 1 714 742, EP­AT 21.04.2005)

Verfahren zur Herstellung einer Wasser­stoffeinschlusslegierung auf Basis von Mg­REM­Ni. Japan Metals and Chemicals Co., Ltd., Tokio/Tokyo, JP. (C22C 1/02, EPA 1 721 996, EP­AT 21.02.2005)

Bauteil, insbesondere Druckgussbauteil, aus Magnesium, vornehmlich zur Ver­wendung in Kraftfahrzeugen. Volks­wagen AG, 38440 Wolfsburg, DE. (F16S 5/00, OS 100 02 262, AT 19.01.2000)

Chargieranlage für Magnesium oder Magnesiumlegierungen. Volkswagen AG, 38440 Wolfsburg, DE. (F27B 14/16, OS 10 2005 021 723, AT 11.05.2005)

Verfahren und Vorrichtungen zum Reibrührschweißen von mindestens zwei Bauteilen aus artverschiedenen Werkstoffen mit einem verschiebbaren

P A T E N T E

Page 92: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

92 ALUMINIUM · 3/2007

Stift und durch die Bauteile fließenden elektrischen Strom. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (B23K 20/12, EPA 1 716 959, EP­AT 27.04.2006)

Stossstange mit Halterungen. Alcan Technology & Management Ltd., Neu­hausen am Rheinfall, CH. (B60R 19/24, EPA 1 717 107, EP­AT 12.04.2006)

Stossfängersystem. Alcan Technology & Management Ltd., Neuhausen am Rhein­fall, CH. (B60R 19/24, EPA 1 721 786, EP­AT 18.04.2006)

Instrumententafelträgerstruktur. Alcan Technology & Management Ltd., Neu­hausen am Rheinfall, CH. (B62D 25/14, EPA 1 717 130, EP­AT 25.04.2005)

Plattform, insbesondere Bordwand für Fahrzeuge. Alcan Technology & Ma­nagement AG, Neuhausen am Rheinfall, CH. (B62D 33/02, PS 100 00 411, AT 07.01.2000)

Verpackungsbeutel mit Umverpackung. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (B65D 5/60 und B65D 33/02, EPA 1 714 888 und EPA 1 714 892, EP­AT 24.11.2005)

Seitenfaltenbeutel. Alcan Technology & Management Ltd., Neuhausen am Rhein­fall, CH. (B65D 75/58, EPA 1 714 904, EP­AT 21.04.2005)

Verschließbare Verpackung. Alcan Tech­nology & Management Ltd., Neuhausen am Rheinfall, CH. (B65D 75/60, OS 10 2005 028 470, AT 20.06.2005)

Verfahren zum Verbinden eines Band­endes mit einem Bandanfang. Alcan Technology & Management Ltd., Neu­hausen am Rheinfall, CH. (B65H 19/18, EPA 1 632 448, EP­AT 07.09.2004)

Flexibles Rohr oder flexibler Schlauch. Alcan Deutschland Göttingen, DE. (F16L 59/153, EP 1 286 102, EP­AT 14.08.2002)

Hochleitfähige Rippenmateriallegierung, Herstellungsverfahren und resultie­rendes Produkt. Alcoa Inc., Pittsburgh, Pa., US. (C22C 21/00, EPA 1 713 944, EP­AT 09.12.2004)

Kühlungssystem für eine Bandstrang­gießanlage und damit zusammenhän­gende Verfahren. Alcoa Inc., Pittsburgh, Pa., US. (B22D 11/06, EP 8 873 211, EP­AT 08.01.1997)

Vorrichtung und Verfahren zur konti­nuierlichen Metallschmelzezuführung unter Druck. Alcoa Inc., Alcoa Center, Pa., US. (B22D 17/20, EPA 1 714 718, EP­AT 18.04.2002)

Verfahren zur Herstellung einer Heiz­folie. Alcan Packaging Selestat, Selestat, FR. (F24D 13/02, EPA 1 717 521, EP­AT 21.04.2006)

Verfahren und Vorrichtung zum Gießen von Metallschmelze. Hydro Aluminium Alucast GmbH, 66763 Dillingen, DE. (B22D 21/04, PS 10 2004 043 444, AT 06.09.2004)

Verbundmaterial für Reflektoren. ALA­NOD Aluminium­Veredlung GmbH & Co, 58256 Ennepetal, DE. (C23C 28/00, GM 298 12 559, AT 15.07.1998) Außenwandpaneel. Hendrinks Alumi­nium Geveltechniek B.V., Veenendaal, NL. (E06B 3/54, EPA 1 719 869, EP­AT 20.04.2006)

Wasserkühlsystem für eine Stranggieß­vorrichtung. Norsk Hydro ASA, Oslo/Osló, NO. (B22D 11/049, EP 1 157 765, EP­AT 14.05.2001)

Verfahren und Vorrichtung zum Ermit­teln des Wärmedurchgangskoeffizienten einer Fassade. Hydro Building Systems GmbH, 89077 Ulm, DE. (G01N 25/18, OS 10 2005 022 767, AT 18.05.2005)

Struktur und Verfahren zum Verhindern elektrolytischer Korrosion von Magne­siumlegierungselementen. Honda Giken Kogyo K.K., Tokio/Tokyo, JP. (C25D 13/04, PS 102 97 130, AT 20.08.2002)

Verfahren zum Beschichten einer Zy­linderlaufbuchse. MAHLE International GmbH, 70376 Stuttgart, DE. (C23C 4/12, OS 10 2005 027 828, AT 15.06.2005)

Rohr zur Verwendung in einem Wärme­tauscher, Herstellungsverfahren dafür und Wärmetauscher. Showa Denko Ka­bushiki Kaisha, doing business as Showa Denko K.K., Tokio, JP. (C23C 4/08, EPA 1 716 266, EP­AT 10.02.2005)

Wärmetauscher, Verfahren zu dessen Herstellung und Wärmetauscherrohr. Showa Denko Kabushiki Kaisha, doing business as Showa Denko K.K., Tokio, JP. (F28F 19/06, EPA 1 714 103, EP­AT 07.01.2005)

Verfahren zum miteinander erfolgenden Verbinden von Endabschnitten von übereinander angeordneten Elementen. Sumitomo Light Metal Industries Ltd., Tokio/Tokyo, JP. (B23K 20/12, OS 10 2006 000 277, AT 08.06.2006)

Hochfestes Aluminiumlegierungsrip­penmaterial für Wärmetauscher und Herstellungsverfahren dafür. Nippon Light Metal Co. Ltd., Tokio/Tokyo, JP. (C22C 21/00, EPA 1 717 327, EP­AT 28.01.2005)

Patentblatt Januar 2007

Hochfeste Al­Zn­Legierung und Ver­fahren zum Herstellen eines solchen Legierungsprodukts. Corus Aluminium Walzprodukte GmbH, 56070 Koblenz, DE. (C22C 21/00, OS 11 2004 000 596, WO­AT 09.04.2004)

Quasikristalline Ti­Cr­Al­Si­O Legierung und deren Verwendung als Beschich­tungen. ALSTOM Technology Ltd, Ba­den, CH. (C22C 14/00, PS 50 2004 000 215, EP 1464716, EP­AT 29.03.2004)

Oberflächenbeschichtete Al/Zn­Stahl­bleche und Oberflächenbeschichtungs­mittel. Henkel KGaA, 40589 Düsseldorf, DE. (C09D 133/26, PS 502 05 303, EP 1436355, EP­AT 12.10.2002)

Blech oder Band aus Al­Mg­Legierung zur Herstellung von gebogenen Teilen mit kleinem Biegeradius. Alcan Rhenalu, Paris, FR. (C22C 21/06, EP 1 481 106, EP­AT 04.03.2003)

Gehäuse aus Aluminium­Profilen zur Auf­nahme elektrischer und elektronischer Bauteile. Palima W.Ludwig & Co., Sarnen, CH. (H05K 5/04, EP 1 437 939, EP­AT 09.01.2004)

Verfahren zum Planen und Herstellen eines LNG­Speichertanks oder derglei­chen und unter Verwendung des Ver­fahrens hergestellter Aluminium­LNG­Speichertanks. Aker Yards Oy, Turku, FI. (B65D 90/02, EPA Veröff. Nr.: EP 1723053, EP­AT 01.03.2005)

Mehrschicht Aluminium­Textil Laminat. Lloveras Calvo, Pedro, San Feliu de Co­dinas, ES. (B32B 15/14, EPA Veröff. Nr.: EP 1728623, EP­AT 03.06.2005)

Verfahren zur Verbindung eines An­schlusselements mit einem aus Alumini­um bestehenden elektrischen Leiter so­wie nach diesem Verfahren hergestell­ter elektrischer Leiter. Gebauer & Griller Kabelwerke Ges.m.b.H., Poysdorf, AT. (H01R 4/02, EPA Veröff. Nr.: EP 1730813, EP­AT 21.10.2004)

Oberflächenbehandlungsmittel und Verfahren zum Entfernen der beim Ät­zen von Druckgussteilen aus Alumini­um anfallenden Si Komponente und reduzierten Metallsalze. Cheon Young

Für Abonnenten

www.alu­archiv.de

Wissen auf Abruf

P A T E N T E

Page 93: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

93ALUMINIUM · 3/2007

Chemical Co., Ltd., Kyounggi, KR. (C11D 7/18, EP 1 421 164, EP­AT 25.07.2002)

Drehtrommelofen mit feuerfesten Rühr­körpern zum Umschmelzen von Alumi­nium. Metallhüttenwerke Bruch GmbH, 44145 Dortmund, DE. (C22B 21/00, EPA Veröff. Nr.: EP 1725690, EP­AT 17.03.2005)

Aerosoldose aus Aluminium hergestellt aus einem Blechbund. Exal Corp., Yong­stown, Ohio, US. (B21D 51/26, EPA Ver­öff. Nr.: EP 1731239, EP­AT 27.06.2003)

Verfahren zur Herstellung einer glatten lackierbaren Oberfläche nach dem Ver­binden von Aluminium­Teilen. Ford Glo­bal Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn, Mich., US. (B23K 37/00, PS 101 00 769, AT 10.01.2001)

Verfahren zum Schweißen artungleicher metallischer Fügepartner, insbesondere von Aluminium­Kupfer­Verbindungs­stellen. BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH, 91052 Erlangen, DE. (B23K 26/42, OS 10 2004 009 651, AT 27.02.2004)

Verfahren zum Schweißen von Werkstü­cken aus Aluminium oder einer Alumini­umlegierung. Fraunhofer­Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 München, DE. (B23K 26/32, PS 10 2004 027 229, AT 03.06.2004)

Aluminium­Schnalle für Tragegurte. Stührmann, Jan­Marc, 28211 Bremen, DE. (A44B 11/04, GM 20 2005 016 661, AT 21.10.2005)

Variabler Aluminium­Montagesattel für Stockschrauben zur Befestigung von So­laranlagen auf Hausdächern bei horizon­taler Ausrichtung der Montageschiene. Kaack, Peter, 26386 Wilhelmshaven, DE. (E04D 13/18, GM 20 2006 014 733, AT 26.09.2006)

Bauteil aus Aluminium und/oder einer Aluminiumumlegierung. Erbslöh AG, 42553 Velbert, DE; WKW Erbslöh Au­tomotive GmbH, 42349 Wuppertal, DE. (F16S 1/00, GM 20 2006 016 433, AT 26.10.2006)

Bor­ oder Aluminium­Spiroverbindun­gen, deren Verwendung in der Elektro­nikindustrie. Merck Patent GmbH, 64293 Darmstadt, DE. (C07F 5/06, PS 501 04 149, EP 1345948, EP­AT 20.12.2001)

Verfahren zum Diffusionsfügen von Ma­gnesium/Aluminium Bauteilen. General Motors Corp., Detroit, Mich., US. (B23K 35/28, EP 1 273 385, EP­AT 08.05.2002)

Konversionsbeschichtung für Alumini­um durch aufgespritzte KF­Lösungen. Ford Global Technologies, LLC (n.d.Ges.

d. Staates Delaware), Dearborn, Mich., US. (C23C 22/68, PS 601 16 180, EP 1154041, EP­AT 20.04.2001)

Verfahren zur Herstellung von Folie aus Aluminium­Eisen­Legierung. No­velis Inc., Toronto, Ontario, CA. (C22C 21/00, PS 601 17 118, EP 1184474, EP­AT 06.08.2001)

Aluminium Salze phosphorylierter Gly­cerylether. Kao Corp., Tokio/Tokyo, JP. (C07F 9/09, EP 1 514 872, EP­AT 03.09.2004)

Scharnierelement für Tür­ und Fenster­rahmen aus Aluminium. Savio S.p.A., Chiusa di San Michele, Turin, IT. (E05D 5/02, PS 602 08 486, EP 1365093, EP­AT 29.11.2002)

Schleifkörper auf der Basis von Alumini­um­ und Zirkoniumoxynitrid. Alcan Ab­rasifs Refractaires Ceramiques, Gardan­ne, FR. (C09K 3/14, PS 603 06 428, EP 1576069, EP­AT 18.12.2003)

Verfahren und Form zur Herstellung von Guss­Stücken, insbesondere von Leicht­metall­Motorblöcken. Montupet S.A., Clichy, FR. (B22C 9/10, PS 603 07 467, EP 1515812, EP­AT 20.06.2003)

Ein Verfahren zur Herstellung von Strangpressprodukten aus einer hoch­festen Aluminium­Legierung, die ausge­zeichnete Korrosionsbeständigkeit und Spannungsrisskorrosionsbeständigkeit aufweist. Sumitomo Light Metal Indus­tries Ltd., Tokio/Tokyo, JP. (B21C 23/00, EP 1 430 965, EP­AT 29.10.2003)

Verfahren zur Erhöhung der Bruchzähig­keit in Aluminium­Lithium­Legierungen. Alcan Rolled Products Ravenswood LLC, Ravenswood, W.Va., US. (C22C 21/00, EP 1 359 232, EP­AT 30.01.1998)

Aluminium­Elektrolytkondensator und Herstellungsverfahren. Matsushita Elec­tric Industrial Co., Ltd., Kadoma, Osaka, JP. (H01G 9/008, EP 0 986 078, EP­AT 03.09.1999)

Hochfeste Aluminiumlegierungen für Flugzeugrad und Bremselemente. Ho­neywell International Inc., Morristown, N.J., US. (C22C 21/10, EP 1 726 671, EP­AT 25.05.2006)

Vorrichtung und Verfahren zur Her­stellung von Gegenständen aus Alumi­niumlegierungen oder Leichtmetallle­gierungen. ESJOTECH S.r.l., Torino, IT. (B22D 18/02, PS 603 03 012, EP 1472027, EP­AT 31.01.2003)

Verfahren zum Schweißen von Bandma­terial aus Aluminiumlegierungen. Corus Technology BV, IJmuiden, NL. (B23K 11/087, PS 603 06 520, EP 1507624, EP­

AT 04.04.2003)

Laufbuchsen aus einer Aluminiumlegie­rung zum Eingießen in Zylinderblöcke aus Leichtmetall von Verbrennungs­motoren und Verfahren zu deren Her­stellung und Einguss. Volkswagen AG, 38440 Wolfsburg, DE. (F02F 1/16, OS 100 09 135, AT 26.02.2000)

Verfahren und Anlage zum Gießen von Leichtmetall­Zylinderkurbelgehäusen in Sandformen. Honsel GmbH & Co KG, 59872 Meschede, DE. (B22C 9/10, PS 10 2005 051 561, AT 26.10.2005)

Verfahren zum Beschichten von aus Mag­nesium oder einer Magnesiumlegierung erzeugten Substraten, insbesondere Magnesium­Flachprodukten. Thyssen­Krupp Steel AG, 47166 Duisburg, DE. (C23F 17/00, OS 10 2005 031 567, AT 06.07.2005)

Spritzgegossener Kabrioverdeckstapel aus Magnesium mit einem gemeinsamen Drehzapfen für eine Gelenkverbindung, Mittelschiene und hintere Schiene. CTS Fahrzeug Dachsysteme GmbH, Rochester Hills, Mich., US. (B60J 7/12, EPA Veröff. Nr.: EP 1727695, EP­AT 28.02.2005)

Aluminiumlegierungsstreifen zum Schweißen. Alcan Rhenalu, Paris, FR; Alcan Rolled Products Ravenswood LLC, Ravenswood, W.Va., US. (B23K 1/00, EPA Veröff. Nr.: EP 1687115, EP­AT 24.11.2004)

Bearbeitung der Oberfläche von Werk­stücken sowie Umformwerkzeugen. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (B21D 13/02, EPA Veröff. Nr.: EP 1637247, EP­AT 20.09.2004)

Konstruktionselement für die Luftfahrt mit Variation der anwendungstech­nischen Eigenschaften. Alcan Rhenalu, Paris, FR. (C22F 1/053, EPA Veröff. Nr.: EP 1727921, EP­AT 21.03.2005)

Flexibles Substrat mit Photovoltaik­Zellen und daraus hergestelltes Mo­dul. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (H01L 31/042, EPA Veröff. Nr.: EP 1732140, EP­AT 06.06.2005)

Kühlkörper für Halbleiterbauelemente, Verfahren zu dessen Herstellung und Werkzeug zur Durchführung des Verfah­rens. Alcan Technology & Management AG, Neuhausen am Rheinfall, CH. (H01L 23/36, PS 102 00 109, AT 02.01.2002)

Verfahren zum Abtrennen von Abfall­schichten von plattierten Bändern durch Walzplattieren. Alcan Rhenalu, Paris, FR. (B21B 47/04, EP 1 628 786, EP­AT 01.06.2004)

P A T E N T E

Page 94: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

94 ALUMINIUM · 3/2007

Säurevorbehandlung für das Verkleben von Kraftfahrzeugteilen. Alcoa Inc., Pittsburgh, Pa., US. (C09J 5/02, PS 600 24 889, EP 1328600, EP­AT 10.10.2000)

Verfahren zur Reinigung eines schmelz­flüssigen Metalls. Danieli Corus Techni­cal Services B.V., IJmuiden, NL. (C22B 21/06, EPA Veröff. Nr.: EP 1727917, EP­AT 17.02.2005)

Verfahren zur Herstellung von kör­nigem Packungsmaterial für die Ver­wendung beim Brennen von Anoden. Corus Aluminium Voerde GmbH, 46562 Voerde, DE. (C25C 3/12, PS 103 00 443, AT 07.01.2003)

Sichtschutz­ oder Stütz­Wand. Corus Aluminium Profiltechnik GmbH, 88267 Vogt, DE. (E04B 2/74, GM 20 2006 015 391, AT 07.10.2006)

Verfahren und Vorrichtung zum Biegen von Blechstreifen mit zwei einander gegenüberliegenden Flanschen. Corus Bausysteme GmbH, 56070 Koblenz, DE. (B21D 7/08, PS 601 20 947, EP 1272292, EP­AT 14.03.2001)

Verfahren zur fraktionierten Kristalli­sation eines Metalls. Corus Technology BV, IJmuiden, NL. C22B 21/06, PS 603 03 144, EP 1520053, EP­AT 27.06.2003)

Trägerplatte für den Eckpfosten eines Geländers. Norsk Hydro ASA, Oslo, NO. (E04F 11/18, EP 1 640 528, EP­AT 08.09.2005)

Verfahren zum Wärmebehandeln von aus einer Leichtmetallschmelze, insbe­sondere einer Aluminiumschmelze, er­zeugten Gussteilen. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (C22F 1/00, EPA Veröff. Nr.: EP 1727920, EP­AT 22.03.2005)

Warmfeste Aluminiumlegierung für Wär­metauscher. Hydro Aluminium Deutsch­land GmbH, 51149 Köln, DE. (C22C 21/00, EPA Veröff. Nr.: EP 1730320, EP­AT 31.03.2005)

Profilelement für Fenster, Türen, Fassa­den, Trennwände und dergleichen. Hy­dro Building Systems GmbH, 89077 Ulm, DE. (E04B 1/78, OS 10 2005 031 033, AT 02.07.2005)

Wärmegedämmtes Verbundprofil. Hy­dro Building Systems GmbH, 89077 Ulm, DE. (E06B 3/263, OS 10 2005 032 176, AT 09.07.2005)

Ein Flachrohr bildender plattenförmiger Körper, ein Flachrohr, ein Wärmetau­scher und ein Verfahren zur Herstellung eines Wärmetauschers. Showa Denko K.K., Tokio/Tokyo, JP. (F28F 1/02, WO 2005 085736, WO­AT 08.03.2005)

Vorrichtung zum Herstellen von Gieß­formen oder Gießformteilen. Hydro Alu­minium Alucast GmbH, 66763 Dillingen, DE. (B22C 15/02, OS 197 45 093, AT 11.10.1997)

Schweißteil und Schweißverfahren. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (B23K 33/00, OS 199 26 796, AT 11.06.1999)

Vorrichtung zur Filtration von und Zugabe von Kornfeinungsmittel zu Metallschmelzen. Hydro Alumini­um Deutschland GmbH, 51149 Köln, DE. (B22D 1/00, GM 200 23 831, AT 09.11.2000)

Bindemittelsystem, Kernsandgemisch und Verfahren zu seiner Herstellung. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (B22C 1/16, PS 500 11 962, EP 1095719, EP­AT 20.10.2000)

Verfahren und Vorrichtung zum gesteu­erten Abschrecken von Leichtmetall­gussstücken in einem Flüssigkeitsbad. Hydro Aluminium Mandl&Berger GmbH, Linz, AT. (C21D 1/63, PS 501 08 596, EP 1148146, EP­AT 04.04.2001) Rührvorrichtung zur kontinuierlichen Behandlung von Metallschmelzen. Norsk Hydro ASA, Oslo/Osló, NO. (C22B 9/05, PS 600 25 097, EP 1081240, EP­AT 28.08.2000)

Aluminiumfolie mit hoher Reinheit für elektrolytische Kondensatoren. Pechi­ney Rhenalu, Paris, FR. (C22C 21/00, PS 603 03 048, EP 1543173, EP­AT 22.09.2003)

Dekoratives Zierteil und Verfahren zu dessen Herstellung. Erbslöh AG, 42553 Velbert, DE. (B29C 45/14, OS 10 2005 032 421, AT 12.07.2005)

Verfahren zur Herstellung eines halb­festen Thixogiessmaterials. Honda Giken Kogyo K.K., Tokyo, JP. (C21D 1/32, EP 1 460 138, EP­AT 02.09.1997)

Wärmetauscher. Showa Denko Kabushi­ki Kaisha, doing business as Showa Den­ko K.K., Tokio, JP. (F28F 9/02, EPA Veröff. Nr.: EP 1726906, EP­AT 26.05.2006)

Elektrodenfolie für Kondensatoren, Verfahren zu deren Herstellung und elektrolytischer Kondensator. Showa Denko Kabushiki Kaisha, doing business as Showa Denko K.K., Tokio, JP. (H01G 9/055, EPA Veröff. Nr.: EP 1730756, EP­AT 24.03.2005)

Polierzusammensetzung zum chemisch­mechanischen Polieren. Showa Denko K.K., Tokio/Tokyo, JP. (C09G 1/02, PS 697 36 035, EPA Veröff. Nr.: EP 0823465, EP­AT 22.07.1997)

Aluminiumgusslegierung mit hoher Steifigkeit und kleinem linearem Aus­dehnungskoeffizienten. Nippon Light Metal Co. Ltd., Tokio/Tokyo, JP. (C22C 21/02, EPA Veröff. Nr.: EP 1728882, EP­AT 23.03.2005)

Lötpaste. Senju Metal Industry Co., Ltd., Tokio/Tokyo, JP. (B23K 35/26, EPA Ver­öff. Nr.: EP 1724050, EP­AT 09.03.2004)

Plastisch bearbeitetes Aluminiumlegie­rungsgussprodukt, ein Verfahren zur Herstellung davon und ein Verfahren zum Verbinden unter Verwendung plastischer Verformung. Nippon Light Metal Co. Ltd., Tokio/Tokyo, JP; Denso Corp., Kariya, Aichi, JP. (C22C 21/02, OS 101 01 960, AT 17.01.2001)

Vorrichtung und Verfahren zur Atmo­sphärenkontrolle bei der Wärmebe­handlung von Metallen. Nitrex Metal Inc., St Laurent, Quebec, CA. (G01N 21/35, EPA Veröff. Nr.: EP 1724567, EP­AT: 15.05.2006)

Hochtemperatur­Legierungen auf Alumi­niumbasis. United Technologies Inc., Hart­ford, Conn., US. (C22C 21/00, EPA Veröff. Nr.: EP 1728881, EP­AT 31.03.2006)

Al­Legierung mit guter Schneidbarkeit, ein Verfahren zur Herstellung eines geschmiedeten Artikels, und der ge­schmiedete Artikel. Furukawa­Sky Alu­minum Corp., Tokio/Tokyo, JP. (C22C 21/12, EP 1 359 233, EP­AT 10.04.2003)

Hochfeste Legierung auf Aluminiumba­sis und ein daraus hergestelltes Produkt. Federalnoe Gosudarstvatelsky Institut Unitarnoe Predpriyatie “Vserossiisky Nauchno­Issledovatelsky Institut Aviat­sionnykh Materialov”, Moskau/Moscow, RU; Otkrytoe Aktsionernoe Obschestvo “Samarsky Metallurgichesky Zavod”, Sa­mara, RU. (C22C 21/10, PS 601 20 987, EP 1306455, EP­AT 25.07.2001)

ALUMINIUM veröffentlicht unter dieser Rubrik regelmäßig einen Über­blick über wichtige, den Werkstoff Aluminium betreffende Patente. Die ausführlichen Patentblätter und auch weiterführende Informationen dazu stehen der Redaktion nicht zur Ver­fügung. Interessenten können diese beziehen oder einsehen bei der

Mitteldeutschen Informations­, Pa­tent­, Online­Service GmbH (mipo),Julius­Ebeling­Str. 6,D­06112 Halle an der Saale,Tel. 0345/29398­0Fax 0345/29398­40,www.mipo.de

Die Gesellschaft bietet darüber hinaus weitere „Patent“­Dienstleistungen an.

P A T E N T E

Page 95: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

International Journal for Industry, Research and Application

How do your products and services come to appear every month in the list of supply sources, on the internet – www.Alu-web.de – and in the annual list of supply sources published by ALUMINIUM ?

� Please mark the main group relevant to you

❒ Extrusion ❒ Rolling technology

❒ Foundry ❒ Smelting technology

� Indicate the sub-group and/or key word (if necessary, ask us for the list of key words)

_______________________ _______________________ _______________________ _______________________

_______________________ _______________________

� Enter your text, not forgetting your on-line address:

Line 1: ............................................................................................................................................

Line 2: ............................................................................................................................................

Line 3: ............................................................................................................................................

Line 4: ............................................................................................................................................

Line 5: ............................................................................................................................................

Line 6: ............................................................................................................................................

(Maximum 35 characters per line, including spaces.Price per line for each issue EUR 5,00 + VAT – minimum order 10 issues = 1 year.Logos are calculated according to the lines they occupy: 1 line = 2 mm).

_______________________________________________________________Place/Date Company stamp / Signature

� … and send this form to us by fax or post:

Fax number For information Giesel Verlag GmbH, ALUMINIUM+49-511/7304-157 Tel.: -142 Rehkamp 3, D-30916 Isernhagen

We will gladly send you a quotation!

Page 96: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

96 ALUMINIUM · 3/2007

Möller Materials Handling GmbHHaderslebener Straße 7D-25421 PinnebergTelefon: 04101 788-0Telefax: 04101 788-115E-Mail: [email protected]: www.moeller-mh.comKontakt: Herr Dipl.-Ing. Timo Letz

1.2 Storage facilities for smelting Lagermöglichkeiten in der Hütte

OUTOKUMPU Technology GmbHTel.: +49 (0) 2203 / 9921-0www.outokumputechnology.com

Möller Materials Handling GmbHInternet: www.moeller-mh.com

see Storage facilities for smelting 1.2

Conveying systems bulk materials Förderanlagen für Schüttgüter (Hüttenaluminiumherstellung)

Unloading/Loading equipment Entlade-/Beladeeinrichtungen

Möller Materials Handling GmbHInternet: www.moeller-mh.com

see Storage facilities for smelting 1.2

Hydraulic presses for prebaked anodes Hydraulische Pressen zur Herstellung von Anoden

1.3 Anode production Anodenherstellung

LAEIS GmbHAm Scheerleck 7, L-6868 Wecker, LuxembourgPhone: +352 27612 0Fax: +352 27612 109E-Mail: [email protected]: www.laeis-gmbh.comContact: Dr. Alfred Kaiser

OUTOKUMPU Technology GmbHTel.: +49 (0) 2203 / 9921-0www.outokumputechnology.com

Exhaust gas treatment Abgasbehandlung

ALSTOM Norway ASTel. +47 22 12 70 00Internet: www.environment.power.alstom.com

Open top and closed type baking furnaces Offene und geschlossene Ringöfen

RIEDHAMMER GmbHD-90332 NürnbergE-Mail: [email protected]: www.riedhammer.de

RIEDHAMMER GmbHD-90332 NürnbergE-Mail: [email protected]: www.riedhammer.de

Auto firing systems Automatische Feuerungssysteme

Removal of bath residues from the surface of spent anodes Entfernen der Badreste von der Ober - fläche der verbrauchten Anoden

GLAMA Maschinenbau GmbHHornstraße 19D-45964 GladbeckTelefon 02043 / 9738-0Telefax 02043 / 9738-50

1.4 Anode rodding Anodenanschlägerei

OUTOKUMPU Technology GmbHTel.: +49 (0) 2203 / 9921-0www.outokumputechnology.com

Transport of finished anode elements to the pot room Transport der fertigen Anoden- elemente in Elektrolysehalle

Vollert GmbH + Co. KGAnlagenbauStadtseestraße 12D-74189 WeinsbergTel. +49 (0) 7134 / 52-228Fax +49 (0) 7134 / 52-203E-Mail [email protected] www.vollert.de

Hovestr. 10 . D-48431 Rheine Telefon + 49 (0) 59 7158-0 Fax + 49 (0) 59 7158-209 E-Mail [email protected] Internet www.windhoff.de

1.1 Raw materials 1.2 Storage facilities for smelting1.3 Anode production 1.4 Anode rodding1.5 Casthouse (foundry)1.6 Casting machines1.7 Current supply1.8 Electrolysis cell (pot)1.9 Potroom1.10 Laboratory1.11 Emptying the cathode shell1.12 Cathode repair shop1.13 Second-hand plant1.14 Aluminium alloys

1Smelting technologyHüttentechnik

1.1 Rohstoffe1.2 Lagermöglichkeiten in der Hütte1.3 Anodenherstellung1.4 Anodenschlägerei1.5 Gießerei1.6 Gießmaschinen1.7 Stromversorgung1.8 Elektrolyseofen1.9 Elektrolysehalle1.10 Labor1.11 Ofenwannenentleeren1.12 Kathodenreparaturwerkstatt1.13 Gebrauchtanlagen1.14 Aluminiumlegierungen

Page 97: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

97ALUMINIUM · 3/2007

Metal treatment in the holding furnace Metallbehandlung in Halteöfen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Melting/holding/casting furnaces Schmelz-/Halte- und Giessöfen

Stopinc AGBösch 83 aCH-6331 HünenbergTel. +41/41-785 75 00Fax +41/41-785 75 01E-Mail: [email protected]: www.stopinc.ch

INOTHERM INDUSTRIEOFEN- UND WÄRMETECHNIK GMBHKonstantinstraße 1aD 41238 MönchengladbachTelefon +49 (02166) 987990Telefax +49 (02166) 987996E-Mail: [email protected]: www.inotherm-gmbh.de

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Transport of liquid metal to the casthouse Transport von Flüssigmetall in Gießereien

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

Windhoff Bahn- undAnlagentechnik GmbH

see Anode rodding 1.4

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Transfer to the casting furnace Überführung in Gießofen

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

Drache UmwelttechnikGmbHWerner-v.-Siemens-Straße 9/24-26D 65582 Diez/LahnTelefon 06432/607-0Telefax 06432/607-52Internet: www.drache-gmbh.de

MARX GmbH & Co. KGwww.marx-gmbh.de

see Melt operations 4.13

1.5 Casthouse (foundry) Gießerei

Gießereiprodukte – Foundry ProductsBalthasar Floriszstraat 34-36/ohNL-1071 VD AMSTERDAMTel.: +31 20 693-5209, Fax -5762Internet: www.srsamsterdam.com

Measurement & Testing Temperaturmessung

Windhoff Bahn- undAnlagentechnik GmbH

see Anode rodding 1.4

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

Drache UmwelttechnikGmbHWerner-v.-Siemens-Straße 9/24-26D 65582 Diez/LahnTelefon 06432/607-0Telefax 06432/607-52Internet: www.drache-gmbh.de

Degassing, filtration and grain refinement Entgasung, Filtern, Kornfeinung

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Bone ash KnochenascheIMPERIAL-OEL-IMPORTBergstraße 11, D 20095 HamburgTel. 040/338533-0, Fax: 040/338533-85E-Mail: [email protected]

Furnace charging with molten metal Ofenbeschickung mit Flüssigmetall

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

THERMCON OVENS BVsee Extrusion 2

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

1.6 Casting machines Gießmaschinen

Pig casting machines (sow casters) Masselgießmaschine (Sowcaster)

see Equipment and accessories 2.11

HERTWICH ENGINEERING GmbHMaschinen und IndustrieanlagenWeinbergerstraße 6, A-5280 Braunau am InnPhone +437722/806-0Fax +437722/806-122E-Mail: [email protected]: www.hertwich.com

THERMCON OVENS BVsee Extrusion 2

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Treatment of casthouse off gases Behandlung der Gießereiabgase

SIGNODE® SYSTEM GMBHPackaging EquipmentNon-Ferrous Specialist Team DSWEMagnusstr. 18, 46535 Dinslaken/GermanyTelefon: +49 (0) 2064 / 69-210Telefax: +49 (0) 2064 / 69-489E-Mail: [email protected]: www.signode.comContact: Mr. Gerard Laks

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

Dross skimming of liquid metal Abkrätzen des Flüssigmetalls

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

Page 98: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

98 ALUMINIUM · 3/2007

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Sawing Sägen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Horizontal continuous casting Horizontales Stranggießen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Vertical semi-continuous DC casting Vertikales Stranggießen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

see Equipment and accessories 2.11

Heat treatment of extrusion ingot (homogenisation) Formatebehandlung (homogenisieren)

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Casthouse machines Gießereimaschinen

Cast-Tec GmbH & Co. KGFertigungstechnik & Service

see Casting machines 1.6

1.7 Current supply Stromversorgung

Busbars Stromschienen

Cast-Tec GmbH & Co. KGFertigungstechnik & Service

see Casting machines 1.6

1.8 Electrolysis cell (pot) Elektrolyseofen

Insulating bricks Isoliersteine

Promat GmbH – Techn. WärmedämmungScheifenkamp 16, D-40878 RatingenTel. +49 (0) 2102 / 493-0, Fax -493 [email protected], www.promat.de

Pot feeding systems Beschickungseinrichtungen für Elektrolysezellen

Möller Materials Handling GmbHInternet: www.moeller-mh.com

see Storage facilities for smelting 1.2

Slurries and parting agents Schlichten und TrennmittelESK Ceramics GmbH & Co. KGMax-Schaidhauf-Straße 2587437 Kempten, GermanyTel.: +49 831 5618-0, Fax: -345Internet: www.esk.com

Tapping vehicles Schöpffahrzeuge

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

1.9 Potroom Elektrolysehalle

Anode changing machine Anodenwechselmaschine

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

T.T. Tomorrow Technology S.p.A.Via dell’Artigianato 18Due Carrare, Padova 35020, ItalyTelefon +39 049 912 8800Telefax +39 049 912 8888E-Mail: [email protected]: Giovanni Magarotto

Crustbreakers Krustenbrecher

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

Scales / Waagen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

Dry absorption units for electrolysis exhaust gases Trockenabsorptionsanlage für Elektrolyseofenabgase

ALSTOM Norway ASTel. +47 22 12 70 00Internet: www.environment.power.alstom.com

Anode transport equipment Anoden Transporteinrichtungen

GLAMA Maschinenbau GmbHsee Anode rodding 1.4

HF Measurementtechnology HF Messtechnik

OPSIS ABBox 244, S-24402 Furulund, SchwedenTel. +46 (0) 46-72 25 00, Fax -72 25 01E-Mail: [email protected]: www.opsis.se

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

Rolling and extrusion ingot and T-bars Formatgießerei (Walzbarren oder Pressbolzen oder T-Barren)

Cast-Tec GmbH & Co. KGFertigungstechnik & ServiceD-44536 Lünen, Brunnenstraße 138Telefon: 02306/20310-0Telefax: 02306/20310-11E-Mail: [email protected]: www.cast-tec.de

Page 99: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

99ALUMINIUM · 3/2007

2ExtrusionStrangpressen

2.1 Extrusion billet preparation 2.2 Extrusion equipment2.3 Section handling2.4 Heat treatment2.5 Measurement and control equipment2.6 Die preparation and care2.7 Second-hand extrusion plant2.8 Consultancy, expert opinion2.9 Surface finishing of sections2.10 Machining of sections2.11 Equipment and accessories2.12 Services

2.1 Extrusion billet preparation Pressbolzenbereitstellung

Billet transport and storage equipment Bolzen-Transport- und Lagereinrichtungen

Billet heating units Anlagen zur Bolzenerwärmung

Billet heating furnaces Öfen zur Bolzenerwärmung

Am großen Teich 16+27D-58640 IserlohnTel. +49 (0) 2371 / 4346-0Fax +49 (0) 2371 / 4346-43E-Mail: [email protected]: www.ias-gmbh.de

Sistem Teknik Ltd. Sti.DES San. Sit. 102 SOK No: 6/8Y.Dudullu, TR-34775 Istanbul/TurkeyTel.: +90 216 420 86 24Fax: +90 216 420 23 22

www.otto-junker-group.com

Jägerhausstr. 22D – 52152 SimmerathTelefon: +49 2473 601 0Telefax: +49 2473 601 600E-Mail: [email protected]: Herr Teichert

Rudolf-Diesel-Str. 1-3D – 78239 Rielasingen-WorblingenTelefon +49 7731 5998-0Telefax +49 7731 5998-90E-Mail [email protected]: Herr Dr. Menzler

De Chamotte 4NL – 4191 GT GELDERMALSENTelefon: +31 345 574141Telefax: +31 345 576322E-Mail: [email protected]: Herr Schmidt

Kingsbury RoadCurdworthUK - SUTTON COLDFIELD B76 9EETelefon: +44 1675 470551Telefax: +44 1675 470645E-Mail: [email protected]: Mr. Beard

MARX GmbH & Co. KGwww.marx-gmbh.de

see Melt operations 4.13

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbH

see Extrusion 2

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbHOTTO JUNKER (UK) LTD.

see Extrusion 2

Hot shears Warmscheren

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbHTHERMCON OVENS BV

see Extrusion 2

2.2 Extrusion equipment Strangpresseinrichtungen

Oilgear Towler GmbHIm Gotthelf 8D 65795 HattersheimTel. +49 (0) 6145 3770Fax +49 (0) 6145 30770E-Mail: [email protected]: www.oilgear.de

SIGNODE® SYSTEM GMBHPackaging EquipmentNon-Ferrous Specialist Team DSWEMagnusstr. 18, 46535 Dinslaken/GermanyTelefon: +49 (0) 2064 / 69-210Telefax: +49 (0) 2064 / 69-489E-Mail: [email protected]: www.signode.comContact: Mr. Gerard Laks

2.1 Pressbolzenbereitstellung 2.2 Strangpresseinrichtungen2.3 Profilhandling 2.4 Wärmebehandlung 2.5 Mess- und Regeleinrichtungen2.6 Werkzeugbereitstellung und -pflege2.7 Gebrauchte Strangpressanlagen2.8 Beratung, Gutachten2.9 Oberflächenveredlung von Profilen2.10 Profilbearbeitung2.11 Ausrüstungen und Hilfsmittel2.12 Dienstleistungen

Page 100: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

100 ALUMINIUM · 3/2007

Press control systems Pressensteuersysteme

Oilgear Towler GmbHsee Extrusion Equipment 2.2

Extrusion Strangpressen

Temperature measurement Temperaturmessung

Puller equipment Ausziehvorrichtungen/Puller

Hinterbergstrasse 26CH-6330 Cham, SwitzerlandTel.: +41 41 741 5741Fax: +41 41 741 5760E-mail: [email protected]: www.fromm-pack.comSales Contact: Benno Arnet

Packaging equipment Verpackungseinrichtungen

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

H+H HERRMANN + HIEBER GMBHFördersysteme für Palettenund schwere LastenRechbergstraße 46D-73770 Denkendorf/StuttgartTel. +49 (0) 711 / 9 34 67-0Fax +49 (0) 711 / 3 46 0911E-Mail: [email protected]: www.herrmannhieber.de

Homogenising furnaces Homogenisieröfen

Containers Rezipienten

SMS Meer GmbHsee Extrusion equipment 2.2

S+C MÄRKER GmbHSteel TechnologiesD-51779 Lindlar-KaiserauPostfach 11 40Tel.: +49 (0) 2266 / 92 211Fax: +49 (0) 2266 / 92 509E-Mail: [email protected] Internet: www.sc-maerker.de

KIND & CO., EDELSTAHLWERK, KGBielsteiner Straße 128-130D-51674 WiehlTelefon: +49 (0) 2262 / 84 0Telefax: +49 (0) 2262 / 84 175E-Mail: [email protected]: www.kind-co.de

Heating and control equipment for intelligent billet containers Heizungs- und Kontrollausrüstung für intelligente Blockaufnehmer

SMS Meer GmbHJosefstraße 10D-51377 LeverkusenTel. 0214 / 734-01Fax 0214 / 734-1000E-Mail: [email protected]: www.sms-meer.com

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbHOTTO JUNKER (UK) LTD.

see Extrusion 2

2.3 Section handling Profilhandling

OTTO JUNKER GmbHsee Extrusion 2

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbHTHERMCON OVENS BV

see Extrusion 2

MARX GmbH & Co. KGwww.marx-gmbh.de

see Melt operations 4.13

SIGNODE® SYSTEM GMBHPackaging EquipmentNon-Ferrous Specialist Team DSWEMagnusstr. 18, 46535 Dinslaken/GermanyTelefon: +49 (0) 2064 / 69-210Telefax: +49 (0) 2064 / 69-489E-Mail: [email protected]: www.signode.comContact: Mr. Gerard Laks

Section cooling Profilkühlung

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbH

see Extrusion 2

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

Page 101: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

101ALUMINIUM · 3/2007

Section saws Profilsägen

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

KASTO Maschinenbau GmbH & Co. KGIndustriestr. 14, D-77855 AchernTel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 [email protected] / www.kasto.deHersteller von Band- und Kreissägemaschinensowie Langgut- und Blechlagersystemen

Section store equipment Profil-Lagereinrichtungen

H+H HERRMANN + HIEBER GMBHFördersysteme für Palettenund schwere LastenRechbergstraße 46D-73770 Denkendorf/StuttgartTel. +49 (0) 711 / 9 34 67-0Fax +49 (0) 711 / 3 46 0911E-Mail: [email protected]: www.herrmannhieber.de

Custom designed heat processing equipment Kundenspezifische Wärmebehandlungsanlagen

Sistem Teknik Ltd. Sti.see Billet Heating Furnaces 2.1

Sistem Teknik Ltd. Sti.see Billet Heating Furnaces 2.1

Heat treatment furnaces Wärmebehandlungsöfen

INOTHERM INDUSTRIEOFEN- UND WÄRMETECHNIK GMBH

see Casthouse (foundry) 1.5

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

Stackers / Destackers Stapler / Entstapler

IUT Industriell Ugnsteknik ABIndustrivägen 2, 43892 Härryda, SwedenTel. +46 (0) 301 31510Fax +46 (0) 301 30479E-Mail: [email protected]: www.iut.se

Transport equipment for extruded sections Transporteinrichtungen für Profilabschnitte

Stretching equipment Reckeinrichtungen

2.4 Heat treatment Wärmebehandlung

Extrusion Strangpressen

H+H HERRMANN + HIEBER GMBHFördersysteme für Palettenund schwere LastenRechbergstraße 46D-73770 Denkendorf/StuttgartTel. +49 (0) 711 / 9 34 67-0Fax +49 (0) 711 / 3 46 0911E-Mail: [email protected]: www.herrmannhieber.de

Section transport equipment Profiltransporteinrichtungen

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbH

see Extrusion 2

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbH

see Extrusion 2

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbH

see Extrusion 2

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbH

see Extrusion 2

ELHAUS INDUSTRIEANLAGEN GmbHsee Extrusion 2

OTTO JUNKER GmbHELHAUS INDUSTRIEANLAGEN GmbHOTTO JUNKER (UK) LTD.

see Extrusion 2

Do you needmore

information?

E-Mail:[email protected]

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

Page 102: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

102 ALUMINIUM · 3/2007

Homogenising furnaces Homogenisieröfen

IUT Industriell Ugnsteknik ABsee Heat treatment 2.4

Sistem Teknik Ltd. Sti.see Billet Heating Furnaces 2.1

2.5 Measurement and control equipment Mess- und Regeleinrichtungen

Extrusion plant control systems Presswerkssteuerungen

2.10 Machining of sections Profilbearbeitung

Tensai (International) AGExtal DivisionSteinengraben 40CH-4051 BaselTelefon +41 (0) 61 284 98 10Telefax +41 (0) 61 284 98 20E-Mail: [email protected]

Processing of Profiles Profilbearbeitung

Extrusion dies Strangpresswerkzeuge

Haarmann Holding GmbHLudwigsallee 57D-52052 AachenTelefon: 02 41 / 9 18 - 500Telefax: 02 41 / 9 18 - 5010E-Mail: [email protected]: www.haarmann-gruppe.de

Castool Tooling Solutions(North America)21 State Crown BvldScarborough Ontario Canada MIV 4B1Tel.: +1 416 297 1521Fax: +1 416 297 1915E-Mail: [email protected]: www.castool.comSales Contact: Danny Dann

2.6 Die preparation and care Werkzeugbereitstellung und -pflege

IUT Industriell Ugnsteknik ABsee Heat treatment 2.4

Die heating furnaces Werkzeuganwärmöfen

2.7 Second-hand extrusion plant Gebr. Strangpressanlagen

Qualiteam International/ExtruPreXChamps Elyséesweg 17, NL-6213 AA MaastrichtTel. +31-43-3 25 67 77Internet: www.extruprex.com

Form+Test Seidner & Co. GmbHD-88491 RiedlingenTelefax 07371/9302-98E-Mail: [email protected]

Hardness measuring instuments, portable Härtemessgerät, tragbar

Sistem Teknik Ltd. Sti.see Billet Heating Furnaces 2.1

MARX GmbH & Co. KGwww.marx-gmbh.de

see Melt operations 4.13

Inductiv heating equipment Induktiv beheizte Erwärmungseinrichtungen

2.11 Equipment and accessories Ausrüstungen und Hilfsmittel

Am großen Teich 16+27D-58640 IserlohnTel. +49 (0) 2371 / 4346-0Fax +49 (0) 2371 / 4346-43E-Mail: [email protected]: www.ias-gmbh.de

Temperatur measurement Temperaturmessung

ELHAUS INDUSTRIEANLAGEN GmbHTHERMCON OVENS BV

see Extrusion 2

Hardening technology Härtetechnik

Haarmann Holding GmbHsee Die preparation and care 2.6

2.12 Services Dienstleistungen

Haarmann Holding GmbHsee Die preparation and care 2.6

Ageing furnace for extrusions Auslagerungsöfen für Strangpressprofile

LOI Thermprocess GmbHAm Lichtbogen 29D-45141 EssenGermanyTelefon +49 (0) 201 / 18 91-3 10Telefax +49 (0) 201 / 18 91-53 10E-Mail: [email protected]: www.loi.de

Sistem Teknik Ltd. Sti.see Billet Heating Furnaces 2.1

SMS Meer GmbHsee Extrusion equipment 2.2

SMS Meer GmbHsee Extrusion equipment 2.2

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

Page 103: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

103ALUMINIUM · 3/2007

3.1 Casting equipment Gießanlagen

Melting and holding furnaces Schmelz- und Warmhalteöfen

maerz-gautschiIndustrieofenanlagen GmbHGeschäftsbereich AluminiumKonstanzer Straße 37Postfach 170CH 8274 TägerwilenTelefon +41/71/6666666Telefax +41/71/6666688E-Mail: [email protected]: Stefan Blum, Tel. +41/71/6666621

see Equipment and accessories 2.11

Metal filters / Metallfiltermaerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Filling level indicators and controls Füllstandsanzeiger und -regler

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Melt purification units Schmelzereinigungsanlagen

SMS Meer GmbHOhlerkirchweg 66D-41069 MönchengladbachTel. +49 (0) 2161 / 35 00Fax +49 (0) 2161 / 35 06 67E-Mail: [email protected]: www.sms-meer.com

3.2 Rolling bar machining Walzbarrenbearbeitung

Band saws / Bandsägen

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

Slab milling machines Barrenfräsmaschinen

Bar scalping / Barrenfräsen

SMS Demag Aktiengesellschaftsee Rolling bar machining 3.2

SMS Meer GmbHsee Rolling bar machining 3.2

3Rolling mill technologyWalzwerktechnik

3.1 Casting equipment 3.2 Rolling bar machining3.3 Rolling bar furnaces 3.4 Hot rolling equipment 3.5 Strip casting units and accessories3.6 Cold rolling equipment3.7 Thin strip / foil rolling plant3.8 Auxiliary equipment3.9 Adjustment devices3.10 Process technology / Automation technology3.11 Coolant / lubricant preparation3.12 Air extraction systems3.13 Fire extinguishing units3.14 Storage and dispatch3.15 Second-hand rolling equipment3.16 Coil storage systems3.17 Strip Processing Lines

3.1 Gießanlagen 3.2 Walzbarrenbearbeitung3.3 Walzbarrenvorbereitung 3.4 Warmwalzanlagen 3.5 Bandgießanlagen und Zubehör3.6 Kaltwalzanlagen3.7 Feinband-/Folienwalzwerke3.8 Nebeneinrichtungen3.9 Adjustageeinrichtungen3.10 Prozesstechnik / Automatisierungstechnik3.11 Kühl-/Schmiermittel-Aufbereitung3.12 Abluftsysteme3.13 Feuerlöschanlagen3.14 Lagerung und Versand3.15 Gebrauchtanlagen3.16 Coil storage systems3.17 Bandprozesslinien

Homogenising furnaces Homogenisieröfen

3.3 Rolling bar furnaces Walzbarrenvorbereitung

IUT Industriell Ugnsteknik ABsee Heat treatment 2.4

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

OTTO JUNKER GmbHsee Extrusion 2

Page 104: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

104 ALUMINIUM · 3/2007

Drive systems / Antriebe

Annealing furnaces Glühöfen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

IUT Industriell Ugnsteknik ABsee Heat treatment 2.4

EBNER Industrieofenbau Ges.m.b.H.Ruflinger Str. 111, A-4060 LeondingTel. +43 / 732 / 68 68Fax +43 / 732 / 68 68-1000Internet: www.ebner.ccE-Mail: [email protected]

3.4 Hot rolling equipment Warmwalzanlagen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

schwartz GmbHsee Heat treatment 2.4

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

SIEMAG GmbHObere Industriestraße 8D-57250 NetphenTel.: +49 (0) 2738 / 21-0Fax: +49 (0) 2738 / 21-503E-Mail: [email protected] Internet: www.siemag.com

Bar heating furnaces Barrenanwärmanlagen

EBNER Industrieofenbau Ges.m.b.H.see Annealing furnaces 3.3

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

Coil transport systems Bundtransportsysteme

Windhoff Bahn- undAnlagentechnik GmbH

see Anode rodding 1.4

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Hot rolling units / complete plants Warmwalzanlagen/Komplettanlagen

OTTO JUNKER GmbHsee Extrusion 2

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2 Spools / Haspel

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

see Extrusion equipment 2.2

Toolings / Werkzeuge

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

Rolling mill modernisation Walzwerksmodernisierung

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

Roller tracks Rollengänge

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Revamps, equipments & spare parts for continuous casting lines Revamps, equipments & spare parts for continuous casting lines

Bruno Presezzi, Officine MeccanicheVia per Ornago 8I-20040 Burago Molgora (Mi) – ItalyTel. +39 039 63502 229Fax +39 039 6081373E-Mail: [email protected]: www.presezzicaster.comContact: Franco Gramaglia

3.5 Strip casting units and accessories Bandgießanlagen und Zubehör

Cores & shells for continuous casting lines Cores & shells for continuous casting lines

Bruno Presezzi, Officine MeccanicheVia per Ornago 8I-20040 Burago Molgora (Mi) – ItalyTel. +39 039 63502 229Fax +39 039 6081373E-Mail: [email protected]: www.presezzicaster.comContact: Franco Gramaglia

Page 105: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

105ALUMINIUM · 3/2007

Twin-roll continuous casting lines (complete lines) Twin-roll continuous casting lines (complete lines)

3.6 Cold rolling equipment Kaltwalzanlagen

Cold rolling units / complete plants Kaltwalzanlagen/Komplettanlagen

Danieli FröhlingFinkenstrasse 19D-57462 OlpeGermanyTel.: +49 (0) 27 61 / 894-0Fax: +49 (0) 27 61 / 894-200E-Mail: [email protected]: www.danieli-froehling.deSales Contact: Detlef Neumann

SIEMAG GmbHObere Industriestraße 8D-57250 NetphenTel.: +49 (0) 2738 / 21-0Fax: +49 (0) 2738 / 21-503E-Mail: [email protected] Internet: www.siemag.com

Drive systems / Antriebe

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

Coil transport systems Bundtransportsysteme

Windhoff Bahn- undAnlagentechnik GmbH

see Anode rodding 1.4

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

Coil annealing furnaces Bundglühöfen

schwartz GmbHsee Cold colling equipment 3.6

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

see Equipment and accessories 2.11

IUT Industriell Ugnsteknik ABsee Heat treatment 2.4

www.vits.comsee Cold rolling equipment 3.6

Heating furnaces / Anwärmöfen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

OTTO JUNKER GmbHsee Extrusion 2

OTTO JUNKER GmbHsee Extrusion 2

Bruno Presezzi, Officine MeccanicheVia per Ornago 8I-20040 Burago Molgora (Mi) – ItalyTel. +39 039 63502 229Fax +39 039 6081373E-Mail: [email protected]: www.presezzicaster.comContact: Franco Gramaglia

SIGNODE® SYSTEM GMBHPackaging EquipmentNon-Ferrous Specialist Team DSWEMagnusstr. 18, 46535 Dinslaken/GermanyTelefon: +49 (0) 2064 / 69-210Telefax: +49 (0) 2064 / 69-489E-Mail: [email protected]: www.signode.comContact: Mr. Gerard Laks

Process optimisation systems Prozessoptimierungssysteme

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Vits Systems GmbHWinkelsweg 172D-40764 LangenfeldTel.: +49 (0) 2173 / 798-0Fax: +49 (0) 2173 / 798-244E-Mail: [email protected], Internet: www.vits.com

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

Revamps, equipments & spare parts Revamps, equipments & spare parts

Process simulation Prozesssimulation

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

SMS Demag Aktiengesellschaftsee Cold colling equipment 3.6

Bruno Presezzi, Officine MeccanicheVia per Ornago 8I-20040 Burago Molgora (Mi) – ItalyTel. +39 039 63502 229Fax +39 039 6081373E-Mail: [email protected]: www.presezzicaster.comContact: Franco Gramaglia

Page 106: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

106 ALUMINIUM · 3/2007

Windhoff Bahn- undAnlagentechnik GmbH

see Anode rodding 1.4

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

Strip shears Bandscheren

Danieli FröhlingFinkenstrasse 19D-57462 OlpeGermanyTel.: +49 (0) 27 61 / 894-0Fax: +49 (0) 27 61 / 894-200E-Mail: [email protected]: www.danieli-froehling.deSales Contact: Detlef Neumann

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

SMS Demag Aktiengesellschaftsee Hot rolling equipment 3.4

Roll exchange equipment Walzenwechseleinrichtungen

Danieli FröhlingFinkenstrasse 19D-57462 OlpeGermanyTel.: +49 (0) 27 61 / 894-0Fax: +49 (0) 27 61 / 894-200E-Mail: [email protected]: www.danieli-froehling.deSales Contact: Detlef Neumann

Strip rolling mills Bandwalzwerke

3.7 Thin strip / foil rolling plant Feinband-/Folienwalzwerke

Heating furnaces Anwärmöfen

INOTHERM INDUSTRIEOFEN- UND WÄRMETECHNIK GMBH

see Casthouse (foundry) 1.5

Coil annealing furnaces Bundglühöfen

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

see Equipment and accessories 2.11

Rolling mill modernization Walzwerkmodernisierung

Trimming equipment Besäumeinrichtungen

Danieli FröhlingFinkenstrasse 19D-57462 OlpeGermanyTel.: +49 (0) 27 61 / 894-0Fax: +49 (0) 27 61 / 894-200E-Mail: [email protected]: www.danieli-froehling.deSales Contact: Detlef Neumann

maerz-gautschiIndustrieofenanlagen GmbH

see Casting equipment 3.1

Revamps, equipments & spare parts Revamps, equipments & spare parts

Vits Systems GmbHWinkelsweg 172D-40764 LangenfeldTel.: +49 (0) 2173 / 798-0Fax: +49 (0) 2173 / 798-244E-Mail: [email protected], Internet: www.vits.com

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

OTTO JUNKER GmbHsee Extrusion 2

OTTO JUNKER GmbHsee Extrusion 2

Bruno Presezzi, Officine MeccanicheVia per Ornago 8I-20040 Burago Molgora (Mi) – ItalyTel. +39 039 63502 229Fax +39 039 6081373E-Mail: [email protected]: www.presezzicaster.comContact: Franco Gramaglia

SIGNODE® SYSTEM GMBHPackaging EquipmentNon-Ferrous Specialist Team DSWEMagnusstr. 18, 46535 Dinslaken/GermanyTelefon: +49 (0) 2064 / 69-210Telefax: +49 (0) 2064 / 69-489E-Mail: [email protected]: www.signode.comContact: Mr. Gerard Laks

Rolling mill modernization Walzwerkmodernisierung

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

schwartz GmbHsee Cold colling equipment 3.6

www.vits.comsee Thin strip / foil rolling plant 3.7

Page 107: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

107ALUMINIUM · 3/2007

Danieli FröhlingFinkenstrasse 19D-57462 OlpeGermanyTel.: +49 (0) 27 61 / 894-0Fax: +49 (0) 27 61 / 894-200E-Mail: [email protected]: www.danieli-froehling.deSales Contact: Detlef Neumann

Longitudinal splitting units Längsteilanlagen

SMS Meer GmbHsee Rolling bar machining 3.2

Cable sheathing presses Kabelummantelungspressen

Danieli FröhlingFinkenstrasse 19D-57462 OlpeGermanyTel.: +49 (0) 27 61 / 894-0Fax: +49 (0) 27 61 / 894-200E-Mail: [email protected]: www.danieli-froehling.deSales Contact: Detlef Neumann

3.9 Adjustment devices / Adjustageeinrichtungen

Transverse cutting units Querteilanlagen

3.10 Process technology / Automation technology Prozesstechnik / Automatisierungstechnik

Cable undulating machines Kabelwellmaschinen

SMS Meer GmbHsee Rolling bar machining 3.2

4Production AGProduktionsoptimierende LösungenAdenauerstraße 20, D-52146 WürselenTel.: +49 (0) 2405 / [email protected], www.4production.de

SIEMAG GmbHObere Industriestraße 8D-57250 NetphenTel.: +49 (0) 2738 / 21-0Fax: +49 (0) 2738 / 21-503E-Mail: [email protected] Internet: www.siemag.com

Strip flatness measurement and control equipment Bandplanheitsmess- und -regeleinrichtungen

SMS Demag Aktiengesellschaftsee Process technology/

Automation technology 3.10

Thin strip / foil rolling mills / complete plant Feinband- / Folienwalzwerke / Komplettanlagen

Process control technology Prozessleittechnik

ABB Automation Technologies ABForce MeasurementS-72159 Västeras, SwedenPhone: +46 21 342000Fax: +46 21 340005E-Mail: [email protected] Internet: www.abb.com/pressductor

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

SMS Demag Aktiengesellschaftsee Process technology/

Automation technology 3.10

Unitechnik Cieplik & Poppek AGD-51674 Wiehl, www.unitechnik.com

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

Sheet and plate stretchers Blech- und Plattenstrecker

SMS Meer GmbHsee Rolling bar machining 3.2

Strip thickness measurement and control equipment Banddickenmess- und -regeleinrichtungen

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

ABB Automation Technologies ABForce MeasurementS-72159 Västeras, SwedenPhone: +46 21 342000Fax: +46 21 340005E-Mail: [email protected] Internet: www.abb.com/pressductor

Page 108: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

108 ALUMINIUM · 3/2007

3.12 Air extraction systems Abluft-Systeme

Exhaust air purification systems (active) Abluft-Reinigungssysteme (aktiv)

3.16 Coil storage systems Bundlagersysteme

3.11 Coolant / lubricant preparation Kühl-/Schmiermittel- Aufbereitung

Rolling oil recovery and treatment units Walzöl-Wiederaufbereitungsanlagen

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

Rolling oil rectification units Walzölrektifikationsanlagen

Filter for rolling oils and emulsions Filter für Walzöle und Emulsionen

Dantherm Filtration GmbHIndustriestr. 9, D-77948 FriesenheimTel.: +49 (0) 7821 / 966-0, Fax: - 966-245E-Mail: [email protected] Internet: www.danthermfiltration.com

Filtering plants and systems Filteranlagen und Systeme

SIEMAG GmbHObere Industriestraße 8D-57250 NetphenTel.: +49 (0) 2738 / 21-0Fax: +49 (0) 2738 / 21-503E-Mail: [email protected] Internet: www.siemag.com

Bergwerk- und Walzwerk-Maschinenbau GmbHMercatorstraße 74 – 78D-47051 DuisburgTel.: +49 (0) 203-9929-0Fax: +49 (0) 203-9929-400E-Mail: [email protected]: www.bwg-online.com

3.17 Strip Processing Lines Bandprozesslinien

Strip Processing Lines Bandprozesslinen

www.bwg-online.comsee Strip Processing Lines 3.17

www.bwg-online.comsee Strip Processing Lines 3.17

www.bwg-online.comsee Strip Processing Lines 3.17

Colour Coating Lines Bandlackierlinien

Strip Annealing Lines Bandglühlinien

Stretch Levelling Lines Streckrichtanlagen

www.bwg-online.comsee Strip Processing Lines 3.17

Lithographic Sheet Lines Lithografielinien

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

Achenbach Buschhütten GmbHSiegener Str. 152, D-57223 KreuztalTel. +49 (0) 2732/7990, [email protected]: www.achenbach.de

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

SMS Demag AktiengesellschaftEduard-Schloemann-Straße 4D-40237 DüsseldorfTelefon: +49 (0) 211 881-0Telefax: +49 (0) 211 881-49 02Internet: www.sms-demag.comE-Mail: [email protected]äftsbereiche:Warmflach- und KaltwalzwerkeWiesenstraße 30D-57271 Hilchenbach-DahlbruchTelefon: +49 (0) 2733 29-0Telefax: +49 (0) 2733 29-2852BandanlagenWalderstraße 51/53D-40724 HildenTelefon: +49 (0) 211 881-5100Telefax: +49 (0) 211 881-5200Elektrik + AutomationIvo-Beucker-Straße 43D-40237 DüsseldorfTelefon: +49 (0) 211 881-5895Telefax: +49 (0) 211 881-775895

SMS Demag Aktiengesellschaftsee Coolant / lubricant preparation 3.11

SIEMAG GmbHObere Industriestraße 8D-57250 NetphenTel.: +49 (0) 2738 / 21-0Fax: +49 (0) 2738 / 21-503E-Mail: [email protected] Internet: www.siemag.com

3.14 Storage and dispatch Lagerung und Versand

Page 109: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

109ALUMINIUM · 3/2007

Albert Turk GmbH & Co. KGD-58540 Meinerzhagen, Tel. 02358/2727-0, Fax 02358/2727-27

Tolls for the foundry Gießerei-Werkzeuge

4FoundryGießerei

4.1 Work protection and ergonomics 4.2 Heat-resistant technology4.3 Conveyor and storage technology 4.4 Mould and core production 4.5 Mould accessories and accessory materials4.6 Foundry equipment4.7 Casting machines and equipment4.8 Handling technology4.9 Construction and design4.10 Measurement technology and materials testing4.11 Metallic charge materials4.12 Finshing of raw castings4.13 Melt operations4.14 Melt preparation4.15 Melt treatment devices4.16 Control and regulation technology4.17 Environment protection and disposal4.18 Dross recovery

Silca Service- und Vertriebsgesellschaft für Dämmstoffe mbHAuf dem Hüls 6, D-40822 MettmannTel. 02104/97270, Fax 02104/76902E-Mail: [email protected]: www.silca-online.de

4.2 Heat-resistent technology Feuerfesttechnik

Refractories Feuerfeststoffe

Silca Service- und Vertriebsgesellschaft für Dämmstoffe mbHAuf dem Hüls 6, D-40822 MettmannTel. 02104/97270, Fax 02104/76902E-Mail: [email protected]: www.silca-online.de

Casting launder linings Gießrinnenauskleidungen

Promat GmbH – Techn. WärmedämmungScheifenkamp 16, D-40878 RatingenTel. +49 (0) 2102 / 493-0, Fax -493 [email protected], www.promat.de

4.6 Foundry equipment Gießereianlagen

Cast-Tec GmbH & Co. KGFertigungstechnik & ServiceD-44536 Lünen, Brunnenstraße 138Telefon: 02306/20310-0Telefax: 02306/20310-11E-Mail: [email protected]: www.cast-tec.de

4.3 Conveyor and storage technology Förder- und Lagertechnik

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

Casting machines Gießmaschinen

Fluxes Flussmittel

4.5 Mold accessories and accessory materials Formzubehör, Hilfmittel

Solvay Fluor GmbHHans-Böckler-Allee 20D-30173 HannoverTelefon +49 (0) 511 / 857-0Telefax +49 (0) 511 / 857-2146Internet: www.solvay-fluor.de

see Equipment and accessories 2.11

Solution annealing furnaces/plant Lösungsglühöfen/anlagen

ERNST REINHARDT GMBHPostfach 1880, D-78008 VS-VillingenTel. 07721/8441-0, Fax 8441-44E-Mail: [email protected]: www.Ernst-Reinhardt.com

Heat treatment furnaces Wärmebehandlungsöfen

see Foundry equipment 4.6

THERMCON OVENS BVsee Extrusion 2

4.1 Arbeitsschutz und Ergonomie 4.2 Feuerfesttechnik4.3 Förder- und Lagertechnik4.4 Form- und Kernherstellung4.5 Formzubehör, Hilfsmittel4.6 Gießereianlagen4.7 Gießmaschinen und Gießeinrichtungen4.8 Handhabungstechnik4.9 Konstruktion und Design4.10 Messtechnik und Materialprüfung4.11 Metallische Einsatzstoffe4.12 Rohgussnachbehandlung4.13 Schmelzbetrieb4.14 Schmelzvorbereitung4.15 Schmelzebehandlungseinrichtungen4.16 Steuerungs- und Regelungstechnik4.17 Umweltschutz und Entsorgung4.18 Schlackenrückgewinnung

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

4.7 Casting machines and equipment Gießereimaschinen und Gießeinrichtungen

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2

Page 110: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

110 ALUMINIUM · 3/2007

4.13 Melt operations Schmelzbetrieb

Melting furnaces Schmelzöfen

METALLHANDELSGESELLSCHAFTSCHOOF & HASLACHER MBH & CO. KGPostfach 600714, D 81207 MünchenTelefon 089/829133-0Telefax 089/8201154E-Mail: [email protected]: www.metallhandelsgesellschaft.de

Pre alloys Vorlegierungen

4.11 Metallic charge materials Metallische Einsatzstoffe

METALLHÜTTENWERKE BRUCH GMBHPostfach 10 06 29D-44006 DortmundTelefon +49 (0) 231 / 8 59 81-121Telefax +49 (0) 231 / 8 59 81-124E-Mail: [email protected]: www.bruch.de

Büttgenbachstraße 14D-40549 Düsseldorf/GermanyTel.: +49 (0) 211 / 5 00 91-43Fax: +49 (0) 211 / 50 13 97E-Mail: [email protected]: www.bloomeng.comSales Contact: Klaus Rixen

ALERIS Recycling (German Works) GmbHAluminiumstraße 3D-41515 GrevenbroichTelefon +49 (0) 2181/16 45 0Telefax +49 (0) 2181/16 45 100E-Mail: [email protected]: www.aleris-recycling.com

Mould parting agents Kokillentrennmittel

Schröder KGSchmierstofftechnikPostfach 1170D-57251FreudenbergTel. 02734/7071Fax 02734/20784

www.schroeder-schmierstoffe.de

4.8 Handling technology Handhabungstechnik

Vollert GmbH + Co. KGAnlagenbau

see Transport of finished anode elementsto the pot room 1.4

Scholz AGAm BahnhofD-73457 EssingenTel. +49 (0) 7365-84-0Fax +49 (0) 7365-1481E-Mail: [email protected]: www.scholz-ag.de

SRS Amsterdam BVwww.srsamsterdam.com

see Casthouse (foundry) 1.5

4.10 Measurement technology and materials testing Messtechnik und Materialprüfung

Aluminium alloys Aluminiumlegierungen

METALLHANDELSGESELLSCHAFTSCHOOF & HASLACHER MBH & CO. KGPostfach 600714, D 81207 MünchenTelefon 089/829133-0Telefax 089/8201154E-Mail: [email protected]: www.metallhandelsgesellschaft.de

4.9 Construction and Design Konstruktion und Design

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

see Equipment and accessories 2.11

MARX GmbH & Co. KGLilienthalstr. 6-18D-58638 IserhohnTel.: +49 (0) 2371 / 2105-0, Fax: -11E-Mail: [email protected] Internet: www.marx-gmbh.de

Holding furnaces Warmhalteöfen

Büttgenbachstraße 14D-40549 Düsseldorf/GermanyTel.: +49 (0) 211 / 5 00 91-43Fax: +49 (0) 211 / 50 13 97E-Mail: [email protected]: www.bloomeng.comSales Contact: Klaus Rixen

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2

THERMCON OVENS BVsee Extrusion 2

THERMCON OVENS BVsee Extrusion 2

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

Molten Metall Level ControlOstra Hamnen 7SE-430 91 Hono / SchwedenTel.: +46 31 764 5520Fax: +46 31 764 5529E-mail: [email protected]: www.precimeter.seSales Contact: Rolf Backberg

Page 111: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

111ALUMINIUM · 3/2007

Heat treatment technologies Wärmebehandlungsverfahren Wärmebehandlungstechnologien

ALUTEC-BELTE AG, ALUMINIUMTECHNOLOGIELindenweg 5D-33129 DelbrückTel.: +49 (0 ) 52 50 / 98 79-0Fax: +49 (0 ) 52 50 / 98 79-149E-Mail: [email protected]: www.alutec-belte.com

NEOTECHNIK GmbHEntstaubungsanlagenPostfach 110261, D-33662 BielefeldTel. 05205/7503-0, Fax 05205/[email protected], www.neotechnik.com

4.17 Environment protec tion and disposal Umweltschutz und Entsorgung

Dust removal / Entstaubung

4.15 Melt treatment devices Schmelzbehandlungs- einrichtungen

Metaullics Systems Europe B.V.P.O.Box 748NL-2920 CA Krimpen a/d YsselTel. +31-180/590890Fax +31-180/551040E-Mail: [email protected]: www.metaullics.com

4.14 Melt preparation Schmelzvorbereitung

Drache UmwelttechnikGmbHWerner-v.-Siemens-Straße 9/24-26D 65582 Diez/LahnTelefon 06432/607-0Telefax 06432/607-52Internet: http://www.drache-gmbh.de

Degassing, filtration Entgasung, Filtration

Melt treatment agents Schmelzebehandlungsmittel

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

see Equipment and accessories 2.11

Flue gas cleaning Rauchgasreinigung

Dantherm Filtration GmbHIndustriestr. 9, D-77948 FriesenheimTel.: +49 (0) 7821 / 966-0, Fax: - 966-245E-Mail: [email protected] Internet: www.danthermfiltration.com

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

IUT Industriell Ugnsteknik ABIndustrivägen 2, 43892 Härryda, SwedenTel. +46 (0) 301 31510Fax +46 (0) 301 30479E-Mail: [email protected]: www.iut.se

4.18 Dross recovery Schlackenrückgewinnung

maerz-gautschiIndustrieofenanlagen GmbH

see Casting Equipment 3.1

see Equipment and accessories 2.11

Heat treatment furnaces Wärmebehandlungsanlagen

Do you needmore information?

E-Mail:[email protected]

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2

OTTO JUNKER GmbHTHERMCON OVENS BV

see Extrusion 2

HERTWICH ENGINEERING GmbHsee Casthouse (foundry) 1.5

4.16 Control and regulation technology Steuerungs- und Regelungstechnik

OPSIS ABBox 244, S-24402 Furulund, SchwedenTel. +46 (0) 46-72 25 00, Fax -72 25 01E-Mail: [email protected]: www.opsis.se

HCL measurements HCL Messungen

5Materials and RecyclingWerkstoffe und Recycling

Alulight International GmbHLach 22A-5282 RanshofenTelefon ++43 / 7722 / 62216-26Telefax ++43 / 7722 / 62216-11E-Mail: [email protected]: www.alulight.com

Aluminium foam Aluminiumschaum

ECKA Granulate Austria GmbHBürmooser Landesstraße 19A-5113 St. Georgen/SalzburgTelefon +43 7722 62216-41Telefax +43 7722 62216-44Kontakt: Walter RajnerE-Mail: [email protected]

Granulated aluminium Aluminiumgranulate

Page 112: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

L i e f e r v e r z e i c h n i s

112 ALUMINIUM · 3/2007

Wires / Drähte

6.2 Semi products Halbzeuge

Paint stripping / Entlackung

Pretreatment before coating Vorbehandlung vor der Beschichtung

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Joining of light metals Fügen von Leichtmetallen

LASCO Umformtechnik GmbHHahnweg 139, D-96450 CoburgTel. +49 (0) 9561 642-0Fax +49 (0) 9561 642-333E-Mail: [email protected]: www.lasco.com

6.3 Equipment for forging and impact extrusion Ausrüstung für Schmiede- und Fließpresstechnik

Pretreatment before adhesive bonding Vorbehandlung vor dem Verkleben

Hydraulic Presses Hydraulische Pressen

Spectrocolor Interferencecolouring Spectrocolor Interferenzfärben

8LiteratureLiteratur

Taschenbuch des MetallhandelsFundamentals of Extrusion TechnologyGiesel Verlag GmbHVerlag für FachmedienEin Unternehmen der Klett-GruppeRehkamp 3 · 30916 IsernhagenTel. 0511 / 73 04-122 · Fax 0511 / 73 04-157

Giesel Verlag GmbHEin Unternehmen der Klett-GruppeRehkamp 3 · 30916 IsernhagenTel. 0511 / 73 04-122 · Fax 0511 / 73 04-157

International Journal for Industry, Research and Application

Technikcal literature Fachliteratur

Technical journals Fachzeitschriften

Cleaning / Reinigung

Anodising / Anodisation

Adhesive bonding / Verkleben

6Machining and ApplicationBearbeitung und Anwendung

Machining of aluminium Aluminiumbearbeitung

Haarmann Holding GmbHsee Die preparation and care 2.6

6.1 Surface treatment processes Prozesse für die Oberflächenbehandlung

Joining / Fügen

Waste water treatment Abwasseraufbereitung

Thermal coating Thermische Beschichtung

Berolina MetallspritztechnikWesnigk GmbHPappelhain 30D-15378 HennickendorfTel.: +49 (0) 33434 / 46060Fax: +49 (0) 33434 / 46701E-Mail: [email protected] Internet: www.metallspritztechnik.de

Henkel KGaAStandort HeidelbergHans-Bunte-Straße 4D-69123 HeidelbergTel. +49 (0) 6221 / 704-204Fax +49 (0) 6221 / 704-515

Henkel KGaAD-40191 DüsseldorfTel. +49 (0) 211 / 797-30 00Fax +49 (0) 211 / 798-36 36Internet: www.henkel-technologies.com

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

Henkel KGaAsee Prozesse für die Oberflächentechnik 6.1

DRAHTWERK ELISENTALW. Erdmann GmbH & Co.Werdohler Str. 40, D-58809 NeuenradePostfach 12 60, D-58804 NeuenradeTel. +49(0)2392/697-0, Fax 49(0)2392/62044E-Mail: [email protected]: www.elisental.de

Do you needmore

information?

E-Mail:[email protected]

Page 113: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

I M P R E S S U M / I M P R I N T

International

ALUMINIUMJournal

83. Jahrgang 1.1.2007

Herausgeber / PublisherDr.-Ing. Peter Johne

Redaktion / Editorial office Dipl.-Vw. Volker Karow Chefredakteur, Editor in ChiefFranz-Meyers-Str. 16, 53340 Meckenheim Tel: 02225/83 59 643, Fax: 02225/18 4 58E-Mail: [email protected]

Dipl.-Ing. Rudolf P. Pawlek Fax: ++41-274 555 926Hüttenindustrie und Recycling

Dipl.-Ing. Bernhard RiethWalzwerkstechnik und Bandverarbeitung

Verlag / Publishing houseGiesel Verlag GmbH, Verlag für Fachmedi-en, Unternehmen der Klett-Gruppe, Post-fach 120158, 30907 Isernhagen; Rehkamp 3, 30916 Isernhagen, Tel: 0511/7304-0, Fax: 0511/7304-157. E-mail: [email protected]: www.alu-web.de. Postbank/postal cheque account Hanno-ver, BLZ/routing code: 25010030; Kto.-Nr./ account no. 90898-306, Bankkonto/bank account Commerzbank AG, BLZ/routing code: 25040066, Kto.-Nr./account no. 1500222

Geschäftsleitung / General Manager Dietrich Taubert, Tel: 05 11/73 04-147, [email protected]

Objektleitung / Publication ManagerStefan SchwichtenbergTel: 05 11/ 73 04-142, [email protected]

Anzeigendisposition / Advertising layoutBeate SchaeferTel: 05 11/ 73 04-148, [email protected]

Vertriebsleitung / Distribution ManagerJutta IllhardtTel: 05 11/ 73 04-126, [email protected]

Abonnenten-Service / Reader serviceKirsten VoßTel: 05 11/ 73 04-122, [email protected]

Herstellung & Druck / Printing houseBWH GmbH, Beckstr. 10, D-30457 Han-nover

Jahresbezugspreis EUR 285,– (Inland inkl. 7% Mehrwert-steuer und Versandkosten). Europa EUR 289,- inkl. Versandkosten. Übersee US$ 375,– inkl. Normalpost; Luftpost zuzügl. US$ 82,–. Preise für Studenten auf Anfrage. ALUMI-NIUM erscheint zehnmal pro Jahr. Kündi-gungen jeweils sechs Wochen zum Ende der Bezugszeit.

Subscription rates EUR 285,— p.a. (domestic incl. V.A.T.) plus postage. Europe EUR 289,- incl. surface mail. Outside Europe US$ 375,– incl. sur-

face mail, air mail plus US$ 82,–.Aluminium is published monthly (10 is-sues a year). Cancellations six weeks prior to the end of a year.

Anzeigenpreise Preisliste Nr. 47 vom 1.1.2007.

Advertisement rates price list No. 47 from 1.1.2007.Die Zeitschrift und alle in ihr enthaltenen Beiträge und Abbildungen sind urheber-rechtlich geschützt. Jede Verwertung au-ßerhalb der engen Grenzen des Urheber-rechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Über-setzungen, Mikroverfilmungen und die Ein-speicherung und Bearbeitung in elektro-nischen Systemen. Der Verlag übernimmt keine Gewähr für die Richtigkeit der in diesem Heft mitgeteilten Informationen und haftet nicht für abgeleitete Folgen. Haftung bei Leistungsminderung durch höhere Gewalt oder andere vom Verlag nicht verschuldete Umstände (z. B. Streik) ist ausgeschlossen.This journal and all contributions con-tained therein are protected by copyright. Any utilization outside the strict limits of copyright legislation without the express consent of the publisher ist prohibited and actionable at law. This applies in particular to reproduction, translations, microfilming and storage or processing in electronic systems. The publisher offers no guarantee that the information in this volume is accurate and accepts no liability for consequences deriving therefrom. No liability whatsoever is accepted for perfo-mance lag caused by vorce majeure or by circumstances beyond the publisher’s con-trol (e.g. industrial action).ISSN: 0002-6689© Giesel Verlag GmbH

Verlagsrepräsentanz / RepresentativesNielsen-Gebiet 1 (Schleswig-Holstein, Hamburg, Bremen, Niedersachsen ohne Osnabrück):Giesel Verlag GmbHTel: 05 11/73 04-145, Fax: 05 11/73 04-157E-mail: [email protected] www.giesel-verlag.de

Nielsen-Gebiet 2 (Nordrhein-Westfalen, Raum Osnabrück):Medienbüro Jürgen WickenhöferMinkelsches Feld 39, 46499 HamminkelnTel: 0 28 52 / 9 4180, Fax: 0 28 52 / 9 4181E-mail: [email protected] www.jwmedien.de

Nielsen-Gebiet 3a (Hessen, Saarland, Rheinland-Pfalz):multilexa GmbH, publisher servicesUnterm Hungerrain 23, 63853 MömlingenTel: 0 60 22/35 14, Fax: 0 60 22/3 80 80E-mail: [email protected] www.multilexa.de

Nielsen-Gebiet 3b (Baden-Württemberg):G. Fahr, Verlags- und PressebüroMarktplatz 10, 72654 NeckartenzlingenTel: 0 71 72/30 84, Fax: 07172/2 14 78E-mail: [email protected]

Nielsen-Gebiet 4 (Bayern):G. Fahr, Verlags- und PressebüroMarktplatz 10, 72654 Neckartenzlingen

Tel: 0 71 72/30 84, Fax: 07172/2 14 78E-mail: [email protected]

Nielsen-Gebiet 5, 6 + 7 (Berlin, Meck-lenburg-Vorpommern, Brandenburg, Sachsen-Anhalt Sachsen, Thüringen):multilexa GmbH, publisher servicesUnterm Hungerrain 23, 63853 MömlingenTel: 0 60 22/35 14, Fax: 0 60 22/3 80 80E-mail: [email protected] www.multilexa.de

Netherlands, Belgium, LuxembourgBSW International Marketing Bent S. WissingOestbanegade 11 – DK-2100 KopenhagenTel: +4535/385255Fax: +45 35/385220 [email protected]

SwitzerlandJORDI PUBLIPRESSPostfach 154 · CH-3427 UtzenstorfTel. +41 (0)32 / 666 30 90, Fax +41 (0)32 / 666 30 99E-Mail: [email protected] www.jordipublipress.ch

AustriaVerlagsbüro ForstnerBuchbergstraße 15/1, A-1140 WienTel: +43(0)1 / 9 79 71 89 Fax: +43(0)1 / 9 79 1329E-Mail: [email protected]

ItalyMEDIAPOINT & COMMUNICATIONS SRLCorte Lambruschini – Corso Buenos Aires, 8Vo piano – Interno 7, I-16129 GenovaTel: +39(0)10 / 5 70 49 48, Fax: +39(0)10 / 5 53 00 88E-mail: [email protected]

USA, Canada, Africa, U.A.E. etc.John Travis Rayleigh House 2, Richmond Hill Richmond, Surrey TW10 6QX Großbritannien Tel: +44 (0)7799001442 Fax:+44 (0)1344291072 E-Mail: [email protected]

United KingdomJohn Travis Rayleigh House 2, Richmond Hill Richmond, Surrey TW10 6QX Großbritannien Tel: +44 (0)7799001442 Fax:+44 (0)1344291072 E-Mail: [email protected]

Scandinavia and DenmarkBSW International Marketing Bent S. WissingOestbanegade 11 – DK-2100 KopenhagenTel: 0045/35/385255Fax: 0045 /35/385220 [email protected]

FranceDEF & CommunicationAxelle Chrismann48 boulevard Jean Jaurès, F-92110 ClichyTel: +33 (0)1 47 30 71 80, Fax: +33 (0)1 47 30 01 89 E-Mail: [email protected]

ALUMINIUM · 3/2007 113

Page 114: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

114

V O R S C H A U / P R E V I E W

ALUMINIUM · 3/2007

Im nächsten Heft

Special: Die internationale StrangpressindustrieFachbeiträge zu Verfahren und Technologien, Maschinen und Anlagen, Projekte

Der deutsche und europäische Markt für Press-erzeugnisse

Die chinesische Strangpressbranche

Profilbearbeitung und Profilanwendungen

WirtschaftProduktionstechnik als Wettbewerbsfaktor im Sub-stitutionswettstreit zwischen Aluminium und Stahl

Forschung: Herstellung von Schraubenrotoren durch

Strangpressen

Weitere ThemenAktuelles aus der Branche

Wirtschaft, Märkte, Technik

Anwendungen

In the next issue

Special: The international extrusion industryTechnical papers about technologies, plant and ma-chinery, projects

The German and European market for extrusion products

The extrusion industry in China

Processing and applications

EconomicsProduction technology as a factor in the competi-tion between aluminium and steel

ResearchThe extrusion of screw rotors

Other topicsLatest news from the industry

Economics, markets, technology

Applications

Erscheinungstermin: 3. April 2007Anzeigenschluss: 15. März 2007

Redaktionsschluss: 12. März 2007

Day of publication: 3 April 2007Advertisement deadline: 15 March 2007

Editorial deadline: 12 March 2007

Hyd

ro

Page 115: Volume 83 March 2007 International Journal for Industry ... · Special 2007 The aluminium recycling industry The value engineering in downstream sectors of modern aluminium industry

• accessible at least a week before the printed edition

• available from any location

• simple download

• keyword researches

• linked list of contents

• direct contact with advertisers

Please be our guestand discover the benefi ts of the Aluminium ePaper yourself in a free three-month trial:

wwwaluminium-

ePaper.com