Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods...

81
Voltammetric methods and electrodes

Transcript of Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods...

Page 1: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Voltammetric methods and electrodes

Page 2: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Electroanalytical methods

Interfacial methods

Bulk methods

Static methodsI ~ 0

Dinamic methodsI # 0

Conductometry(G = 1/R)

Conductometric Titrations (volume)

Potentiometry(E)

Potentiometric titrations (volume)

Constant current

Coulometric Titrations(Q = It)

Electrogravimetry(wt)

Controlled potential

Electrogravimetry (wt)

Amperometric titrations (volume)

Voltammetry[ I = f (E) ]

Const. electrode potential

coulometry (Q = ∫0

1 idt

Introduction

Page 3: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Five Important interrelated concepts to understand electrochemistry: (1) the electrode’s potential determines the analyte’s form at the electrode’s surface;

(2) the concentration of analyte at the electrode’s surface may not be the same as its concentration in bulk solution;

(3) in addition to an oxidation–reduction reaction, the analyte may participate in other reactions;

(4) current is a measure of the rate of the analyte’s oxidation or reduction; and

(5) we cannot simultaneously control current and potential.

L. Faulkner, Understanding electrochemistry: some distinctive concepts,” J. Chem. Educ., 60, 262 (1983) ; P. T. Kissinger, A. W. Bott, Electrochemistry for the Non-Electrochemist,” Current Separations, 20, 51 (2002)

Page 4: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

1) The Electrode’s Potential Determines the Analyte’s Form

Fig. Redox ladder diagram for Fe3+/Fe2+ and for Sn4+/ Sn2+ redox couples. The areas in blue show the potential range where the oxidized forms are the predominate species; the reduced forms are the predominate species in the areas shown in pink. Note that a more positive potential favors the oxidized forms. At a potential of +0.500 V (green arrow) Fe3+ reduces to Fe2+, but Sn4+ remains unchanged.

Page 5: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

2) Interfacial Concentrations May Not Equal Bulk Concentrations

Fig. Concentration of Fe3+ as a function of distance from the electrode’s surface at (a) E = +1.00 V and (b) E = +0.500 V. The electrode is shown in gray and the solution in blue.

Page 6: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Nernst Equation

E = Eo + 0.0592/n + log [ox]/[red]

Fe3+ + e Fe2+

E = Eo + 0.0592/1 + log [Fe3+]/[Fe2+]

3) The Analyte May Participate in Other Reactions

Fe3+ + OH- FeOH2+

Page 7: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

4) We Cannot Simultaneously Control Both Current and Potential

5) Controlling and Measuring Current and Potential

Page 8: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 9: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 10: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 11: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 12: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 13: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Controlled Potential Methods (Voltammetry)

Page 14: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Fig. Flow patterns and regions of interest near the work electrode in hydrodynamic voltammetry

Page 15: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 16: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Controlled Potential Methods (Voltammetry)

O + ne R (1)

E = Eo` + 0.0592/n + log CsO / Cs

R (2)

E = potential applied to electrode (mV)

Eo`= formal reduction potential of the couple vs Eref

n = number of electrons in reaction (1)

CsO = surface concentration of species O

CsR = surface concentration of species R

where

Page 17: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Table. Relationship of E to surface concentrations#

E, mV CsO / Cs

R

236 10,000/1

177 1,000/1

118 100/1

59 10/1

0 1/1

-59 1/10

-118 1/100

-177 1/1,000

-236 1/10,000

For a reversible system, n = 1, Eo`= V

Page 18: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 19: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

The current at an electrode is related to the flux (rate of mass transfer) of material to the electrode

Considering x = and C = CO – CsO

Where = Nernst diffusion layer

(3)

Page 20: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

4(4)

(5)

Where ilc is limiting cathodic current and CsO is zero

Page 21: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 22: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 23: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Cyclic Voltammetry

Page 24: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

FeIII(CN)63- + e FeII(CN)6

4- (1)

FeII(CN)64- FeIII(CN)6

3- (2)

Page 25: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

E = Eo` + 0.0592/1 log [FeIII(CN)63-] / [FeII(CN)6

4-] (3)

Eo` = E1/2 = (Epa + Epa)/ 2 (4)

Nernst Equation for a reversible system

Ep = Epa – Epc = 0.059/ n (5)

The peak current for a reversible system is described by Randles-

Sevcic Equation for the forward sweep for the first cicle:

ip = 2.69 105 n2/3 A D1/2 1/2 C (6)

Where: ip = peak current (A); n = number of electrons; A = electrode

area (cm2); D = diffusion coefficient (cm2 / s); = scan rate (V /s) and

C = concentration (mol / cm3)

Page 26: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 27: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Cronoamperometria

Page 28: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 29: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 30: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Figura (A) Representação esquemática da aplicação de potencial em voltametria de pulso diferencial. A corrente é amostrada em S1 e S2 e a

diferença entre elas é registrada; (B) Voltamograma de pulso diferencial.

SCHOLZ, F., ed (2005). Electroanalytical methods. New York: Springer.

Page 31: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 32: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Figura (1) Forma de aplicação de potencial na voltametria de onda quadrada; (2) Voltamogramas de onda quadrada esquemáticos para um sistema reversível (A) e para um sistema totalmente irreversível (B).

SOUZA, D.; MACHADO, S. A. S.; AVACA, L. A. Química Nova, Vol. 26, 81-89, 2003.LOVRIC, M.; KOMORSKY- LOVRIC, S.; MIRCESKI, V. Square Wave Voltammetry. ed. (2007), Berlin: Springer.

Page 33: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 34: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 35: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 36: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 37: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 38: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 39: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Eletrodo de diamante dopado com boro8000 ppm; 0,72 cm2

Glassy carbon electrode

Eletrodos de carbono vítreo da Tokai Carbon Co

Page 40: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

-3.0 3.0

0

1M H2SO4

1M NaOH

1M H2SO4

1M KCl

1M NaOH

Pt

Hg

1M HClO4

0.1M KCl

C

0.5 M H2SO4BDD

- 1.5 +2.5

Approximate potential ranges for platinum, mercury, carbon and boro-doped diamond electrodes

Page 41: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Glassy carbon electrode application

Page 42: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 43: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 44: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 45: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 46: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Aplicação de EQM em sistema FIAAplicação de EQM em sistema FIA

Eletrodo base:

Eletrodo de carbono vítreo

Preparação do Eletrodo:

Ciclagem de potencial entre -0,2 e 0,6 V (vs. Ag/Cl) em solução de 1,0 mmol L-1

FeCl3.6H2O e 10 mmol L-1 de K3[Fe(CN)6]

Funcionamento

[Fe(CN)6]4- [Fe(CN)6]3- + e-

[Fe(CN)6]3- + AA [Fe(CN)6]4-

Comportamento voltamétrico do sistema

Page 47: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Aplicação de EQM em sistema FIAAplicação de EQM em sistema FIA

Page 48: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan

Janegitz, B.C., Marcolino-Junior, L.H., Campana-Filho, S.P.,Faria, R.C., Fatibello-Filho,O. Sensors and Actuators B, 142, 260 (2009)

Page 49: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

49

Comparison: with and without carbon nanotube functionalization

Anodic stripping voltammetry

•80 % CNTs (w/w) + 20 % nujol (w/w)

•-0.2V for 270 s

• 25 mV s-1

Figure XX - Linear voltammograms obtained with electrodes containing functionalized nanotubes not (A) and functionalized (B), in 0.1 mol L-1 NaNO3 solution in the presence of Cu2 + 9.0 x 10-5 mol L-1.

-0.2 0.0 0.2 0.4 0.6 0.8-50

0

50

100

150

200

250

300

I/

A

E / V vs. Ag/AgCl

-0.2 0.0 0.2 0.4 0.6 0.8

0

50

100

150

200

250

300

I/A

E/ V vs. Ag/AgCl

Carbon Nanotubes Functionalized

(A) (B)

Page 50: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

50

Anodic stripping voltammetry

•-0.2V por 270 s•25 mV s-1

Figura XX -. Stripping voltammetry for EPN (A), EPNM-QTS (B), EPNM-QTS-GA (C) and EPNM-QTS-ECH (D) in 0.1 mol L-1 NaNO3 solution in the presence of Cu2 + 9.0 x 10-5 mol L-1., = 25mV s-1, a 25ºC.

-0.2 0.0 0.2 0.4 0.6 0.8-10

0

10

20

30

I/A

E/V vs. Ag/AgCl

A

D

EPNM-QTS-ECH

Page 51: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Analytical CurveAnalytical Curve

Figura XX - Voltammograms obtained for the construction EPNM-QTS-ECH with 15% (w/w) QTS-ECH in 0.05 mol L-1 NaNO3 solution.

Figura XX - Analytical curve:

• 7.93 x 10-8 a 1.6 x 10-5 mol L-1

L D =1.06 x10-8 mol L-1 ,

LQ= 7.93 x 10-8 mol L-1

RSD= 3.12%

-0.3 -0.2 -0.1 0.0 0.1 0.2

-4

0

4

8

12

16

I/

A

E/ V vs. Ag/AgCl

1

6

-0.2 0.0 0.2 0.4 0.6 0.8-50

0

50

100

150

200

250

300

I/

A

E / V vs. Ag/AgCl

Page 52: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Concentration de Cu (II) (mol L-1)

Sample Method

comparative*

Method

proposed

Erro relativo %

Urine samples0.50 ± 0.03 0.52 ± 0,09 4,.0

2.4 ± 0.2 2.3 ± 0.1 -4.1

Industrial Waste3.5 ± 0.2 3.6 ± 0.1 1.0

10.7 ± 0.2 11.1 ± 0.1 3.6

Determination of Cu2+

Page 53: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Voltammetric determination of ciprofibrate using a glassy carbon electrode modified with functionalized carbon nanotube within a poly (allylamine hydrochloride) film

ClCl

O

CH3

CH3

COOH

o The ciprofibrate is a fibrate and present Antilipemic effect (lipid

lowering);

o Fibrates are indicated for patients who, after tests confirmed that the

increase in endogenous triglecirideos is due to poor nutrition;

o A possible interest in determining the ciprofibrate addition to quality

control of drugs;

Figure XXX - Ciprofibrate molecular estructure.

Page 54: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Functionalization of MWCNTs in acid solution (H2SO4/HNO3 3:1)

Carbon nanotubes dispertion in PAH solution [dispertion]=1mg mL-1

Film formation on the elcetrode by casting technique (20 μL)

Page 55: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

(a)

(b)

(c)

(d)

Figure XX - PAH SEM images (a) and (b); MWCNTs/PAH SEM image (c) and (d)

Page 56: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Linear equation: i= -0.700 + 4.75 x 104 x C

Concentration range: 13.3 to132 mol L-1

Detection Limit: 8.34 mol L-1

Figure XX - Analytical curve obteined for ciprofibrate determination in phosphate buffer solution 0,01 mol L-1 by VPD. = 12 mV s-1, A= 60 mV, t= 100 ms

Analytical curve

Page 57: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Sample Label value (mg) DPV

method

HPLC

method

REc1

A 100 100 ± 3 98±5 2

B 100 99 ± 4 100±7 -1

C 100 99 ± 6 100±4 -1

D 100 100 ± 6 104±2 -4

Table XX - Ciprofibrate determination in pharmaceuticals formulations using GCE-MWCNTs/PAH and standard method

REc1 = 100 x (VPD value – Reference method value) / Reference method value

Page 58: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Inhame (Alocasia macrorhiza)

Abacate (Persea americana)

Batata inglesa (Solanum tuberosum)

Frutas e vegetais empregados como fontes da PFO (POLIFENOL OXIDASE) e PER (PEROXIDADE) em bioreatores e biossensores.

Abobrinha (Cucurbita pepo)

Alcachofra (Cynara scolymus L.)

Banana (Musa paradisiaca)

Batata doce (Ipomoea batatas L.

Lam.)

Berinjela (Solanum melongena)

Cara (Dioscorea bulbifera)

Coco (Cocus nucifera L.)

Jaca (Artocarpus integrifolia L.)

Mandioca (Manihot utilissima)

Nabo (Brassica

campestre ssp.)Pêssego

(Prunus persica)Rabanete

(Raphanus sativus)

Page 59: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Enzimas São proteínas que agem como catalisadores biológicos:

enzimaComposto AComposto A

Composto BComposto B

Centro ativo ou sítio catalítico Não há consumo ou modificação

permanente da enzima

Page 60: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Emil Fisher, década 50

Daniel Kosland, 1970

Modelo chave-fechadura

Modelo Encaixe induzido

E e S se deformam quando em contato (alteração

conformacional), para otimizar o encaixe

Page 61: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Biossensor para glicose - Radiometer®

Page 62: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.
Page 63: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

OH

+O2+ H+3 PFOOH

OH

+ H2O

OHOH

+ 1/2 O2

OO

H2O+

o-quinona

Catecol

Catecol

Fenol

Fig. Esquema de um biossensor

PFO

Page 64: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Low cost PortabilityPracticality

64

Screen-printed electrodes

Page 65: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

“screen-printed” or “silk-screen” Technology the possibility of mass production Extremely low cost Simplicity Complete electrochemical system

WorkCounter

Reference

65

Screen-printed electrodes

Figura 5: Struture of screen printed electrodes

Page 66: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Substrates

Plastic materials (Polyester)

Ceramics

Metals

Work electrode

•Addition

•Deposition

Metalic films

Nanoparticles

Carbon nanotubes

Enzymes

Polymers

Complexation agents

66

Screen-printed electrodes

Page 67: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Carbon nanotubes

Boron-doped diamond (BDD)

Carbon glassy (CG)

Metallic films

etc

Copper

Gold

Iridium

Antimony

Bismuth

Etc.

67

New Materials

Page 68: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

2002Vytras et al.Pauliukaite et al.

Carbon paste modified with Bi2O3

2003Wang et al.

Bismuth film electrode (BiFE) electrodeposited in CG

68

Bismuth film

Page 69: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

• Good cathodic potential window

• Interference of dissolved oxygen is minimal

• Low toxicity

• Electrochemical behavior is similar to that of mercury

69

Bismuth film

Page 70: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

70

MEV-FEG

Figura 10: Micrographs of the BiFE A) 10000x B) 50000x

A) B)

Bismuth film electrode

Page 71: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

= =

Copperplate

3-electrodesscheme

Insulatingfilm

Definitionof the

superficial area

Agdeposit

Bideposit

Bi Filmmini-sensor

= =

Copperplate

3-electrodesscheme

Insulatingfilm

Definitionof the

superficial area

Agdeposit

Bideposit

Bi Filmmini-sensor

Bismuth film electrode for anodic stripping SWV lead determination

A B

C

(A): PalmSens and (B): DropSens potentiostats and (C) BiSPE preparation

Page 72: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

72

Confecção do minissensor

120 °C durante 200 s

FeCl3 0,50 mol L-1 em meio de HCl 0,10 mol L-1 durante 15-20 minutos.

Page 73: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

electrode

Bismuth film electrode

tt-type connector for printers

Page 74: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Bismuth redox process

-0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2-0,03

-0,02

-0,01

0,00

0,01

0,02

I

II

I /

E/ V vs. Ag/AgCl ( KCl 3,0 mol L-1)

Figura 7: Cyclic voltammogram for 0.02 mol L-1 Bi(NO3)3 in 0.10 mol L-

1 acetate buffer (pH 4,5) solution as electrolyte support; the work electrode is a platinum foil and scan rate of 10 mV s-1.

74

I Bi3+ + 3e- Bi0 -0.30 V II Bi3+ Bi0 + 3e- 0.08 V

Filme de bismuto -0.18 V vs. Ag/AgCl (3.0 mol L-1 KCl) during 200 s 0.02 mol L-1 Bi(NO3)3, 1.0 mol L-1 HCl in 0.15 mol L-1 Sodium citrate.

Page 75: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

-0,8 -0,7 -0,6 -0,5 -0,40

4

8

12

16

20

24

28

pa

/ A

E / V vs. Ag/AgCl

0 1 2 3 4 50

4

8

12

16

pa

/ A

[Pb2+] / mol L-1

Anodic stripping voltammograms of 9.9 x 10-8 – 8.3 x 10-6 lead (LD of 5.8 x 10-8 M) in 0.1 M acetate buffer (pH 4.5), using square-wave mode. Deposition at -

1.1 V for 2 min; pulse amplitude of 28 mV; increment of potential of 3 mV and frequency of 15 Hz.

Determination of lead

Page 76: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Bismuth film electrode (BiFE) for paraquat determination

In 0.1 mol L-1 HAC pH 4,5, using differential pulse voltammetry.

Figueiredo-Filho, L. C. et al, Electroanalysis, 22, 1260 (2010)

Page 77: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

DPV para determinação de Paraquat

Besides of paraquat can be determined simultaneously Cd2+ e Pb2+.

Page 78: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Determination of PQ in six natural water samples by BIFE and HMDE (reference).

Samples* /

µ mol L-1 HMDE BIFE ER (%)

A1 59.03 ± 0.06 58.73 ± 0.03 -0.51

A2 58.74 ± 0.01 59.23 ± 0.00 0.84

A3 58.35 ± 0.03 57.41 ± 0.02 -1.61

A4 29.36 ± 0.08 29.56 ± 0.03 0.68

A5 29.23 ± 0.05 27.97 ± 0.02 -4.31

A6 27.95 ± 0.05 29.51 ± 0.02 5.58

*The SD (±) was calculated from three replicates.

Page 79: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

Filme de bismuto -0,18 V vs. Ag/AgCl (KCl 3,0 mol L-1) durante 200 s Bi(NO3)3 0,02 mol L-1, HCl 1,00 mol L-1 e citrato de sódio 0,15 mol L-1

Cola de prata Bright Silver Epoxy (BSE) + Gray Silver Hardener (GSH). Após a aplicação na superfície de cobre esperou-se 24 horas para a cura da cola

79

Confecção do minissensor

Figura- Etapas da confecção do minissensor

Page 80: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

• Atrazina (ATZ) (2-cloro-4-etilenodiamino-6-isopropilamino-s-triazina)

• Pertence a classe das triazinas

• Composto polar, fracamente básico de coloração branca

N

N

N

NHHN CHC2H5

Cl

CH2 3

Figura. Fórmula estrutural da Atrazina80

Atrazina

Page 81: Voltammetric methods and electrodes. Electroanalytical methods Interfacial methods Bulk methods Static methods I ~ 0 Dinamic methods I # 0 Conductometry.

-1,2 -1,0 -0,8 -0,6 -0,4

-9

-6

-3

0

I /

E / V vs. Ag/AgCl ( 3,0 mol L-1)

Figura 11- Voltamograma obtido para uma solução de Atrazina 4,00 x 10-5 mol L-1, utilizando tampão acetato 0,10 mol L-1, pH *4,5 em 15 % v/v de etanol como eletrólito suporte. * pH condicional

81

Comportamento eletroquímico da Atrazina (ATZ)

N

N

N

NHCHCH3CH2NH

Cl

CH3

CH3

H+N

N+

N

NHCHCH3CH2NH

Cl

CH3

CH3H

e-

N

H

Cl

NHCHCH3CH2NHCH3

CH3

*e- N

N

N

NHCHCH3CH2NH

CH3

CH3

+ Cl-