Volatilization Modelling

download Volatilization Modelling

of 4

Transcript of Volatilization Modelling

  • 8/18/2019 Volatilization Modelling

    1/4

    ~ ) P e r g a m o n

    AppI. M ath. Let t . Vol. 10, No. 1, pp. 31-34, 1997

    Copyright@1997 Elsevier Science Ltd

    Printed in Great Britain. All rights reserved

    0893-9659/97 $17.00 + 0.00

    P I I : S 0 8 9 3 - 9 6 5 9 ( 9 6 ) 0 0 1 0 6 - 1

    M o d e l l i n g t h e V o l a t i l i z a t i o n o f O r g a n i c

    S o il C o n t a m i n a n t s : E x t e n s i o n o f t h e J u r y ,

    S p e n c e r a n d F a r m e r B e h a v i o u r A s s e s s m e n t

    M o d e l a n d S o l u t i o n

    R . S . A N D E R S S E N A ND F . R . D E HOOG

    CSIRO Division of Mathema tics a nd Statisti cs

    GPO Box 1965, Canberra, ACT 2601, Australia

    B . R . M A R K E Y

    Conta minate d Sites Section

    Environment Protection Authority NSW

    P.O. Box 1153, Chatswood, NSW 2057, Australia

    (Received and accepted March 1996)

    Communicated by G. C. Wake

    A b s t r a c t - - I n the analysis of the volatilization of organic soil contamination, the Behaviour As-

    sessment Model (BAM) of Jury, Spencer, and Farmer [1] has proved to be a valuable exploratory

    tool, because it has an analyt ic solution which is easily and quickly evaluated. However, because

    the surface boundary condition in the BAM is homogeneous, its applicability is limited to situations

    where the above ground concentration of the volatilant is zero above a boundary layer. The impor-

    tan t situa tions of the accumulation of the volatilant below buildings, in vegetation or below material

    stored on the ground are thereby excluded from consideration. This paper derives an analytic so-

    lution for the nonhomogeneous surface boundary condition extension of the BAM which allows its

    exploratory potential to be extended to the more realistic scenarios mentioned above. This analytic

    solution contains the BAM solution as a special case.

    Keyw or ds -- Conv ec ti on -d if fu si on , Explicit analytic solution, Nonhomogeneous surface boundary

    conditions, Soil contamination, Volatilization.

    I N T R O D U C T I O N

    In assessing the po tential health r isk associated with emissions of organic soil contamin ants , the

    major ini t ial step is the modell ing and solution of the volat i l izat ion processes which generate the

    emissions.

    A num ber of models have been proposed and uti l ized by various authors for simulati ng the

    volat i l izat ion of organic soil conta mina nts (see [2-5]) . They include the one-d imensiona l semi-

    infini t e-depth model of Jury et al. [1,5] for the p roto type s itua tion where the de grad ati on rate

    con sta nt of the cont ami nan t, its effective diffusion coefficient D E , and its effective solute con-

    vection velocity V~ are assumed to be constant . I t is of part icular interest , s ince the authors

    derive an explici t analytic solution which has found applicat ion in conta minat ed si tes exposure

    assessment (cf. [6]).

    Typeset by .AA4,S-~X

    31

  • 8/18/2019 Volatilization Modelling

    2/4

    3 2 R . S . A N D ER S SE N e t a l .

    T h e p u r p o s e o f t h i s p a p e r i s t o e x t e n d t h e J u r y et al. [ 1, 5] m o d e l t o a m o r e r e p r e s e n t a t i v e o n e -

    d i m e n s i o n a l s i t u a t i o n , a n d t o c o n s t r u c t , f o r t h i s e x t e n s io n , a n a n a l y t i c s o l u ti o n w h i c h c o n t a i n s

    t h e J u r y et al. [ 1, 7] s o l u t i o n a s a s p e c i a l ca s e . T h e e x t e n s i o n p r e s e n t e d h e r e i s m o r e c o m p r e h e n -

    s iv e t h a n t h a t c o n s i d e re d b y L i n a n d H i l d e m a n n [ 8] , i n t h a t i t a ll ow s f or th e s u r f a c e - b o u n d a r y

    c o n d i t i o n t o b e n o n h o m o g e n e o u s .

    T H E B E H A V I O U R A S S E S S M E N T M O D E L [ 1 ]

    I n a d e t a i l e d a n d c o m p r e h e n s i v e s t u d y o f t h e v o l a t i li z a t io n o f a s o il c o n t a m i n a n t , J u r y et al. [1]

    p r o p o s e d t h e f o ll o w in g p a r a b o l i c p a r t i a l d i f fe r e n ti a l e q u a t i o n , w h i c h u n d e r p i n s t h e i r B e h a v i o u r

    A s s e s s m e n t M o d e l :

    O C _ O 2C O C

    a - - T ~ c = D~-~z2 - v ~ - ~ z ,

    w i t h i n i t ia l c o n d i t i o n

    C(z,O)={Co, O O , (1)

    C o c o n s t a n t ,

    + V E C( O, t ) = - H E C ( O , t) , t _> O,

    2 )

    (3)

    (4)

    C

    D E

    H E

    d

    D A

    G

    R G

    v E

    t h e t o t a l c o n c e n t r a t i o n i n t h e s o il o f t h e v o l a t i li z a t i n g c o n t a m i n a n t ;

    t h e e f f e c ti v e d if f u s i o n c o e f f ic i e n t o f t h e c o n t a m i n a n t ;

    h / R G , t h e g a s s t e a d y - s t a t e b e h a v i o u r o f t h e c o n t a m i n a n t ;

    D A / d ;

    t h e d e p t h o f t h e s u r f a c e - b o u n d a r y l a y e r o f ai r;

    t h e d i f f u s io n co e f f ic i e n t f o r t h e v a p o u r t h r o u g h a i r;

    t h e p a r t i t i o n c o e f f i c ie n t f o r t h e g a s e o u s c o n c e n t r a t i o n r e l a t i v e t o t h e t o t a l ;

    t h e e f fe c ti v e s o l u te v e l o c i t y o f t h e c o n t a m i n a n t ; a n d

    t h e d e g r a d a t i o n r a t e c o n s t a n t o f th e c o n t a m i n a n t .

    V o l a t i l i z a t i o n a t t h e s u r f a c e i n t h e J u r y et al. [1 ] mode l , i s a s s umed to t ake p lace v ia d i f fu s ion

    t h r o u g h a s t a g n a n t b o u n d a r y l a y er i n t o a n o v e rl y i n g a t m o s p h e r e w h e r e t h e c o n c e n t r a t i o n i s

    t a k e n t o b e z e r o. T h e a b o v e s u r f a c e - b o u n d a r y c o n d i t i o n , t h e r e f o r e , fo l lo w s f r o m F i c k ' s l a w

    (c f. [9 , S e c t i o n 1 . 2] ), a f t e r a p p r o x i m a t i n g t h e s p a t i a l d e r i v a t i v e o f t h e c o n c e n t r a t i o n C a c r o s s

    t h e b o u n d a r y l a y e r ( se e [ 1 ]) . T h e r e s u l t i n g s u r f a c e - b o u n d a r y c o n d i t i o n (3 ) r e p r e s e n t s a b a l a n c e

    b e t w e e n t h e s u r f a c e v a p o u r f l u x ( t h e l e f t - h a n d s id e o f ( 3 )) a n d t h e e f f e ct o f t h e b o u n d a r y l a y e r

    ( t h e r i g h t - h a n d s i d e o f (3 )) . H o w e v er , th e h o m o g e n e i t y o f t h i s b o u n d a r y c o n d i t i o n e x c lu d e s f r o m

    c o n s i d e r a t i o n th e i m p o r t a n t p r a c t i c a l s i t u a ti o n s , w h e r e t h e v o l a t i l a n t o n le a v i n g t h e g r o u n d ,

    a c c u m u l a t e s b e l o w b u i l d i n g s , i n v e g e t a t i o n o r b e l o w m a t e r i a l s t o r e d o n t h e g r o u n d .

    A s t h e s o l u t i o n t o t h e i r m o d e l , J u r y e t al. [ 1 ,7 ] g a v e , w i t h o u t p r o o f , t h e f o l lo w i n g e x p l ic i t

    exp res s ion :

    1

    C ( z , t ; L ) = ~ C o e x p ( - t ) { C 1 ( z , t ) + C 2 ( z , t) + C 3 ( z , g)}, (5)

  • 8/18/2019 Volatilization Modelling

    3/4

    Model l i ng t he Vo la t i l i za t ion 33

    w h e r e

    C l ( Z , t ) = e r fc 2 Dv/_D__ / e r fc k ~ ,

    C 2< z ' t) : ( I + - ~ E ) e x p k , DE ] - 2 ~ ]

    e r f c ( 2 - - D ~ E t ] ] '

    Cj(z , t ) = 2 + ~ E e xp DE

    × [ e r f c ( Z + ( 2 H E + V E ) t ) ( H E L ~ ( + L + ( 2 H E + V E ) t ) ]

    2,/DEt

    - - exp \ D E / er fc

    z 2v/DE t .

    H o w e v e r , n o f o r m a l d e r i v a t i o n o f t h i s r e s u l t w a s g i v e n b y t h e s e a u t h o r s .

    E X T E N S I O N O F T H E J U R Y M O D E L [ 1 , 5 ]

    T h o u g h t h e J u r y

    et al.

    [ 1, 5] m o d e l i s a q u i t e c o m p r e h e n s i v e r e p r e s e n t a t i o n o f t h e p r o c e s s e s

    i n v o l v e d , i t h a s s o m e m i n o r , b u t n o n t r i v i a l , s h o r t c o m i n g s ; n a m e l y ,

    (i) t h e i n i ti a l d i s t r i b u t i o n o f t h e c o n t a m i n a n t

    C(z,

    0 ) i n t h e s o i l i s a s s u m e d t o b e c o n s t a n t

    d o w n t o a f i n i te d e p t h L a n d z e r o b e lo w ;

    ( ii ) t h e s u r f a c e - b o u n d a r y c o n d i t i o n (3 ) is h o m o g e n e o u s .

    T h e s e s h o r t c o m i n g a r e r e m o v e d o n r e p l a c i n g t h e a b o v e i n i t i a l a n d s u r f a c e - b o u n d a r y c o n d i t i o n s

    by

    C(z, O) = f(z ),

    0 < z < oo, (6)

    ~tnd

    l o c i v z c ( o , = - H z C ( O , t) >_

    (7)

    - - D E ~ Z z = O

    +

    t

    +

    ~c+ t ) ,

    t O,

    r e s p e c t i v e l y , w h e r e

    C+(t)

    d e n o t e s t h e g a s c o n c e n t r a t i o n a t t h e u p p e r s u r fa c e o f t h e s t a g n a n t

    b o u n d a r y l a y e r t h r o u g h w h i c h t h e v a p o u r d i ff u se s a f t e r l ea v i n g t h e s oi l. I n t h e a b o v e d e r i v a t i o n

    o f e q u a t i o n ( 7) , t h e J u r y et al. [1] f r a m e w o r k f o r t h e s u r f a c e - b o u n d a r y c o n d i t i o n h a s b e e n f o ll o w e d .

    I n o r d e r t o s o l v e t h e a b o v e m o d e l , t h e f i r s t s t e p i s t o a p p l y t h e t r a n s f o r m a t i o n

    ( - - , / -D--EE' c(¢, t )=exp((p+c~2)t)exp(ct()C

    x/-D~E( ,t , c~ - 2v/-D~, (8)

    w h i c h y i e l d s

    w i t h i n i t i a l c o n d i t i o n

    ~C C~2C

    - - - c = c ( ¢ , t ) ,

    0 < ( < ~ , t > 0 , (9)

    at o ( 2

    C ( ~ ,0 ) = e x p ( a ¢ ) f ( X / ~ E ~ ) ,

    w i t h s u r f a c e - b o u n d a r y c o n d i t i o n

    [ q c ]

    + h c ( O , t ) = e x p ( ( + c ~ 2 ) t ) C+(t)

    - N ~ = 0 v ~D T~

    a n d w i t h i n n e r - b o u n d a r y c o n d i t i o n

    0 < ( < o o , ( 1 0 )

    l i e 2 HE

    h - 2 x / - ~ ' t _> O , i i )

    c (oo, t) = 0, t > 0. (12)

    T h i s c a n o n i c a l p a r a b o l i c p a r t i a l d i f f e r e n t i a l e q u a t i o n h a s a n e x p l i c i t s o l u t i o n g iv e n b y e q u a -

    t i o n ( 7) o f S e c t i o n 1 4 .2 i n [1 0]. T r a n s f o r m i n g t h i s s o l u t i o n b a c k t o t h e o r i g i n a l f r a m e w o r k d e f i n e d

    b y ( 1 ) , ( 6 ) , ( 7 ) , a n d ( 4 ) , o n e o b t a i n s

    o z )

    C( z , t )= exp ~ e x p ( - (~ + ~2) t) {F l ( z , t )+F2( z , t ) -Fa( z , t )+F4 ( z , t ) -F s( z , t )} , (13)

  • 8/18/2019 Volatilization Modelling

    4/4

    34 R.S. ANDERSSEN et

    al.

    where

    2 ~--D--~Et exp ~ - / ~ ) j exp

    ~ V ~ E ] I ( z ) d z ,

    F2(z , t ) -- 2 ~x/r~-D~t fo exp 4 / ~ 7 ]J exp \ x / - ~ , ] f ( z ' ) d z ' ,

    v/-D--~E exp t h: + V ~ E / er fc [2 DVFD~E + h exp \x/-D--~E]

    F4 (z, t ) = h ~o

    exp

    ( - - z 2/4DE (t - - T)) hC+(T)

    ~ - - ~ exp ( (# + a2) ~) ~ d~-,

    F5( z,t ) = h 2 exp h2 (t-- T) + erfc 2v /D E( t_ T) + h

    × e xp + . 2 )

    - -~ - -E d r .

    The analytic solution (5) can now be derived as a special case of (13) (cf. [11]).

    R E F E R E N C E S

    1. W.A. Jury, W.F. Spencer and W.J. Farmer, J. Environ. Qual. 12, 558-564, (1983).

    2. R. Mayer, J. Letey and W.J. Farmer, Proc. Soil Sci. Soc. of Amer. 38, 563-568, (1974).

    3. W.A. Jury, W.F. Spencer and W.J. Farmer, J. Environ. Qual. 13, 573-579, (1984).

    4. W.A. Jury, D.D. Focht and W.J. Farmer, J. Environ. Qual. 16, 422-428, (1987).

    5. W.A. Jury, D. Russo, G. Streile and H. E1 Abd,

    Water Resources Research

    26, 13-20, (1990).

    6. P.F. Sanders and A.H. Stern, Environ. Toxic. and Chem. 13, 1367-1373, (1994).

    7. W.A. Jury, W.F. Spencer and W.J. Farmer, J. Environ. Qual. 16, 448, (1987).

    8. J.-S. Lin and L.M. Hildemann,

    J. Hazardous Materials

    40, 271-295, (1995).

    9. J. Crank, The Mathematics of Diffusion, Oxford Science Publications, Oxford, (1990).

    10. H.S. Carslaw and J.C. Jaeger,

    Conduction of Heat in Solids,

    Clarendon Press, Oxford, (1986).

    11. R.S. Anderssen, Modelling the below-ground volatilization and diffusion of contaminants: Validation and

    extension of the Jury et al. (1983, 1987) Model, CSIRO Division of Mathematics and Statistics Report

    DMS-E-95/35, Canberra, (1995).