VOLTAMMETRY AT GLASSY CARBON ELECTRODESpublications.iupac.org/pac-2007/1984/pdf/5608x1095.pdf ·...

36
Pure & Appi. Chem., Vol. 56, No. 8, pp. 1095—1129, 1984. 0033—4545/84 $3.00+0.00 Printed in Great Britain. Pergamon Press Ltd. ©1984 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ELECTROANALYTICAL CHEMISTRY* VOLTAMMETRY AT GLASSY CARBON ELECTRODES Prepared for publication by M. GROSS' and J. JORDAN2 1Laboratoire d'Electrochimie, Universite Louis Pasteur, Strasbourg, France 2Davey Laboratory, Pennsylvania State University, University Park, USA *Membership of the Commission during the preparation of this report (1981—83) was as follows: Chairman: J. Jordan (USA); Secretary: K. Izutsu (Japan); Titular Members: A. K. Covington (UK); J. Juillard (France); R. C. Kapoor (India); E. Pungor (Hungary); Associate Members: J. F. Coetzee (USA); W. Davison (UK); R. A. Durst (USA); M. Gross (France); H. Kao (China); K. M. Kadish (USA); R. Kalvoda (Czechoslovakia); Y. Marcus (Israel); T. Mussini (Italy); H. W. Nurnberg (FRG); M. Senda (Japan); D. E. Smith (USA); N. Tanaka (Japan); National Representatives: D. D. Perrin (Australia); B. Gilbert (Belgium); W. C. Purdy (Canada); R. Neeb (FRG); K. TOth (Hungary); S. K. Rangarajan (India); W. F. Smyth (Ireland); E. Grushka (Israel); Z. Galus (Poland); G. Johansson (Sweden); J. Buffle (Switzerland); B. Birch (UK); J. Osteryoung (USA); M. Branica (Yugoslavia).

Transcript of VOLTAMMETRY AT GLASSY CARBON ELECTRODESpublications.iupac.org/pac-2007/1984/pdf/5608x1095.pdf ·...

Pure & Appi. Chem., Vol. 56, No. 8, pp. 1095—1129, 1984. 0033—4545/84 $3.00+0.00

Printed in Great Britain. Pergamon Press Ltd.©1984 IUPAC

INTERNATIONAL UNION OF PUREAND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION

COMMISSION ON ELECTROANALYTICAL CHEMISTRY*

VOLTAMMETRY AT GLASSYCARBON ELECTRODES

Prepared for publication byM. GROSS' and J. JORDAN2

1Laboratoire d'Electrochimie, Universite Louis Pasteur,Strasbourg, France

2Davey Laboratory, Pennsylvania State University,University Park, USA

*Membership of the Commission during the preparation of this report (1981—83) was asfollows:

Chairman: J. Jordan (USA); Secretary: K. Izutsu (Japan); Titular Members: A. K.Covington (UK); J. Juillard (France); R. C. Kapoor (India); E. Pungor (Hungary);Associate Members: J. F. Coetzee (USA); W. Davison (UK); R. A. Durst (USA); M. Gross(France); H. Kao (China); K. M. Kadish (USA); R. Kalvoda (Czechoslovakia); Y. Marcus(Israel); T. Mussini (Italy); H. W. Nurnberg (FRG); M. Senda (Japan); D. E. Smith (USA);N. Tanaka (Japan); National Representatives: D. D. Perrin (Australia); B. Gilbert(Belgium); W. C. Purdy (Canada); R. Neeb (FRG); K. TOth (Hungary); S. K. Rangarajan(India); W. F. Smyth (Ireland); E. Grushka (Israel); Z. Galus (Poland); G. Johansson(Sweden); J. Buffle (Switzerland); B. Birch (UK); J. Osteryoung (USA); M. Branica(Yugoslavia).

VOL TAMMETRY

at

GLASSY CARBON ELECTRODES

a) b)M. Gross and 1. lordana) Laboratoire dElectrochimie, Institut Le Bel

Université Louis Pasteur4 rue Blaise Pascal

F - 67000 Strasbourg (France)

b) Department of Chemistry152 Davey Laboratory

Pennsylvania State UniversityUniversity Park, Pennsylvania 16802 (USA)

Abstract

Recommended pretreatment procedures are described for obtaining reproducible andaccurate results. Based on a worldwide survey, information is tabulated on the workingrange of potentials of glassy carbon in water, organic solvents, and molten salts.Voltammetric characteristics of numerous redox couples are documented.

Contents

I. THE STARTING MATERIALS (Appendix A)

II. PREPARING THE GLASSY CARBON ELECTRODE SURFACE FOR ELECTRO-CHEMICAL MEASUREMENTS

1. Physical treatment2. Chemical pretreatment3. Electrochemical pretreatment

III. GEOMETRIC CHARACTERISTICS OF THE GLASSY CARBON ELECTRODES

IV. ELECTROACTIVITY RANGE OF THE GLASSY CARBON ELECTRODE (Appendix B)

V. REDOX SYSTEMS STUDIED ON GLASSY CARBON ELECTRODES (Appendix CTables (1) and (2))

VI. IDENTIFICATION OF THE SOURCES QUOTED IN THIS REPORT (Appendix D)

VII. TABLE OF ABBREVIATIONS AND SYMBOLS

APPENDIXES A, B , C and D.

1096

Voltammetry at glassy carbon electrodes 1097

The present report is intended to describe and to recommend specific treatments in the preparationof glassy caron.(G.C.) as an electrode material.

The information summarized in this report illustrates the unique capabilities of glassy carbonelectrodes with respect to other electrode materials. G.C. electrodes may be employed to obtainaccurate and reproducible results on a large variety of redox systems and in a wide range of solvents.However, this goal can be achieved only if the G.C. electrode receives the proper pretreatment and isthen handled appropriately.

Chemically modified glassy carbon electrodes, especially Hg-plated glassy carbon electrodes (thin filmmercury electrodes, MFE), while important in ultra-trace analytical chemistry, are not reviewed inthe present report. Specific papers have been published on analytical applications of such electrodes.(L. Mart, H.W. Nürnberg, P. Valenta, Fresenius Z. Anal. Chem., 300, 350-362 (1980)).

1. THE STARTING MATERIALS

Nine different commercial sources of G.C. were identified and are listed in Appendix A.

The first paper published on G.C. was by Sh. Yamada and H. Sato (Nature, 193 (4812), p.26 I (1962)).

II. PREPARING THE G.C. ELECTRODE SURFACE FOR ELECTROCHEMICALMEASUREMENTS

Careful checking of answers to an ad hoc questionnaire (see VI below) and of the published literatureleads to the conclusion that many different procedures have been used by various investigators.

However the following general trends emerge from intercomparison of these procedures, as necessarysteps to warrant good reproducibility of the electrochemical results.

1. Physical treatment

Two successive steps are usually involved in the polishing of the G.C. surface

Abrasion with emery paper of increasing fineness (typically 240, 320, 400 and 600 meshper sq.i. or 32, 23, 15, 8, 5, 3, 1 pm SiC , 2 mm. each).

Polishing with water (alumina or chromium III oxide) or oil (diamond) suspensions withdecreasing particle size (typically from 5 - 10 to 0.5 pm or 0.25 pm).

It is critical to rinse carefully the surface of the electrode (with water or another solvent)between two polishing steps.

Some authors (5) (20) (28) recommend to use ultrasonic vibrations to clean the surface (dislodgingimpurities held in pores at the surface). Typical solvents are : hexane, acetone, water. Fewminutes each.Also it was observed (39) (42) that vacuum desorption under 1 torr or less, at normal (42) or high(500°C) temperatures (39), increases the reproducibility of the results (39) (42) and the reversibility(42) of the electrode reactions.

Specially relevant to this question is the recent study (44) of the relationship between the heattreatment temperature of G.C. and the kinetic parameters of various redox reactions. This questionwas also discussed in previous papers (39) (41).

2. Chemical pretreatment

Depending on the intended use of the specific chemical pretreatments may be added to thephysical treatment.

- to obtain an electrode surface free of oxygen containing groupssurface treatments with non oxidizing acids (MCI for instance) (48) in solution free ofoxidizing species ; polarization of the electrode at a potential slightly negative to SCE.

- to obtain an electrode surface free of adsorbed specieswash the electrode with ethanol or chloroform, then wipe the surface with a wet filterpaper.

1098 COMMISSION ON ELECTROANALYTICAL CHEMISTRY

3. Electrochemical pretreatment

The purpose of this pretreatment is to increase the rate of the electron transfer steps at theelectrode surface and also to warrant reasonable reproducibility of the experimental results. Severalauthors made extensive use of electrochemical pretreatments of G.C. electrodes (4) (14) (15) (19) (21)(23) (25) (32) (33) (37) (40) (43 (45). The practice has also been reviewed critically (41) (44).

This pretreatment involves applications of several "polarization cycles" to the electrode, in order toobtain a specified reproducible "surface condition".

However, the potential limits of the cycles have to be set far enough from zero volt (versus SCE), inorder for the activation to occur.

As a general rule, the activation of the G.C. electrode surface occurs when the potential is cycled atintermediate scan rates (typically 0.1 VIs) between moderately negative potentials (i.e. about - 0.5 V)and more positive potentials, viz. + 0.9 to + 1.50 V/SCE (37) (40) (43) (44) (45). It should be noted thatsuch "activated electrodes" exhibit improved reproducibility and reversibility, at the expense of theanalytical sensitivity. The latter is handicapped by enhancement of residual currents (14) (44) (50).

It should also be kept in mind that the G.C. electrode is irreversibly damaged at too positivepotentials (>2 Volts/SCE) and by high anodic currents (>100 mA) (12).

III. GEOMETRIC CHARACTERISTICS OF THE G.C. ELECTRODES

When used for analytical purposes, the preferred geometry is a circular cross-section of a cylindricalrod of small area, whereas other geometries are involved in preparative electrolysis, which requireslarge effective areas (e.g. plates (52), reticulated vitreous carbon (32)).

"Rod cross section" electrodes are usually prepared by inserting rod-shaped electrodes (commercialdiameters range typically from 3 to 8 mm), of about 10 mm in length, into tubes of teflon, orplexiglass, or pyrex, and by sealing the rod to the tube with epoxy (for instance Epo-Tek 349, EpoxyTechnology, Watertown, Mass).

However, it is preferable to use rod electrodes inserted in tight-fitting teflon tubes, in order to avoidcontamination of ambient electrolytes by epoxy.

Typically, fitting is achieved by "forcing" the carbon rod into a teflon sheath whose inner (bore)diameter is about 15 % smaller than the rod.

Electrical contact with the electrode is made via the top of the carbon rod with the aid of silverepoxy or mercury.

IV. ELECTROACTIVITY RANGE OF THE G.C.ELECTRODE

The electroactivity range of G.C. is remarkably large in a wide variety of solvents, as documented inAppendix B. A working range of 3 Volts is common.

However, it should be noted that the electroactivity range of G.C. electrodes is dependent on theprevailing "surface condition" (4 1,44).

V. REDOX SYSTEMS STUDIED ON G.C. ELECTRODES

are listed in Appendix C and include the following couples.

(1) Ferrocene/Ferricinium1

Table (1)

(2) Fe(CN) / Fe(CN) J

(store solutions of Fe(CN) in the dark, to avoid photodegradation).

(3) Other redox systems : Table (2)

Voltammetry at glassy carbon electrodes 1099

VI. IDENTIFICATION OF THE SOURCES QUOTED IN THIS REPORT

Two types of source materials were used

a) answers to a questionnaire distributed to 332 prominent electrochemists worldwide.Forty seven (47) responses were received.

b) published papers.

Each source has been assigned a code number and is identified accordingly, both in the foregoing textand in the following tabulations. The code numbers are listed in Appendix D.

VII. TABLE OF ABBREVIATIONS AND SYMBOLS

ACV Alternating Current VoltammetryAN AcetonitrileASV Anodic Stripping VoltammetryBN BenzonitrileCA ChronoamperometryCV Cyclic VoltammetryDCP Direct Current PolarographyDMF DimethylformamideDPP Differential Pulse PolarographyDPV Differential Pulse VoltammetryEl Electrolysis

Halfwave potentialE Potential of anodic peak in C V

paE Potential of cathodic peak in C Vpc +Fc/Fc Ferrocene/FerriciniumGC Glassy CarbonGCE Glassy Carbon ElectrodeHYV Hydrodynamic VoltammetryIRREV IrreversibleLSV Linear scanning voltammetryM Mole . litre -1Me2SO Dimethylsulfoxiden-PrCN n-propionitrileNHE Normal Hydrogen ElectrodeNPP Normal Pulse PolarographyPC Propylene CarbonatePot PotentiometryPY Direct current polarographyQRev Quasi reversibleRev ReversibleRDE Rotating disk electrodeRDEV Voltammetry on Rotating disk electrodeSCE Calomel Electrode in KCI Saturated solutionSHE Standard Hydrogen ElectrodeSR Scan RateSSCE Calomel Electrode in NaCI satured solutionTBAP Tetra-n-butyl-ammonium perchlorateTBAPF6 Tetrabutyl ammonium hexafluorophosphateTEAP Tetraethyl am monium perchiorateTEAPTS Tetraethyl ammonium para-toluene sulfonylTHAP Tetrahexyl ammonium perchiorateTHF TetrahydrofuranTMAP Tetramethyl ammonium perchlorate

1100 COMMISSION ON ELECTROANALYTICAL CHEMISTRY

APPENDIX A : STARTING MATERIALS

(I) Le Carbone Lorraine, Département Produits Spéciaux, 37 a 41, rue Jean Jaurès, F-92230Gennevilliers (France), Telex F-620847 LCLGV, Tel. (1) 799.98.41.

(2) China Scientific Instruments and Materials Corporation, 75, W. Dengshi Street, Beijing (China),Cable adress : "CSIMC" Beijing.

(3) Fluorocarbon Company, Process Systems Division, 1432 So. Allec St., Anaheim, California,92803 (USA), Tel. 714/956-7330.

(4) Tokai Carbon Co/IMC Industry Group & Associates, Ming-Yu International Building, 8-8,4-chome Ginza, Chuo-Ku, Tokyo 104 (Japon), Telex 3-22 316, 3-22 923, Tel. (535) 4381.

*(5) Atomergic Chemetals Corp., 100 Fairchild Avenue, Plainview, New York, N.Y. 11803 (USA).

(6) Sign Elektrographit, Postfach 1160, D-8901 Meitingen (RFA) (quality "Sigradur"), Telex 053823 Sign d, Tel. (08271) 83 3147.

*(7) Deutsche Carbon, D-6000 Frankfurt, Postfach 56 0209 (RFA).

(8) Metrohm Ltd, CH-9100 Herisau (Switzerland).

* Sellers only : (5), (7) : Le Carbone Lorraine.

APPENDIX B : TABLE OF ELECTROACTIVITY RANGE

Solvent : H20

SupportingElectrolyte

(conc.)

Na SO (0.2M)2 4 + 0.9 - 1.6 SCE (3)Phosphate (O.O5M) (80) (80)

7 < pH < 9

KNO3 (0.5M) — 1.4 SCE 25 (4)

CH3COOH (0.2M)+ + 1.5 - 1.0 Ag/AgCl,KC1 sat 25 (4)

CH3COONa (0.2M)

HCOOH (O.2M)+ + 1.2 - 0.8 Ag/AgC1,KC1 sat 25 (4)

HCOONa (0.2M)

NH4NO3 (O.O5M)+ + 1 .0 > - 1 .0 Ag/AgCl,KC1 sat 25 (4)

NH3 (0.4 M)

Phosphate buffer + 1 .4 - 1 .3 SCE (6)(0.2M)

pH = 6.5NaOH (1M) 0.0 - 1.7 SCE (6)

Salts of seawater, 0.0 - 1.0 Ag, AgCl (8)- pH 2- pH 5 0.0 - 1.4 Ag, AgCl (8)

Anodic limit Cathodic limit- in Volt - - in Volt - Reference Temp. Source(current densityin crn2)

(currentin iiA

densitycm2)

Electrode °C n°

Voltammetry at glassy carbon electrodes 1101

SupportingElectrolyte

(conc.)

Anodic limit- in Volt -

(current densityin iA cm—2)

(;'pp)

Cathodic- in V

(currentin pA

( *

limit -

cit -densitycm2)3A)

ReferenceElectrode

Temp.°C

Sourcen°

K01-1 (0.1 M) + 0.5 - 1.4 SHE (14)

Acetate buffer + 1.4 - 0.7 SHE (14)pH = 4.7

5.102M(NH4CH300

CH3COOH)buffer—after polishing on + 1.5 — 1.25 SCli (15)emery paper 400 (56) (56)

-after polishing + 1.6 - 1.4 SCE (15)

with O.Sp paste (28) (28)

H2S04 (1 N) + 1.2 — 0.30 SCE 20 (17)

(45) (45)

NaClO4 (1 M) + 1.0 + 1.5 SCE (19)

(1); (1)*

CH3COOH (0.1H)1 + 1.1 — 0.5 SCE (20)

CH3COONH4 (0.2 M)' (7.9) (7.9)pH = 5.0

Phosphate andacetate buffers of ' + 1 -0.8 Ag/AgC1,KCI (1M) (22)

pH=5 to 8, in CH3OHand CH3CN

(1M) + 1.5 — 1.0 SCE (23)

I (1DM) + 1.2 — 1.4 SCE

(25) (25)

HBr (1M) + 0.7 - 1.5 SCE (23)

None (electron + 0.5 - 1.2 SCE (25)

photoeiniss ion)

Na2SO4 (0.2M)— 1.2 SSCE 130)

Me4NC1O4 (0.1M)> + 1.4 - 1.6 SSCE (30)

KC1 (5 . io2 M) + 1.1 — 0.8 SCE (35)

(10) (10)

HC1 (1M) + 0.7 -1.0 SCE (6)

HC1 (0.O1M) > + 0.075 — 1.20 SCE (21)

HC1O4 (0.1M) + 1.2 — 0.8 SCE (19)

(1)* (1)

HC1O4 (0.O1M) > + 0.075 - 1.20 SCE (21)

1-1C104(0.O1M)

(0.1M) + 0.45 — 2.3 SCE (23)

J (10) (10)

NaSCN 1 (2M) + 0.35 - 2.5 SCE

1102 CONMISSION ON ELECTROANALYTICAL CHEMISTRY

SupportingElectrolyte

(conc.)

Anodic- in V

(currentin iA

limitolt -

densitycm-2)

Cathodic- in V

(currentin pA

limitolt -

density-2)

ReferenceElectrode

Temp.°C

Sourcen°

HC1O4+KC1O4-2

+ 1.7 - 1.0 SCE (25)

(8.10 M)pH = 1 .5

HC1O4 + KC1O4÷

N20 + 1 .7 - 1 .5 SCE (25)pH = 7

HC1O4 (0.5M) + 0 — 0.4 NI-IE (27)(1) (1)

Solvent : PC

LiClO (0.1 M) + 2.6 - 3.2 Fc/Fc (16)(1000) (1000)

KPF (0.1 M) ÷ 3.6 - 3.2 Fc/Fc (16)6(1000) (1000)

Et NC1 (0.1 M) + 0.4 - 3 Fc/Fc (16)

(1000) (1000)

Bu NPF6 (0.1M) + 3.6 Fc/Fc (16)

(1000)

Solvent : Benzonitrile

Bu4NC1O4 (0.2M) + 1.65 - 2.35 Fc/Fc (16)

Solvent : Molten Salts

PbCl2-KC1 + 1.29 0 Pb/Pb11 440 (9)(77— 23 % in mole) (1400) (1400)

NaOH -H20

+ 0.1 - 1.55 Ag/Ag1 100 (9)

(50- 50 % in mole) (1400) (1400)

Na3A1F6 + 1.7 0 Al/Al11' 1015 (9)(cryolithe)

Al Cl3 — NaCl + 2.15 Al, sat NaC1 175 (17)(100)

LiCl—KC1 + 0.25 Pt, Pt1' (0.1M) 450 (17)

(200)

CuCl2/KC1+ 0.8 - 1 .1 Ag/AgC1 0.02 % (34)

<10) (<10) in solvent

CO in LiC1KC1 <+ 0.2 Ag/Ag 470 (38)

eutectic, (0.75 mol/kg)under ft02 = 1 atm

A1C13-NaCl+ 2.0 0 Al wire (47)

AlCl3-n-Butyl+ 2.0 0 Al wire (47)

pyridiniumchloride

Voltammetry at glassy carbon electrodes 1103

Solvent : CH3CN

Anodic limit Cathodic limitSupportingElectrol te - in Volt - - in Volt - Reference Temp. Source

conc (current density (current density Electrode °C n°'- -' in pA cm2) in pA cm2)

TEAP (0.1 M) + 1.1 - 2.25 Ag,AgNO3 (0.O1M) 25 (4)

LiClO4÷ 2.8 - 2.7 SCE+ junction (6)

TEAl' (0.1 M) + 2.2 Ag/Ag (0.01 M) (12)

TEAP - 2.1 SCE+ junction (18)

50 % C2H5OH÷ - 1.75 SCE+junction (18)

NaOH (pH ca.13.3)

C4H9NPF (0.5 M) - 2.2 Ag/Ag (0.1 M) (24)6(5000)

Et NBF (0.1OM) + 3.5 (26)(5000)

Solvent : THF

LiClO4 (0.3 M) — 2.2 (12)

Solvent : n-CH3 - (CH2) 2 - CN

(n-Bu)4NC1O4 (0.1OM) - 2.5 Ag/Ag (0.01 M)- 60 (26)

Solvent DMF

THAP 0.1 M) + 1.4 — 2.0 SCE 25 (28)

(325) (325)

Solvent : 1,2 - C2H4C12

THAP (0.1 M) + 1.6 — 1.9 SCE 25 (28)

(325 (325)

APP

FM)I

X C

TABLE OF V

OL

TA

MM

F1R

IC D

AT

A

(28)

Ferrocene

AC

V

v=lO

mV

/s

0 ÷÷ 4

00 mV

w=10—100 Hz

ampl= 1

0 m

V

p-p

(Ox)

=

bo

th

l/2(E

pc+

0.2

65

2.5

. io

2 1.8.

+ E

P)

SCE

(including

junction

potential.)

Ag/AgCl

(KC1 1.0mM

no corr.for

junction

potential

SCE

Table 1

CH2C12

0.1 M

(1)

Ferrocene

(44)

Ferrocene

Supporting

Redox system

Solvent electrolyte

or species

(conc.)

(Source n°)

Electrochem.

method used

Exp

erim

. de

tails

Conc. of Red

and or Ox in

the solution

(M)

Reaction

observed

oxidation

reduction

or both

- Cha

ract

eris

tic

potential

measured

(V vs.Ref.el.)

Rate constant

(cm s1)

at standard

redox potential

n

F/mole Ref.

Electrode

CV

0

900mV

100 mV/s

CV

HY

V

0-'-1.6V

100 mV/s

both

Epa=

E

+ 0

.677

+ 0

.380

çiasi rev.

both

Epa=

+ 0

.554

÷ 0

.462

2. 10

both

(1.3±0.2)10_2

TB

AP

0.2 H

NaC

1O4

+

0.01

M

HC1O4

0.1 M

THAP

1M KC1

1M KC1

0.5 H

Ag/AgC1

1 .OMKC1

no corr.for

junction

potential.

SCE

H20 (10%)

+

C2H

5 OH

(90%)

1,2—

C2H4C12

(1)

K3Fe(CN)6

H20

(6)

K3Fe(CN)6

H20

(7)

K3Fe(CN)6

H20

0

CV

25°C

(Ox)

=

5.

(Ox)

=

1o

oxidation

E1/2=+0.52

Rev.

both

+ 0.

238

5.3 . io

2

both

at 20 mV/s:

(7 ± 1) io2

Ep

+ 0

.226

Epa

+ 0

.285

from

v=

20 mV/s

to 20 V/s

K2S04

25°C

CV

lto3V/s

1

Ag/AgC1

(KC1 sat)

Supporting

Redox system

Solvent electrolyte

or species

(conc.)

(Source n°)

Electrochem.

method used

lixperim.

details

Conc. of Red

and or Ox in

the solution

()

Reaction

observed

oxidation

reduction

or both

Characteristic

potential

measured

(V vs.Ref.el.)

Rate constant

(cm s1)

at standard

redox potential

n

F/mole

Ref.

Electrode

HO

0.5M

2

KC1

from -0.40

CV

to +0.75V

at

20 mV/s

(Red) =

1.0

. i0

both

Ep = +

0.2

4 = +

0.1

4 Quasi rev.

1

SCE

H20

0.1 M

H2504

H20

Phosphate

buffer 1

M

pH =

7

H20

0.1 M

phosphate

buffer

+

1M KC1

pH = 3

7.4

H 0

0.1 M

2

phosphate

buffer

pH =

7.5

H20

0.5 M

K2S04

RDE V

CV

10

0 mV/s

CV

50 m

V/s

Turbulent

tubular

electrode

(convective

voltam.)

CV

22°C

polished +

heat

ed

(520 — 540°C)

2.69 ml.miiT

v= 0.2V.miri

1

. 10

1

. 10

3M

5 . io

2

.

1 . io

6 of

each

5.0

. io

of

each

both

E1/2=+ 0.46

both

reduction

both

E

=

p,c

(Ep,a)

+ 0

.235

(+

0.29

2)

+0.

231

(+0.

281)

Rev.

-4

"P10

(2

1)

1.5±

0.2

io2

on anodically

'activated" GCE

(10)

K4Fe(CN)6

(14)

K Fe(CN)

K4Fe (C

N):

(39)

K3Fe(CN)6

(40)

K

3Fe(

CN

)6

(44)

K

3Fe(

CN

)6

K4F

e(C

N)6

1

SHE

Ag/

AgC

l (4

M KC1)

Ag/AgCl

(0.1

MK

C1)

SCE

C

Ui

Table 2

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experim.details

(potential range

explored,

mi-

tial potential,

scan rate, etc

..

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak

other ...)

Rate

constant

(cm s1)

at

standard

redox

potential

n

F/mole E112 or

Epeak of

pij

ferro -

ferr

icya

nide

or

ferrocene/

ferricinium

(1)

bis-hydroxy-

methyl ferro-

H20

KF -O.1M

CV

0 ÷

- 90

0 m

V

50 mV/s

10

Both

Ep,a0.280

Ep,cO.2lS

Quasi-rev

cene

H20

KNO3 -0.1M

CV

0 ÷

- 90

0 m

V

50 mV/s

10

Both

Ep,

a027

7 £p

,c°2

04

Quasi-rev

Quasi-rev

H20

KC1

-0.1 M

CV

0 -

-÷ 9

00 m

V

50 mV/s

10

Both

Ep,a 0.268

Ep,cO.2lO

ReV

CH

2C12

T

BA

P -0

.1M

C

V

0 ÷

-* 9

00

mV

50 mV/s

10

Both

Ep,a0.502

'p,c 0.422

Quasi-rev

CH3CN

CH3CN

CH3CN

TBAP -0.1M

TEAPTS

—0.1M

TBAPF6

- 0

.1 M

CV

CV

CV

0

0

0 ÷-* 900 mV

--* 90

0 m

V

5OmV/s

÷- 9

00 m

V

50 m

V/s

Bot

h

Bot

h

Bot

h

Ep,a0.424

Epc 0.355

Ep,a 0.409

Ep,cO.33O

13p,a

0.401

Ep,c = 0

.332

Quasi-rev

Quasi-rev

Quasi-rev

All potentials are

vs .

A

g/A

gCl (1 .OmKCl)

no correction for junc-

tion potential.

Ref

eren

e:

HIE

Fc

(2)

CH

3CN

0.

1 M

N

aClO

4 C

V

0.1

-0. 7

V, 0. 1V/s

1 . 1

Bot

h (E

P)a

0.41

0.

35

Rev

Ag/AgC1

/ 0.

1M N

aC1

BH

EF

c C

H3C

N

0.1M NaC1O4

CV

0.1 -0.7V, 0.1V/s

1 . 10

Both

0.41

0.35

Rev

/ AFc

CH3CN

0.1 M NaC1O4

CV

0.1 -0. 7V, 0. 1V/s

1 . 1 0

Both

0.42

0.38

Rev

/ BAFc

CH3CN

0.1 M N

aC1O4

CV

0.1 - 0

. 7V, 0. 1V/s

1 . 1 0

Both

0.42

0.38

Rev

/

tt

c-hydroxyferrocene-

--HEFc

acetoferrocene --- A

Fc

1 , 1 '-bis a-hydroxyl ferrocene---BHEFc

1,1'-bis-acetoferrocene

BAFc

U)

Cl)

NA

DH

=

1 ,

4 - D

ihyd

roni

cotin

amid

e adenine dinucleotide.

—3

ca. 5

. 10 -3

ca. 5.10

(2)

HEFc

BHEFc

AF

BAFc

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolrte

(conc.)

n°)

Electrochem.

method used

Experim.details

(potential range

explored,

mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Rate

Potential

constant

measured

(cm s-i)

(V/ef.)

at

Ei/2

Epeak

standard

other ...)

redo

x potential

fl F

/mol

e E112 or

Epeak of

ferro-

ferricyanide

or

ferrocene/

ferricinium

CEp)a

(EPJc

0.1 M

+0.1M NaC1

aqueous

aqueous

aqueous

aqueous I

CV

1

0.1

-0.7V, 0.1V/s

1

. 10

(3)

NADH

+

NA

D

+

+ 2

e

H20

0.2MNa2SO4

0.05M phos-

phate

Both

0.29

0.22

Rev

/ Reference:

Both

0.32

0.25

Rev

/ Ag/AgCl,

Both

0.27

0.20

Rev

/ 0.1 M

Cl

/ /

/ /

/

Ox

+ 0.

4 to

+ 0.

5 V/

SCE

lrrev

2

+ 0.15V

Strong

adsorp-

tion of

NAD

PY and

N.P.P.

at the

RDE

from 0.OV to

0. 9V

-6

from 10

to iü3

7 <

pH

< 9

+ CV on

scan rate up

RDE

to 50Vs1

(4)

CV

OV—-1.5V

Tl(I)/Tl

H20

KNO3 (0.SM)

CA

CD

CD

frI 0 C

D

Cl)

Red

Ep0.7

Red

-1.OV

1

Reference:

SCE

H20

0.2M Phosphate

DPV

buff

er, p

H=6.5

H20

0.2M Phosphate

DPV

buff

er, p

H=6.5

RD

E 40

0 RI4

Range -0.3V to

- 0

.6V

RDE 4

00 R

RVI

Ran

ge +

0.5V

to

+ 1

.5V

RDE 4

00 P24

+0.

5 —

+

1.5V

Irrev

Irrev

2 e

Reference:

SCE

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experim.details

(potential range

explored,

mi-

tial potential,

scan rate, etc

..

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/red.)

(E1/2

Epeak

other ...)

Rate

constant

( 1

) at

standard

redox

potential

n

F/mole E112 or

Epeak

IRKS

ferro-

ferricyanide

or

ferrocene/

ferricinium

(4)

03

Ru(acac)3

CH3CN

TEAP (0.1 M)

CV

1 .1 V — - 2.

0 V

CA

- 1.4V

H20

CH3COOH

HYV

(Ru(H-edta)

- (H

20))

(6)

H20

S4O

S20

(0.2

M)

+

CH

3CO

ON

a

(0.2M)

1M HC1

DPV

Reference:

Ag/AgI'K3

0.01

M

Ref

eren

ce:

Ag/AgCl,

KC1 sat

1

1

0.5

1

(III)/(II)

E

Red

-

1.12

Ox

—1.12

(III) / (V

I)

Red

0.

70

Ox

0.62

(III)/(II)

Red

2Ru(

III)

/ E

1/2

0.8

Ru(

IV)-

R

u (I

II)

Ru (

III)

/ 0

05

Ru(

IV)

-

Ru

(III

)/

0 3

Ru(JJ)

Red

F -0.475V

Ox

E+1.3OV

id5 -

10

Ox

F. +

0.9

5V

Irrev

2 e

System

studied

(Red/Ox)

Supporting

Solvent

electrolrte

(conc.)

Electrochem.

method used

Experim.details

(potential range

explored,

mi-

tial potential,

Conc. of

Red

and/or

Ox

Reaction

observed

Oxidation

Reduction Characteristic

Potential

measured

(V/ref.)

1ate

constant

(cms)

at

n

F/mole E112 or

Epeak of

pijj

ferro-

ferricyanide

(Source n°)

scan rate, etc

...

in the

solution

in

Mole/l

or Both

(E1/2, Epeak

other ...)

standard

redox

potential

or

ferrocene/

ferricinium

(6)

(Ru(4,4'-di-X- 2,2'-dpy)2fl2NO)2

X=substituent listed in Col.8

E1/2

RDE 9

00 R

BVI

io_2io4

Red

XC1 +

0.0

05

0.1cm/sec

le

CH3CN

0.5 M

Range + 1

.0

to

H - 0

.043

TBAPF6

-1 .5V vs Ag/Ag

C61-15

- 0.

082

C4H9 -0.116

CH3 —0.140

OCH3

—0.

275

Dibenzothio-

CH3CN

0.2

M

CV

+ 1

.00 V - 2

. 40V

1

Ox

E

+ 1

.25 V

1 e

Reference:

U)

U)

phen

e N

aC1O

4 S

R

50 m

V/s

ec

E

+ 1

.57 V

1 e

Ag/Ag

U)

F

÷1.95V

le

(0.1M)

U) 0

Dib

enzo

thio

- CH3CN

0.2M

HYV

BIJE 40

0 RFM

10

Ox

E1/2+1.18V

le

CD

phen

e N

aC1O

4 S

R 2

mV

/sec

CD

C)

Ben

zoth

io-

CH3CN

0.1 M

CV

SR 100 mV/sec

Ox

E

+ 1

.40V

1 e

0

phen

e LiClO4

CD

U)

Ben

zoth

io-

CH3CN

0.1M

HYV

RDE

400 RFM

Ox

E1/2 1.52V

le

phene

NaClO4

SR 2 mV/sec

Cyanocobalamin

H20

0.05 M acetate

HYV

RDE 400 REV1

Red

E1 /2 -0.80 V

Irrev

2e

Reference:

buffer, pH= 4.6

SR 2 mV/sec

SCE

Cyanocobalamin

H20

0.05M acetate

CV

SR lOniV/sec

Red

E

p - 0

.93 V

Irrev

2e

buffer, pH=4.6

Range +0.2V

Ox

E

-0.83V

Irrev

le

to

-1.2V

Ox

F

±0.13V

Irrev

le

System

Supporting

Electrochem. Experiin.details

(potential range Conc. of

Red

Reaction

observed

Characteristic

Potential

Rate

constant

n

E112 or

Epeak0f

RRvIARKS

studied

(Red/Ox)

(Source n°)

Solvent

electrolyte

(conc.)

method used

explored,

mi-

tial potential,

scan rate, etc

...

and/or

Ox

in the

solution

in

Mole/l

Oxidation

Reduction

or Both

measured

(V/ref.)

(E1/2 Epeak

other ...)

(cm s1)

at

standard

redox

potential

F/mole ferro-

ferricyanide

or

ferrocene/

ferricinium

(6)

0.05M phosphate

SR 10 mV/sec

Red

E -

0.9

3 Irrev

2e

Reference

Cyanocobalamin

H20

buffer, pH = 7

.0

Range + 0

. 2V

Ox

E

- 0

.83

Irrev

le

SCE

to -1.2V

Ox

E +

0.13

Irrev

le

Cyanocobalamin

H20

0.05M carbonate

CV

SR 10 mV/sec

Red

Ep -0.93

Irrev

2e

buffer, pH = 1

0.0

Range + 0

. 2V

Ox

Ep

- 0

.83

Irrev

1 e

to -1.2V

Ox

E +0.13

Irrev

le

Aquocobalamin

H20

0.05M acetate

CV

SR 50 mV/sec

io4

Red

Ep -0.10

Irrev

le

buffer, pH = 4

.6

Red

E -

0.9

3 Irrev

1 e

Ox

E -0.83

Irrev

le

Ox

+0.13

Irrev

le

Cyanocobalamin

H20

0.05M phosphate

ACV

SR 2 mV/sec

i0

Red

E

- 0

.01

Irre

v le

buffer, pH=7.0

20Hz, ampli-

Red

Ep -0.818

Jasi-rev le

tude 20 mV

Cyanocobalamin

H20

0.05M acetate

ACV

SR 2 mV/sec

ici-4

Red

E

- 0

.1

6

10

le

buffer, pH =4.6

20 Hz, ainpli-

Red

E

- 0

.805

6: 1

ü

1 e

tude 10 mV

Cyanocobalamin

H20

0.05 M carbonate

ACV

SR 2 mV/sec

1

Red

E

p - 0

.1

<

1 0

1 e

buffer,pH=10.0

20Hz, ampli-

Red

E -0.89

4. 103

le

tude 10 mV

Aquocobalamin

H20

0.05M acetate

ACV

SR 2 mV/sec

Red

Ep

- 0

.06

5. 1

0

le

buffer, pH=4.6

20Hz, ampli-

E -0.87

1 .10-2

le

tude 10 mV

Hydroxyco-

H20

0.O5Mcarbonate

ACV

SR 2 mV/sec

j-4

Red

E -0.1

< i0

le

balamin

buffer, pH= 10.0

20 Hz, ampli-

Red

-0.89

6. io

le

tude 10 mV

Hemato-

IX'IF

6M H20

DPV

Ran

ge - 0

.3 V to

1

Red

E

p - 0

.42

Qiasi-rev le

Reference:

porphyrin

- 1

.3 V vs SCE

Red

Ep

- 0

.55

iasi

-rev

1 e

SCE

(NaC1)

Red

-0.90

Qiasi-rev 2e

(NaCl)

SR 1 mV/sec

IX'4F

6M H20

1 .5MHC1O4

Ran

ge +

0.7V

to

io

0.O

V, R

DE

40

0 R

1vI

RD

E 40

0 R

FM

i0

Red

E

- 0

.5

Quasi-rev

Red

Ep

- 0

.7

Quasi-rev

Red

E

-0.9

Quasi-rev

Red

E112+0.45

2.10

Red

E112+ 0.45

2 .

Reference:

SCE

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experim.details

(potential range

explored, mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and! or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak

other ...)

Rate

constant

( s1

) at

standard

redox

potential

n

F/mole

E1/2 or

Epeak of

REMARKS

ferro-

ferricyanide

or

ferrocene/

ferricinium

le

le

2e

2e

(b)

Hemato-

porphyrin

SbC

l6

H20

12MHC1

SbCl6

H2O

6M HC1

SbC15OH

H20

6M HC1

SbC14 (OH)2

H20

6M HC1

SbCl

H20

12MHC1

SbCl6

H20

6M HC1

SbCl5(OH)

H20

6M HC1

SbCl4(OH)2

H20

6M HC1

SO

HO

0.

1MH

C1

2 2

0.1M KC1

pH = 1

.0

SO

HO

0.

1MH

C1

2 2

0.1MKC1

pH = 1

.0

SO

HO

0.1MHC1

2

2

0.1MKC1

pH = 1

.0

CV

SR

10

mV

/sec

HY

v

HJ

HYV

RIJ

E 40

0 RFM

HYV

RD

E 40

0 RfM

CV

SR 50 mV/sec

CV

SR 50 mV/sec

CV

SR 50 mV/sec

CV

SR 50 mV/sec

HYV

Range 0.0 to

- 0.

08V

RD

400R

fM

CV

SR 100 mV/sec

DPV

RUE

400 P24

io—3

io—3

1o

1o

1o

1o

SCE

2e

SCE

Red

E1/2+ 0.40

Irrev

2e

SCE

Red

E1/2 + 0

.05

Irrev

2e

SCE

Red

E

+ 0

.513

1

.

2e

SCE

Ox

E

+ 0

.607

2e

Red

+ 0

.582

2.

2e

SCE

Ox

E

+ 0

.678

2e

Red

E

+ 0

.350

Irrev

2e

SCE

Red

E

+ 0

.10

Irrev

2e

SCE

Red

E1/2 0.48

Irrev

2e

SCE

Red

Ep

-0.49

Irrev

2e

Ox

-0.02

2e

Red

E

-0.51

Irrev

2e

0.09M+0.1M

CV

HC1 dO4

0.09M + 3.

9M

HC

1 NaClO4

1M H

2S04

RDEV

2

.

Red

Epa= 1.410

Ep= 0.690

at 0.2V si

2

. i0

3 Both

"

+ 0

.467

2

.

Bot

h "

+ 0

.520

2

. 10

Both

2

. 10

Both

"

+ 0

.520

{

Bot

h

Rap

id

pois

ning

System

studied

(Rex/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experim.details

(potential range

explored, mi—

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak

other ...)

Rate

constant

(cm s1)

at

standard

redox

potential

n

F/mole F112 of

Epeak of

REMARKS

ferro-

ferricynide

or

ferrocene/

ferricinium

(7)

Cr (

111)/Cr (II)

Ce(IV)/Ce(III)

I Os/I

Fe3/Fe2

Range 0± Scan

Rates (V l)

H20

1M KC1

L SV

0.04 — 0

.2

Cr(III)

2.06 .

10

H 0

1 M H SO

L SV

0.02 -

0.2

Ce(IV) =

2 2

4

4.2 .i0-

II2O

1MNaOH

L SV

0.02 - 0

.12

(103)

=

4 . 10

H20

0.5MK2Ox

CV,25°C

0.04

- 0

.20

Fe(III)=

4

. i0

Red

Epa+l.000

at 0.2Vs1

H2O

H20

H20

0.9M

HC

1O4

0.45

MH

2S04

0.

09M

HC1

CV

CV

CV

Red E =

-1.319

at 0.1V s

Both

Ep,av =

0.21

6

1.27.10k

1

5.3

.

2.1

.

6 at

+ 0.

63V

1.4 .10

1

8.6 . 10

1

1.8 . 10

1

1.2 . 10

1

0.04 — 0

.20

0.006-0.2

0.02 — 0

.2

0.02 — 0

.4

0.02 - 0

.4

Steady State

Both

"

+0.

533

1.34.

CV

No chromic

acid pre-

treatment

Ref.:Ag/AgCl,

KC1 sat

Rate constant

halved in

40 am

Ep,av =

l/2(E

+ Ep

c)

+0.522

5.7 . 1o

1 M H2S04

CV

N

A

2 .

Fe3 Both

NA

1.2 .

NA

9.

0 .

Several qui-

none

/ h

ydro

- quinones

e.g.

Ag/Ag (16)

Ag(bipy) /

Ag(

bipy

) 2+

(02-glow discharge

treated CC)

E'°= 0.50

Oxid.of

E'°

= 0.59

Ag(I) to

Ag(II)

io

Co(III)-*

0.1

; -1.3

Co(II) -

Co

(I)

Rev

1;1

2

Reversibility of the

system increases dras-

tically after exposing

the polished GC sur-

face to an 02 glow-

discharge. Reference

Fc/Fc

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experim.details

(potential range

explored, mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

inMole/l

(*in p.p.b.)

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak,

other ...)

pate

constant

(s)

at

standard

redox

potential

r

F/mole B112 or

1peak of

R]JvlApJ(5

ferro-

ferricyanide

or

ferrocene/

ferricinium

(8)

Trace metals

Cd/Cd

Pb/Pb

Cu/Cu4

Bi/B

i"

Zn/Zn

(11)

W(CN)

H2O

H2O

H20

H2O

H20

NaCl/HC1

Differential

from + 1 .0 V

From

5

Firs

t

0.5M

pulse

anodic

to

SR 10

OV

mV/s

to

0.001 ppb

Red,

then

(Sea water)

stripping

voltanetry

Ox

0.2M KC1

2.5 io

K4W(CN)8

Both

Epa + 0.37

Epc - 0

.21

Rev

CV

SR 100 mV/s

0.2M KC1

CV

SR 100 mV/s

Sat

(Ox)

1

0

NaO3S 4,S03Na

PC

BU

4NPF

6 PO

T

PC

BU

4NPF

6 PO

T,C

V,R

DE

CA

,EL

BN

BU4NPF6

CV

rP

Ref

eren

ce :

SCE

= -

0.50

5

= -

0.59

Co TPP

0

CD

CD

C)

0 0.

CD

Cl)

Rev

1

Experim.details Conc. of

Reaction

Characteristic Rate

E

or

System

Supporting

Electrochem. (potentialrange

Red

observed

Potential

constant

n

REMARKS

studied

Solvent electrolyte method used

explored, mi-

and/or

Oxidation

measured

(cms1)

F/mole peak°

(Rex/Ox)

(conc.)

tial potential,

Ox

Reduction

(V/ref.)

at

ferro-

scan rate, etc

in the

or Both

(E1/2 E e

ak' standard

ferricyanide

(Source n )

...

solu

tion

other

)

redo

x or

in

potential

ferrocene/

Mole/l

ferricinium

16

Reference:

Co2FTF

BN

4F6

CV, CA

10

0.2

; -1.3

Rev

2; 2

Fc/Fc

sep. of

Co2Clam

BN

Bu4NPF6

CV, C

A

idem

0.2

;

- 1

.3

2; 2

kWOr

(II)÷(I)

I

7

-'()

Co2

antic

lam

B

N

BU

4NPF

6 C

V,

CA

10

idem

0.2 ; - 1

.3

Rev

2; 2

Co24C4

BN

Bu4NPF6

CV, C

A

idem

0.0 ; -1.7

Rev

2; 2

sep. of

the 4

peaks:

III

II II

()÷( )*

()

CoPd4C4

BN

BU4NPF6

CV, CA

Co(III}÷Co(II)

0.1

; -1.7

QRev

1; 1

- C

o (I)

Co2FTF4

BN

BU4NPF6

CV, RDE, CA

0.15

; -0.0 ;

Rev

1; 1

EL

II

I

-1.4; -1.65

Co2FTF4

PC

Bu4NPF6

DPP, CV

10

()-(')÷()

0.23

; 0.1

Rev

1; 1

System

:

- m

onop

orph

yrin

:

TPP =

tetr

aphe

nylp

orph

yrin

- bi

porp

hyrin

s :

Co2FTF ,

Co2

clam

,

Co2

antic

lam

,

Co2

4C4

,

Co Pd 4C4 ,

Co2

FT

F4

(see

ref.

53, 54, 55

,

App

endi

x D

).

SR 0.1 V s_i

3 10

for CV

io2

for macro-

electrolyses

CV

SR 0.1 V s

3 10

System

studied

(Red/Ox)

(Source n°)

Solvent

Supporting

electrolyte

(conc.

Electrochem.

method used

Experim.details

(potential range

explored,

mi-

tial potential,

scan ra

te,

etc ...

Conc. of

Red

and/or

Ox

in t

he

solu

tion

in Mole/l

( in pg/l)

('':

1)02

)

Rea

ctio

n ob

serv

ed

Oxi

datio

n R

educ

tion

or

Bot

h

Characteristic

Potential

measured

(V/ref.)

(E1/2, E

peak

. ot

her

...)

Rat

e constant

(cm _1)

at

stan

dard

redox

potential

n

F/mole E1,2 or

eak of

ferro-

ferricyanide

or

ferrocene/

ferricinium

CH2CN

TEAP

0.1M

C

V

and

CH

2CN

macroelec-

trolyses

CH

2CN

B

u4N

BF4

=

C

(12)

/

OR

\

/ C

=C

/ N C

=C

/

NS

R

(15)

C

e3/C

e

Cu

Pb

Cd

(17)

02

/H20

Cl/C

l2

Cr(

III)

/Cr(

II)

Ace

tate

bu

ffer

5.

1 M

HC

1/K

C1

pH = 3

Sea water

pH =

2

H20

RD

E

2V/m

in

100

a 150 t

/mn

Pre-

elec

trol

ys is

at 1 V/ECS

-0.8V

OV

3 in

n pr

e-el

ec-

trol

ysis

DPP SR2m\1s1

Prussian Blue

(PB)

mod

ifie

d CC

LSV

Ano

dic

stri

ppin

g Pulse Pola-

rography.

CV

CV

CV

Ox

0.95<E<1.59

Irrev

2

0.95<E<1.32

Irrev

2

Ox

Ox

0.87

<zE

<1.

60

Irre

v 2

8.10

R

ed

1e

a at

8 . i0

-0.

2V/E

CS

"z1

pg/l

as o

n

Hg

elec

trod

e

1 at

m O

x 02

Red

. 13

1/2=

+

0.2

Irre

v 4

I3=

+O

.2

02 Red is

for ferro-

accelerated

ferricyanide

on PB film

0.052

(450

°C)

Rep

rod.

Hg

film

onGCE

Fused

LiCl - K

C1

(450

°C)

LiC

1 - K

C1

(450

°C)

Cl0/ClO2

CV

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experien.details

(potential range

explored,

mi-

tial potential,

scan rate, etc

••

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/ 1

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak

other ...)

nate

constant

( -1

at

standard

redox

potential

n

F/mole E112 or

EspeakOf

MARKS

ferro-

fenicyanide

or

ferrocene/

ferricinium

(17)

Fe(I

II)/

Fe(I

I)

LiC

l-K

Cl

CV

(450

°C)

Cu(

II)/

Cu(

I)

LiCl-KC1

CV

(450°C)

Cl/Cl2

Fused

NaCl-A1C13

CV

i0=8.6

(175 C)

uA/cm

(175

°C)

t,

(18)

SO2/

SO

tMF

CV

SR 10-500 mV/s

iO-1

E -

0.9V

Qiasi

0.65

AN

0.1

TEAP

El.

(19)

water

var.acids

HYV

+ 0

.7 ,

-0

.1 V

0-6. 10

Red

+ 0

.44

÷ +

0.2

5 ÷io-2

1

-

Fe

water

var.compl.

HYV

+ 0

.06

+ -

0.32

5 10

1

recalc

agents

> io

to SHE

CuO/Cu2+

water

var.inorg.

HYV

Red

various

1 + 1

Reference:

salts, HOAc,

or

SCE

ethylene-

2

diamine

(For details see

:

J. Electroanal.Chem.

38, 349 (1972)

; 39, 229 (1972)

; 44, 117 (1973)).

HYV

1.5 ÷--1.OV

i-5_

iü-2

Red

E.

=1.OV

mit

Hg(II)/Hg(I)

H2S04

1M

"

i05_

i02

Red

0.42

i0

na0.55

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

Method used

Experiin.details

(potential range

explored,

mi-

tial potential,

scan rate, etc

••

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, eak'

other ...)

P.ate

constant

( s-

i) at

standard

redox

potential

n

F/mole

or

Epeak of

pipj

ferro-

ferricyanide

or

ferrocene/

ferricinium

(20)

3, 4-Dihydro-

xybenzylamine

(23)

Sb (V) /Sb(III)

Ce(IV) /Ce(III)

Sn(IV)/Sn(II)

Cu(II)/Cu(I)

Ti (IV) /Ti (III)

Hg(II) /Hg(I)

Epa 0.275

Epc 0.125

at

SR 50 mVs

HO

0.1M

CV

+0.7V -0.OV

2

CflzCOOH

E-

.

=

± 0.OV

mit

0.2M

CH3COO H4

SR 5 - 200 mV 51

pH = 5

.0

9.5M

HW

1.2V÷--1.0V

HC1

SR1OmV.s1

E.

=

0.6V

mit

H2S04

1M

HYV

1.5 -÷-1.0V

E.

=

1.2

mit

4M HC1

+1M-ffir

1.2 ÷--0.5V

9.5M LiBr

HYV

0.0

-0.7V

KC1

0.5M

I-WV

1.2 +-÷-1.OV

(+HC1)

(0.1M)

II2SO4

1- 1

0

HYV

1.2

+-÷ —

0.8V

H2S04

1 M

1

Both

Epa = 0

.49

Epc =

0.2

0

at

SR 50 mVs1

1o_3_102

Red

E1/2 =

0.47

(3000 rpm

and

1 mM)

io3_io2

Red

0.9 (3000 rpm)

102M

Ox

0.4

(300

0 rp

m)

i03÷

÷iO

2 7 mM

Red

-0.3

io3-

io2

1oth

1o-4

O

x 0.

28 (

3000

rpm

) 1 , 5

mM

0.43

(30

00rp

m)

10-3

M

3.2 .

Qiasi-rev 2

4.10

2 1

(4.6

-9.5

) 1

io

1

<<10

<<iO-5

Reference:

SCE

Ref

eren

ce

SCE

na =

0.

2 C

C is stable

in 9.5 M

a= 0

.25

n 0.35

na= 0.32

a=0.49-0.53

f30.

32—

0

a =

0.5

5

2 .

5.6.

2

0 0 CD

CD

N

0 CD

C

l)

2

+0.8 to —2.2 Volt

CV

0.02V/sto 200V/s

400 to 10000rpm

11W

Rate

constant

(cm s-i)

at

standard

redox

potential

Supporting

Solvent

electrolyte

(conc.)

Electrochem.

method used

txper:im .details

(potential range

Conc. of

explored,

mi-

Red

tial potential,

and/or

scan rate, etc

Ox

in the

solution

in

___________

Mol

e/l

React ion Characteristic

observed

Potential

Oxidation measured

Reduction (V/ref.)

or Both

(E1/2, Epeak,

other ...)

n

F/mole

System

studied

(Red/Ox)

(Source n°)

(24)

I/TI

CH3CN

TBAPF6

0.5 M

ITT/TV

U

V/V

T

VIl/VITI

IX/X

XI/XII

Note : (Ru(di-X-dpy)2

I/TI , X

= C

l ITT/TV , X

=

H

(25)

H20

HC1O4

R1RKS

or

Epeak of

ferro-

ferricyanide

or

ferrocene/

ferriciniuni Reference:

Ag/Ag

(0.1 M)

(NO))/2

V/VT, X = C6H5 (phenyl)

VIT/VTTT, X = C4H9 (But)

to

E1/2 0.005

10—i

Red

E1/2 - 0

.043

Red

E1/2 —0.082

Red

E1/2 -0.116

Red

E1/

2 -0.140

Red

E1/2 — 0

.275

IX/X ,

X = C

H3

XI/X

II',

X = O

CH

3

unknown

Red

in this

very

method

obvious

Perhaps

Ox

Interactions

Electron

C-Hydrogen

+

photo -

C-H20

KC1O4

emission

C-Oxygen

0.08M

in electro-

lytes

0.06

1

0.19

1

0.09

1

0.07

1

0.15

1

0.12

1

very

fast

Reactivity of

photogenerated

atomic hydrogen

H - H

3O

H — H2

+

CV

Activation of

the electrode

Study of the

interactions

H

c1

H

MeNNt

CH CN

Me'

\/4

3

U)

Cl)

C

l)

C)

U)

Ref

.: SCE

CD

CD

C

) 0 0 (D

Cl)

Ref

.: SCE

/s#Br(red)

Br

n-Pr

CN

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Experim. details

{potential range

explored,

mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

- C

hara

cter

istic

Potential

measured

(V/ref.)

(E1/2, Epeak.

other ...)

iate

constant

( s1

at

standard

redox

potential

fl F

/mol

e

E112 or

Epç0f

REMARKS

ferro-

ferricyanide

or

ferrocene/

ferricinium

(26)

TBAP

0.1OM

TMP

CV

0.10M

TEAP

0.1O

M

TEAP

0.1O

M

CH

O

CH

3CN

(CH3)3CCHO

/

CH

3CN

rela

t sp

ecie

s

From - 1.

5V

LSV

to -2.7V

SR 0.5- 2 V/s

- 60

to

-

80°C

Fro

m -0.2 V

to +0.5V

SR 0.02— 0.1V/s, 21°C

CV

From +1.0 V

to +3.5V

SR 0.5V/s

CV

From

+2V

to

- 2.

2V

CV

From

ca. - 0

.3V

to

+0.1 V

SR

0.05V/s,

25°C

Referece:

Ag/Ag

(0.01 M)

I,

+

othe

rs

1.5 io

Red

E=-2.0,-2.3

Irrev

2

of each

conformer

io

Ox/Red

E1/

2 =+0.20

1.8.

1O

3 1

2. io-2

Ox

E =

+ 3

.0,

Irre

v +

2.9

1

- 5

. 1

Ox/Red

Many

-

2. 1

0

Ox/Red

Ep,c ,a

Rev

-0.04 -.-—0.15

as a function

of pH

57 % EtOH/

NaOH +

43 % H20

NaNO3

(Vol/Vol)

(OH-) = i0

2+

SM

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Thçperim.details

(potential range

explored,

mi-

tial potential,

scan rate, etc

...

Conc. oT

Red

and/or

Ox

in the

olution

in

Mole /1

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2 Epeak

other ...)

Rate

constant

(cm s-i)

at

standard

redox

potential

n

F/mole

E172 or

Epeak of

ferro-

ferricyanide

or

ferrocene/

ferricinium

(2 7)

02202

H20

0.5M KC1O4

CV and

From

+ 200mV

CO2 =

Red

Irrev

-

Ref

eren

ce:

HYV

2

.

to

-

500m

V i0< CH202

O2+2e

E1/2

<10-2

-- H

202

— 0.

250

H2O2

H20

0.5M KC1O4

CV and

SR 1 to 100mVs

H2O2+2e

HYV

÷H20

positive catalysis by UPD of Pb.

Shifts E1/2 to E1/2-lOOmV f

or

02 reduction.

(28)

1,2—

CO4 (CO)12

C2H4C12

THAP 0.1 M

CV

0 - -

1 .9 V and

4 .

1 0

Both

Epc = -

0.45

Rev

1

B1 /2

Reference:

SCE

0 -

+ 1

.6V

(Fc/Fc)

SR 100 mV/s

+0.52V/SCE

1,2—

Pc H2

C2H4 Cl2

THAP 0.1 M

CV

0 -' -

1 .9 V and

1 .43

.

1 (i

Both

E1 = -

0.70

Rev

1

Pc

(free base

0

+

1 .6V

B2 = -

1 .1

Rev

1

phtalocyanine)

Pc

SR

100 mV/s

(30)

Ru(bpy)/2

H2O

0.1M H SO

CV

E.

.

=0.

OO

V

10's

Ox

E1/2= 1.03

0.065

1

Reference:

2 4

mit

SSCE

0.05 V/sec

-3

Ru(bpy)2

H2O

0.2M Na2SO4

CV

E.

.

=0.

OO

V

10

Ox

=1.01

Rev

1

mit

0.05 V/sec

System

studied

(Red/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochem.

method used

Exp

erim

. det

ails

(p

oten

tial r

ange

explored, mi-

tial potential,

scan rate, etc

...

Con

c.

of

Red

and/or

Ox

in the

solution

in

Mole/l

Rea

ctio

n ob

serv

ed

Oxidation

Reduction

or Both

Cha

ract

eris

tic

Pote

ntia

l measured

(V/ref.)

(Ei/2, Epeak

other ...)

Pate

co

nsta

nt

(cm _1)

at

standard

redox

potential

n

F/mole

B1 /2

or

E

peak

of

REMARKS

ferro-

ferricyanide

or

ferrocene/

ferricinium

(30)

Reference:

Ru(bpy)'2

H20/CH3CN 0.1 M NAP

CV

Et =

0.00

V

1 0

Ox

E1 /2= 1 .15

Rev

1

SSCE

50/50

SR

0.OSV/s

Os(bpy)'2

H20

0.2M 24

CV

"

Ox

= 0

.60

Rev

1

Cp2FeTMA2'

H2O

0.2M Na2504

CV

i0

Ox

= 0

.38

Rev

1

bpy = 2,

2' bipyridine.

Cp2Fe TMA =

(Tet

ram

ethy

lani

mon

io)f

erro

cene

. No correction for junction potential.

(33)

Hg/

Hg

H2O

KNO3

Potentio-

From + 500mV

(M2) =

Rev

2

static

to

- 500mV

Ag/Ag

(Deoxyge-

(1 M)

Galvano-

1

Red

in all

1

CD

CD

nate

d static

to 10-i

and

cases

0

Pb/P

b2

with N2)

vs. the Rev

Ox

2

CD

Cu/

Cu2

potential of

2

the respective

M/M2 electrode

(35)

Fe2/

Fe

HO

0.1M HC1O

DCP

E.

=+OV/SCE

Ox

E1/2,a+O.7

Irrev

1

Reference:

2

4

mit

{Red

E1 /2 ,c = +

0.35

Irrev

i

SE

(flow

0.1MHC1O4

throug

E

=+0.9V/5CE

fOx

E1/2,a=+O.S8

Irrev

h

mit

i03M

KC1

Red

Ei/2c=+O42

Irrev

prepol. at + 0

.25

3 .

10

an

d at -1.25V

(1 mm)

Red

of

dissolved

species

E

(± 0.01)

1' —

0.08

-

1 .45

1-0.11

-0.17

L -

1 .68

I +

0.0

6 1-

0.85

1-1.

20

- 1

.68

[- 1

.31

- 1

.72

1-1.18

1- 1

.75

Reference

SCE

Ep f cou-

nled to

gLassy carbon

1— 1.

08

1.50

- 0

.13

J-

1.17

- 1

.65

1÷ 0

.10

1- 0.

86

1- 1.

19

1- 1.

65

1- 1.

39

- 1

.75

1- 1.

21

- 1

.78

H20

0.1M KOH

HYV

Anodic prepol.

20 pA for 2 mm.

3. 10

Red

- 0

.022

Reference

SHE

System

studied

(Rex/Ox)

(Source

Supporting

Solvent

electrolyte

(conc.)

n°)

Electrochern.

method used

Experim. dietails

(potential range

explored,

mi-

tial potential,

scan rate, etc

...

Gonc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak,

other ...)

Rate

constant

(cm

1)

at

standard

redox

potential

n

F/mole Ei/2 or

EpeakOf

REMARKS

ferr

o-

feiricyanide

or

ferrocene/

ferricinium

(5)

Me2SO

TEAP

CV

T

Pc /

'Pa

CV

1

CV

1

CV

1

C(T- (rn-NH2) P

P)

C(F

e"T

(p-N

H2)

PP)

C(Co"T (m

-NH

2)PP

)

C (C

u'

(p-N

H2)

PP)

C (Z

n'

(p-N

H2)

PP)

C(N

i"T

(p-N

H2)

PP)

(14)

H20

0.1M KOH

Red

-1.143

ca

2

Reference

SHE

System

studied

(Red/Ox)

(Source n°)

Solvent

Supporting

electrolyte

(conc.)

Electrochem.

method used

Experim. details

(potential range

explored,

mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

in Mole/l

(p.p.b.)

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak

other ...)

Rate

constant

(cm s-i)

at

standard

redox

potential

Ti

F/l E

112 or

eeof

RAS

ferro-

ferricyanide

or

ferrocene/

ferricinium

(21)

1 000V

Conc in

Red

E

=

Ref

eren

ce:

Pb2/Pb(Hg)

H20

0.01 M

DCP - A

eposit

peak

SSCE

E

.

=+

0.07

5V

solu

t. Ox

- 0.

430 to

final

HC1 or HC1O4

E1

=50mV (6Oms)

0.025 to

- 0.

530

SR 1 to 5 mV. S1

100 ppb

(28)

Pb2/PbO2

H20

C

H3C

OO

H

1 M

Potential

Step from

:

(Pb") =

Ox

00

(CH

3CO

O)2

Pb

step

0

to

+

275 mV

0.1

U)

0.1 M

at 40 to 60°C

(36)

Ag/Ag

H20

HC1O4

1 .0 M

LSV

From + 0

.80

1 o2

Red

Electro-

Qiasi -rev

Reference:

0

0

reduction

NHE

CD

to +0.40V

starts

CD

o+O

.65O

0

(37)

Reference:

0.5M KC1 or

SCE

RDE V

10 rps

(Red) =

Ox

E1 /2 =

Pos

sibi

- Electrode

H2O

0.25M K2SO4

SR 2 mV 51

+ 0

.450

lity

covered

+2e +H+

+

0.05

M tris

(±0.01)V

ECE

with

or Phosphate

H20

buffer (H 7)

LSV

SR 5 mV s

(Red) =

Ox

Ep = +

0.4

75

mechanism

adsorb.

NAD

DoPAC

(3,4-dihydroxy-

phenyl ethyl-

amine-HC1)

Ox

(+0.590

Irrev

Ox

+0.430

System

studied

(Red/Ox)

(Source

Supporting

Solvent electrolyte

(conc.)

n°)

Electrochem.

method used

Experiim. details

(potential range

explored,

mi-

tial p

otential,

scan rate, etc

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

'Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(E1/2, Epeak

other ...)

Rate

cstant

(cm s)

at

standard

redox

potential

n

F/mole E1 /2 or

Epeak0f

RB'4ARKS

ferro-

ferricyardce

or

ferrocene/

ferricinium

(39)

Ascorbate

(Ascorbic

acid)

4 Me Cat

(Methyl-

catechol)

HO

2

pH

7.4

(0.1M buffer)

CV

SR5O mV. S

1 5.

Ox

E +0.390V

Ionic strengh

to

1 with

KC1

pH = 3.

0 CV

SR 50 mV. s1

5. 10

Ox

0.480

H20

pH = 3.

0

7.4

CV

CV

SR 50

SR 50 mV.

mV.

s s

5. 10

5. 10

Ox

Ox

0.415

0.140

pH=3.0

CV

SR5OmV.s1

5.10

7.4

CV

SR 50 mV. s

5.

pH= 3.0

—3

10

Irrev

DHBA

(3,4-dihydroxy-

benzylamine-

HBr)

(46)

Reterence

Ag/AgCl.

KC1 4M

Syst. more

reversible on

CC heated be-

fore use at

520°C/i torr.

+ 0

.35

+ 0

.253

+ 0

.428

+ 0

.132

+ 0

.437

+ 0

.155

+ 0

.460

+ 0

.217

Reference:

SCE

2-Ethyl-

anthraquinone

CH3OH

C2H5OH

Buffer :

(0.iM NH Cl

+

0.1M NH3)

LSV and CV

between 0

and -1.OV

20°C

Propan-2-ol

" R

ev

+ 0

.710

+ 0

.360

=

— 0

.68

± 0.01 V

System

studied

(Red/Ox)

(Source

Supporting

Solvent electrolyte

(conc.)

n°)

Electrochem.

method used

Exp

erim

. det

ails

(potential range

explored,

mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(Ei/2, Epeak

other ••,)

P,ate

constant

(m s1)

at

standard

redox

potential

n

F/mole

E112 or

EpeakOf

RB'1ARKS

ferr

o-

ferricyanide

or

ferrocene/

ferricinium

(51)

I12O

Britton-Rob.

CV

SR 37 mV. s

Ox

Reference:

buffer

-3

SCE

(pH = 1

1 .9)

2

. 10

E

pa

+ N

a2S

O4

(V)

0.1

M

Me2

NH

+

1.

03

Et2NH

+

1.00

Pr N

H

+

0.90

Me3

N

+

0.76

Me2

NE

t + 0.

74

Me2 NPrITI

÷ 0.75

Me2 NPr'

+

0.72

Me2 NBut

+

0.70

Me2

NC

H2C

O2

+ 0.

73

Me2 NCH2CH2CN

+ 0.

96

Me2 NCH2CONH2

+ 0.

93

Me2 NCH2CH2OH

+ 0.

76

Me2 NCH2Ph

+ 0.

74

Me2 NCH2CH2NH2

+

0.77

Et3

N

+

0.69

PrNMe

+

0.65

H o

Phosphate

2

buffer

(pH = 12)

0.1 M N

a21-1P04

- N

a O

H,

Me2NEt

Me2 N Pr1

Me2 N P

r1

Me2

NBUt

Me2

N-CH2 CH2OH

Me2N-CH2Ph

+

0.64

Me2 N-CH2 CO2H

+

0.63

System

studied

(Red/Ox)

(Source n°)

Supporting

Solvent

electrolyte

(conc.)

Electrochem.

method used

Experim. details

(potential range

explored,

mi-

tial potential,

scan rate, etc

...

Conc. of

Red

and/or

Ox

in the

solution

in

Mole/l

Reaction

observed

Oxidation

Reduction

or Both

Characteristic

Potential

measured

(V/ref.)

(Ei/2, Epeak,

other ...)

Rate

constant

( 1

) at

standard

redox

potential

n

F/mole El12 or

EpeakOf RKS

ferro-

ferricyanide

or

ferrocene/

ferricinium

(52)

5.10

0.1 M Na2504

to

2. io2

Reference:

SCE

1/2 (Epc+Epa)

(V)

+ 0.

67

+ 0.

66

+ 0.

63

+ 0.

62

+

0.67

0

Voltammetry at glassy carbon electrodes 1127

APPENDIX D SOURCE LIST

a) Answers to the questionnaire

(1) Dr. John F. Evans, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55414 (USA).

(2) Pr. Wang Erkang, Changchun Institute of Applied Chemistry, Academia Sinica, Changchun,3ilin 130021 (China).

(3) Dr. 1. Moiroux, Laboratoire de Chimie, E.N.S.E.T., 61, Avenue du Président Wilson, 94230Cachan (France).

(4) Dr. Gen P. Satô, Department of Chemistry, Sophia University, Faculty of Science andTechnology, 1, Kioi-cho 7-chome, Chiyoda-Ku, Tokyo 102 (3apan).

(5) Pr. Royce W. Murray, Kenan Laboratories of Chemistry, University of North Carolina, ChapelHill, North Carolina 27514 (USA).

(6) Pr. 3oseph Jordan, Department of Chemistry, Pennsylvania State University, 152, DaveyLaboratory, University Park, Pennsylvania 16802 (USA).

(7) Dr. Russell 3. Taylor, Department of Defence, Materials Research Laboratories, CorditeAvenue, Maribyrnong, P.O.B. 50, Ascot Vale, Victoria 3032 (Australia).

(8) Dr. Leon Mart /ICH 4, Nuclear Research Center 3uelich, P.O.B. 1913, D-5l70 3Ulich 1 (FRG).

(9) Dr. Plichon, Laboratoire de Chimie Analytique des Milieux Réactionnels, E.S.P.C.I., 10, rueVauquelin, 75231 Paris Cédex 05 (France).

(10) Pr. G.3. Patriarche - Dr. 3.M. Kauffmann, Université Libre de Bruxelles, Institut dePharmacie, Campus Plaine, C.P. 205/6, Boulevard du Triomphe, B-1050 Bruxelles (Belgium).

(11) Dr. Karl Doblhofer, Fritz-Haber Institut der Max-Planck-Gesellschaft, Faradayweg 4-4, D-l000Berlin 33 (FRG).

(12) Dr. G. Le Guillanton, Laboratoire de Synthèse et Electrochimie Organique, UniversitéCatholique de l'Ouest, B.P. 808, 49005 Angers Cédex (France).

(13) Dr. P. Zuman, Department of Chemistry, Clarkson College of Technology, Potsdam, New York13676 (USA).

(14) Dr. M. Brzina and Dr. 3. Weber, 3. Heyrovsk Institute of Physical Chemistry andElectrochemistry, Czechoslovak Academy of Sciences, U továren 254, 10200 Prague 10(Czechoslovakia).

(15) Dr. M. Molina, Laboratoire dElectrochimie Analytique, SCAA - SEA - DCAEA, CentredEtudes Nucléaires, B.P. 6, 92260 Fontenay aux Roses (France).

(16) Dr. Maurice L'Her, Departement de Chimie, Université de Bretagne Occidentale, 6, Avenue LeGorgeu, 29283 Brest Cédex (France).

(17) Dr. Isamu Uchida, Department of Applied Chemistry, Faculty of Engineering, TohokuUniversity, Sendai (3apan).

(18) Dr. Dierk Knittel, Institut fUr Physikalische Chemie, Universität Hamburg, Laufgraben 24,D-2000 Hamburg 13 (FRG).

(19) Dr. Karel tulIk, Charles University, Department of Analytical Chemistry, Albertov 2030,12840 Prague 2 (Czechoslovakia).

(20) Pr. Mitsugi Senda and Dr. Tokuji Ikeda, Department of Agricultural Chemistry, College of Agri-culture, Kyoto University, Sakyo-ku, Kyoto 606 (3apan).

1128 COISS ION ON ELECTROANALYTICAL CHEMISTRY

(21) Dr. 3uerg B. Reust, Inst. für Anorganische, Analytische und Physikalische Chemie, UniversitätBern, Freiestrasse 3, CH-3012 Bern (Switzerland),Div. of Chemical and Physical Sciences, Deakin University, Victoria 3217 (Australia).

(22) Dr. lames Anderson, Department of Chemistry, University of Georgia, Athens, Georgia 30602(USA).

(23) Dr. Paul Kiekens, Rijksuniversiteit Gent, Laboratorium voor Analytische Scheikunde (Pr.Verbeek), Krijgslaan 271-S 12, 9000 Gent (Belgium).

(24) Dr. Kevin 1. Corby, Dupont Experimental Station, E 269/304, Wilmington, Delaware 19898(USA).

(25) Dr. Pierre Vennereau, Laboratoire d'Electrochimie Interfaciale du CNRS, I, Place AristideBriand, 92195 Meudon Cédex principal (France).

(26) Dr. Dennis H. Evans, Department of Chemistry, University of Wisconsin, 1101 UniversityAvenue, Madison, Wisconsin 53706 (USA).

(27) Pr. W. Lorenz, Institut für Physikalische Chemie und Elektrochemie, Lehrstuhl III, UniversitätKarlsruhe, Kaiserstrasse 12, 7500 Karlsruhe I (FRG).

(28) Pr. M. Gross, Laboratoire dElectrochimie, Université Louis Pasteur, 4, rue Blaise Pascal,67000 Strasbourg (France).

(29) Dr. Daniel S. Polcyn, Pope Scientific, Inc., P.O.B. 495, Menomonee Falls, Wisconsin 53051(USA).

(30) Pr. Allen J. Bard, Department of Chemistry, University of Texas, Austin, Texas 78712 (USA).

(31) Pr. Maja, Istituto Di Elettrochimica e Di Chimica Fisica, Politecnico, Corso Duca degliAbruzzi, 24 Torino (Italy).

(33) Dr. B.R. Schariffer, Departamento de Quimica, Universidad Simon Bolivar, Apartado 80659,Caracas 1080 (Venezuela).

(34) Dr. H.C. Brookes, Chemistry Department, University Natal, Durban (South Africa).

(35) Pr. V.D. Linden, Chemical Analytical, Department CT. Technische Hogeschool Twente Postbus217, 7500 AE Enschede (Netherlands).

(36) Pr. R.G. Barradas, Department of Chemistry, Carleton University, Ottawa, Ontario KIS 5B6(Canada).

(37) Pr. Philip J. Elving, Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109 (USA).

(39) Pr. R. Mark Wightman, Department of Chemistry, Chem. Building, Indiana University,Bloomington, Indiana 47405 (USA).

(47) Dr. 1. Robinson, Department of Chemistry, The University, Southampton S09 5NH (G.B.).

b) Published papers

(32) loseph Wang, Department of Chemistry, New Mexico State University, Las Cruces NM 88003(USA).- Electrochimica Acta, 26, n° 12, p. 1721-1726 (1981).

(38) F. Seon, G. Picard and B. Tremillon, Laboratoire dElectrochimie Analytique et Appliquée, LAau CNRS n° 216, Ecole Nationale Supérieure de Chimie de Paris, Université P. et M. Curie,11, rue P. et M. Curie, 75231 Paris Cédex 05 (France).- Electrochimica Acta, 27, n° 10, p. 1357-1368 (1982).

Voltammetry at glassy carbon electrodes 1129

(40) W.3. Blaedel and G.W. Schieffer, Department of Chemistry, University of Wisconsin, Madison,Wisconsin 53706 (USA).- 3. Electroanal. Chem., 80, p. 259-271 (1977).

(41) W.E. Van der Linden and 3.W. Dieker, Laboratory for Analytical Chemistry, University ofAmsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands).- Analytica chimica Acta, 119, p. 1-24 (1980).

(42) D. Laser and M. Ariel, Department of Chemistry, Technion, Israel Institute of Technology,Haifa (Israel).- Electroanalytical Chemistry and Interfacial Electrochemistry, 52, p. 291-303 (1974).

(43) Royce C. Engstrom, Department of Chemistry, University of South Dakota, Vermillion, SouthDakota 57069 (USA).- Anal. Chem., 54, p. 2310-23 14 (1982).

(44) Luke Bjelica, Roger Parsons and M. Reeves, Department of Physical Chemistry, TheUniversity, Bristol BS8 ITS (G.B.).- Proc. Symp. Electrode Processes Electrochemical Society Monograph, p. 190 (1979).- Croatica Chemica Acta, CCACAA , 53 (2), p.211-231 (1980).

(45) W.3. Blaedel and Roger A. 3enkins, Department of Chemistry, University of Wisconsin,Madison, Wisconsin 53706 (USA).- Analytical Chemistry, 46, n° 13 (Nov. 1974).

(46) V.3. 3ennings, T.E. Forster and 3. Williams, Lanchester Polytechnic, Coventry, Warwickshire(G.B.).- Analyst, 95, p. 718-721 (August 1970).

(48) L.S. Chulkina and V.A. Zarinskii, V.1. Vernadskii Institute of Geochemistry and AnalyticalChemistry, Academy of Sciences of the USSR, Moscow (USSR).- 3. Anal. Chem. USSR, 27, p. 2044 (1972).

(49) Ruedi Eggli, Institute of Inorganic Chemistry, University of ZCirich, CH-8001 Zurich(Switzerland).- Analytica Chimica Acta, 97, p. 195-198 (1978).

(50) F. Vydra and P. Petak, 3. Heyrovsky Polarographic Institute, Czechoslovak Academy ofSciences and Ore Research Institute, Prague (Czechoslovakia).- 3. Electroanal. Chem., 24, p. 379-386 (1970).- 3. Electroanal. Chem., 33, p. 161-168, (1971).

(51) Masaichiro Masui, Hiroteru Sayo and Yoshiaki Tsuda, Faculty of Pharmaceutical Sciences,Osaka University, Toneyama, Toyonaka, Osaka-f u (3apan).- 3. Chem. Soc. (B), p. 973-976 (1968).

(52) Masaichiro Masui and Hiroteru Sayo, Faculty of Pharmaceutical Sciences, Osaka University,Toneyama, Toyonaka, Osaka-f u (3apan).- 3. Chem. Soc. (B), p. 1593-1596 (1971).

(53) 3.P. Coliman, M. Marrocco, C.M. Elliott and M. L'Her- 3. Electroanal. Chem., 124, p. 113 (1981).

(54) 3.P. Coilman, C.M. Elliott- Proc. Nat. Acad. Sci. USA, 7, (1977).

(55) 3.P. Coliman, P. Denisevich, Y. Konai, M. Marocco, C. Koval and F. Anson- 3. Amer. Chem. Soc., 102, p. 6027 (1980).

1954 SUBJECT INDEX

Transport properties of electrolytes forapplied research and technologyfrom infinite dilution to saturationin mixed-solvent solutions

Transport property measurements, insightsinto solute—solute—solvent interactionsfrom

Triglycerides in fats and oils, standardisedmethod for determining

Tungsten, Mo, and Re enolates, synthesisand C—C bond-forming reactions of

U.v. microscopy, oxidation and stabilizationstudies on polymers 1727

Watersfresh, pH determination in low ionic

strengthnatural, physical chemistry of

Wavegu ides, preparation of opticalWhite blood cells, morfometry of

X-ray scattering measurements of order innon-crystalline polymers 1627

Volume, Issue Page no. and Correctionand Year location

56, 8 (1984) 1102Solvent: Molten SaltsColumn 1, item 6

2i CuCl2/KC1CaCl2/KC].

for cholesterol oxygen oxidoreductaseread cholesterol oxidase suspension

903Section 6.5line I

903Section 7.2line 3

for (catalase—suspension 1)read (catalase—suspension)

for catalase—suspension 1 (6.5)read cholesterol oxidase suspension (6.4)

1071355369

1083

151 5R

1789

1641993

Ultra high modulus polyethylenecomposites

uPVC pipe, understanding brittle failure of

877R10151299599

Errata

57, 6 (1985) 903Section 6.4line I