VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic...

107
VLSI Design VLSI Design Chapter 5 Chapter 5 CMOS Circuit and Logic CMOS Circuit and Logic Design Design Jin-Fu Li

Transcript of VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic...

Page 1: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

VLSI DesignVLSI Design

Chapter 5 Chapter 5

CMOS Circuit and Logic DesignCMOS Circuit and Logic Design

Jin-Fu Li

Page 2: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

2EE613 VLSI DesignNational Central University

Chapter 5 CMOS Circuit and Logic Chapter 5 CMOS Circuit and Logic DesignDesign

• CMOS Logic Gate Design

• Physical Design of Logic Gates

• CMOS Logic Structures

• Clocking Strategies

• I/O Structures

• Low-Power Design

Page 3: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

3EE613 VLSI DesignNational Central University

Logic Gate Design IssuesLogic Gate Design Issues

• Hierarchical design Architecture level RTL/logic gate level Circuit level Layout level

• Critical paths – the path with the longest delay that require attention to timing details

• The number of Fanins and Fanouts affects the performance of the circuits

Page 4: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

4EE613 VLSI DesignNational Central University

Concept of Fanin and FanoutConcept of Fanin and Fanout

• Fanin The fanin of any complex gate is defined as the number of

inputs of this gate

• Fanout The fanout of a complex gate is defined as the number of

driven inputs attached to the output of this gate

N N

Fanout=N Fanin=N

Page 5: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

5EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – NAND GateNAND Gate

• Rp = the effective resistance of p-device in a minimum-sized inverter

• n = width multiplier for p-devices in this gate

• k = the fanout

• m = fanin of gate

• Cg = gate capacitance of a minimum-sized inverter

• Cd = source/drain capacitance of a minimum-sized inverter

• Cr = routing capacitance

)( grdp

dr kCCmnCn

Rt

Page 6: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

6EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – Fanins and Fanouts Fanins and Fanouts

mnCd kCg

Cr

m=3, k=4

Page 7: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

7EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – NAND Gate Rise TimeNAND Gate Rise Time

)( grdp

dr kCCmnCn

Rt

kn

CRkq

n

CRmrCR

kkqmnrn

CR

kCCkqmnrCn

R

gpgpgg

gp

gggp

)(

))((

))((

))(

1(

int

int

k

kq

n

CRt

mrCRt

tktt

gproutput

gpr

routputrdr

Separate delay into internal delay and external delay caused by fanouts

Page 8: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

8EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – NAND Gate Fall TimeNAND Gate Fall Time

))(( gggn

df kCCkqmnrCn

Rmt

foutputf

gngn

tktk

kq

n

CRmkrmCR

int

2 ))(

1(

np

gggn

gggp

dfdr

mRR

kCCkqmnrCn

RmkCCkqmnrC

n

R

tt

))(())((

We want the rise time to be equal to the fall time

Hence we must design , thus the delay time ism

WW n

p

))(( 2ggg

ndrdf mkCCkmqnrCm

n

Rtt

Page 9: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

9EE613 VLSI DesignNational Central University

Typical CMOS NAND & NOR DelaysTypical CMOS NAND & NOR Delays

)02.0(

4

)005.04(4

g

nandfnandn

Lnandn

nandf

kCmm

tR

CmR

mt

pfCrC

kq

CkC

n

Assume

dg

Lg

005.0

0)(

4

:

ND4-Fall

NR4-Fall

NR4-Rise

ND4-Rise

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

10.0 ns 10.0 ns

ABCD

ABCD

Capacitive load (pf)

Delay (ns) Delay (ns)

Capacitive load (pf)

Page 10: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

10EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – Gate DelaysGate Delays

GATE

NAND- and NOR-Gates Delays Measured with SPICE

tinternal-f

(ns)

INVND2ND3ND4ND8NR2NR3NR4NR8

.08.2.41.68

2.44.135.14

.145.19

toutput-f

(ns/pf)

toutput-r

(ns/pf)tinternal-r

(ns)

1.73.14.45.7

10.981.751.831.881.8

.08

.15.2.25.38.25.52.9

3.35

2.12.12.12.12.24.16.28.2

16.4

Page 11: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

11EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – Efficient ResistanceEfficient Resistance

GATE

Efficient Resistance Value for a Typical 1u CMOS Process

Rn ( )

INVND2ND3ND4NR2NR3NR4

7.1K6.3K6.0K5.9K7.3K7.4K7.5K

Rp ( )

8.5K8.6K8.7K8.8K8.4K8.4K8.4K

Page 12: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

12EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – 8-Input AND Gate8-Input AND Gate

Approach 1

Approach 2

Approach 3

ABCD

EF

ABCDEFGH

GH

B

CD

EF

GH

A

CL

CL

CL

Page 13: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

13EE613 VLSI DesignNational Central University

Logic Gate Design – Logic Gate Design – 8-Input AND Gate8-Input AND Gate

Approach

Comparison of Approaches to Designing an 8-Input AND Gate

Delay Stage 1ns

Delay Stage 2ns

Delay Stage 3ns

Delay Stage 4ns

Total Delay (SPICE) ns

1 ND8->INV

2ND4->NR2

3ND2->NR2ND2->INV

2.82ND8

falling

3.37INV

rising

4.36NR2

rising

.88ND4

falling

.4NR2

rising

2.17INV

rising

.31ND2

falling

.31ND2

falling

6.2(6.5)

5.24(5.26)

3.19(3.46)

Page 14: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

14EE613 VLSI DesignNational Central University

Basic Physical Design Basic Physical Design

• Gates: Inverter, NAND, and NOR

• Complex Gates

• Standard Cells

• Gate Array

• Sea of Gates

• Layout Optimization

• Transmission Gates

• 2-Input Multiplexer

Page 15: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

15EE613 VLSI DesignNational Central University

Physical Design – Physical Design – CMOS InverterCMOS Inverter

a z

Vss

Vdd

a z

Vss

Vdd

Page 16: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

16EE613 VLSI DesignNational Central University

Physical Design – Physical Design – NAND GateNAND Gate

a

z

Vss

Vdd

a

z

Vss

Vdd

b

b

Page 17: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

17EE613 VLSI DesignNational Central University

Physical Design – Physical Design – NOR GateNOR Gate

a

z

Vss

Vdd

b

az

Vss

Vdd

b

Page 18: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

18EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Complex GatesComplex Gates

• All complex gates can be designed using a single row of N-transistors and a single row of P-transistors, aligned at common gate connections

• Design procedure Draw two dual graphs to P transistor tree and N

transistor tree Find all Euler paths that cover the graph Find a P and an N Euler path that have identical

labeling If not found, break the gate in the minimum

numbers of places to achieve step 3

Page 19: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

19EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Complex GatesComplex Gates

A

Z

I2

I1

B

A B

C D

C

DI3

I3

I1

I2

Z

A

B

C D

VDD

Z Vss

Page 20: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

20EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Complex GatesComplex Gates

A

B

CD

A

B

CD

z

Vdd

Vss

A B C D

Page 21: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

21EE613 VLSI DesignNational Central University

Physical Design – Physical Design – XNOR Gate (1)XNOR Gate (1)

AB Z

z

Vdd

Vss

A B

Z’Z’A

B

Z’

A B

Z’

Page 22: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

22EE613 VLSI DesignNational Central University

Physical Design – Physical Design – XNOR Gate (2)XNOR Gate (2)

AB

Z

z

VddVss

A

B

Page 23: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

23EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Automated ApproachAutomated Approach

A

BED C

E

A B EDC

Vdd

Vss

Vdd

Vss

A BED C A BED C

P

N

Page 24: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

24EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Standard-Cell ApproachStandard-Cell Approach

WVdd

Wp

Wn

WVss

Dnp

a b c zd

Page 25: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

25EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Standard-Cell LayoutStandard-Cell Layout

Vdd Vdd

Vss Vss

a b c a b c zz

Page 26: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

26EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Gate Array Layout (1)Gate Array Layout (1)

Vdd

Vss

Page 27: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

27EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Gate Array Layout (2)Gate Array Layout (2)

Vdd

Vss

Gate array cells

Routing channels

Page 28: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

28EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Sea-of-Gate LayoutSea-of-Gate Layout

Vdd

Vss

supply

supply

well contacts

substrate contacts

poly gates

P-transistors

N-transistors

Page 29: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

29EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Sea-of-Gate (NAND3)Sea-of-Gate (NAND3)

a b c

za b c

a b c

z

Page 30: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

30EE613 VLSI DesignNational Central University

Physical Design – Physical Design – CMOS Layout GuidelinesCMOS Layout Guidelines

• Run VDD and VSS in metal at the top and bottom of the cell

• Run a vertical poly line for each gate input

• Order the poly gate signals to allow the maximal connection between transistors via abutting source-drain connection.

• Place n-gate segments close to VSS and p-gate segments close to VDD

• Connection to complete the logic gate should be made in poly, metal, or, where appropriate, in diffusion

Page 31: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

31EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Improvement in DensityImprovement in Density

• Better use of routing layers – routes can occurs over cells

• More “merged” source-drain connections

• More usage of “white” space in sparse gates

• Use of optimum device sizes – the use of smaller devices leads to smaller layouts

Page 32: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

32EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Layout OptimizationLayout Optimization

Fclk

A<0>

A<1>

A<2>

A<3>

F

Vdd

Vss

A<0>A<1>A<2>A<3>clk

Page 33: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

33EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Layout OptimizationLayout Optimization

DB

A

D

BC

2

Z

A

1

C

Z

A B C D

Vdd

Vss

A B C D

RightWrong

Page 34: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

34EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Transmission GateTransmission Gate

Page 35: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

35EE613 VLSI DesignNational Central University

Physical Design – Physical Design – Transmission GateTransmission Gate

Page 36: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

36EE613 VLSI DesignNational Central University

Physical Design – Physical Design – 2-Input Multiplexer2-Input Multiplexer

a

b

c

z

c

-c abz

z

c -c

Page 37: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

37EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – Pseudo-nMOS Logic Pseudo-nMOS Logic

A

TimeL

DDV

V

F

n

p

2( ) ( | |)2n

n DD Tn OL DD TpV V V V V

( )2

pOL DD T

n

V V V

Tn Tp TV V V for

Page 38: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

38EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – Dynamic CMOS Logic Dynamic CMOS Logic

N-logicBlock

clk

inputs

Z

clkprecharge

evaluate

clk

clk

A B

C Z=(A+B).C

clk

clk

A

B

C

Y=ABC

Page 39: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

39EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – Dynamic CMOS Logic Dynamic CMOS Logic

C 2

C 1C 1C 2

1

1

0

clk=1

clk=1A

C

C

B C

A

charge sharing model

1 2

1 2

( )DD A

A DD

CV C C C V

CV V

C C C

If for example 1 2 0.5C C C then this voltage would be VDD/2

Page 40: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

40EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – Dynamic CMOS Logic Dynamic CMOS Logic

N 1 N 2

N 1

T d1

N 2

T d2

N LogicN Logic

clock

inputs

clock

Erroneous State

Page 41: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

41EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – Clocked CMOS Logic Clocked CMOS Logic

E

Z

D

C

B

A

clk

-clk

Page 42: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

42EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – Pass-Transistor Logic Pass-Transistor Logic

A

-B

B

A

-A OUT

-B

B

A

-A

OUTB

A

OUT

Complementary Single-polarity Cross-coupled

Page 43: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

43EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – CMOS Domino Logic CMOS Domino Logic

clk

D

A

C

B

E

Z

Basic gate

Page 44: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

44EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – CMOS Domino Logic CMOS Domino Logic

Static version

N-logicBlock

clk

inputs

Z

weak p device

N-logicBlock

clk

inputs

Z

Latched version

Page 45: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

45EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – CMOS Domino Logic CMOS Domino Logic

N-logic

N-logic

N-logic

N-logic

clk

A 5

A

A

A

A

A 0

1

2

3

4

C

C

C

C

C

C

C 1

3

4

5

2

6

7

clk

Page 46: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

46EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – NP Domino Logic NP Domino Logic

N-logic

clk

N-logic

N-logic

clk

N-logic

P-logicinputsstableduring clk=1

other N blocksother P blocks

to futher P blocks

P-logicinputsstableduring clk=1

other N blocksother P blocks

to futher P blocks

clk -clk

clk-clk

other P blocksother N blocks

Page 47: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

47EE613 VLSI DesignNational Central University

CMOS Logic–CMOS Logic–Advantages of Dynamic LogicAdvantages of Dynamic Logic

• Smaller area than fully static gates

• Smaller parasitic capacitance, hence higher speed

• Glitch free operation if designed carefully

Page 48: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

48EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – CVSLCVSL

F-F

-e

-a

-d

-b

-ccbe

d aCombinationalNetwork

nMOSDifferential Inputs

-QQ

Basic version A particular function

Page 49: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

49EE613 VLSI DesignNational Central University

CMOS Logic – CMOS Logic – CVSLCVSL

Clocked version A 4-way XOR gate

-Q Qclock

clock

-aa

-bb b -b

-cc-cc

-d d -d d

CombinationalNetwork

nMOSDifferential Inputs

clock

Q-Qclock

(abcd)=(0000)

Page 50: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

50EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Clocked SystemsClocked Systems

bits

clock

outputsinputs

nextstatebits

currentstate

Q D

Q D

Q D

A simple finite state machine

Combinational Logic

Page 51: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

51EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Clocked SystemsClocked Systems

A pipeline system

QD

QD

QD

QD

QD

QD

QD

QD

QD

C1 C2inputs

inputs

outputs

outputsC1 C2

10 ns 10 ns

Page 52: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

52EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Latches and Reg.Latches and Reg.

clock

Data

Q

Clock-to-Q Delay (Tq)

Hold Time (Th)

Setup Time (Ts)

Cycle time Tc

Page 53: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

53EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – LatchesLatches

clk

0

1Q

D

S

clk

D

Q

clk

0

1Q

S

clk

D

Q

D

Page 54: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

54EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – RegistersRegisters

clk

0

1Q

S

clk

0

1S

DQM

QM

D

clk

Q

master slave

Page 55: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

55EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – RegistersRegisters

clk=0

clk=1

slavemaster

Page 56: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

56EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – RegistersRegisters

D

clk clk

Q

Page 57: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

57EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – JK RegistersJK Registers

clk -clk

clk

D

K

J

QN

Q

J K clk Q QN

0011

0101

Q01

QN

QN10Q

A

B

J=K=0; Q=D

JN=KN=1; A=QN, B=1; D=AN=Q

J=0;K=1

KN=0,JN=1; A=1, B=1; D=0

J=1; K=0

KN=1, JN=0; A=QN, B=Q; D=1;

J=1; K=1

KN=0, JN=0; A=1, B=Q; D=QN

K

J

QN

Q

Page 58: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

58EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – System TimingSystem Timing

Reg.A

Reg.B

Combinational LogicTd

TsTq

clock

BCombinational Logic

TdTsTq

clock

ALatch Latch

BLatch

clock

ALatch

Tq Ts LatchC

A B

Combinational Logic Combinational LogicTda Tdb

Page 59: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

59EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – System TimingSystem Timing

sb

qa

sbqacda

T

T

TTTT 1

: the clock-to-Q time of latch A

: the setup time of latch B

scqbcdb TTTT 0

Similarly,

Finally,

][2 sqdbdac TTTTT

Page 60: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

60EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Setup & Hold TimeSetup & Hold Time

Pad

Pad

dT

TD

QinD

in

tt tt

For an ideal DFF,

If is high when , then Q should be high

If becomes to low when , then Q still is high

inD tt

inD

in

inD tt

Page 61: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

61EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Setup & Hold TimeSetup & Hold Time

dT

T

D

inD

inD

dT

T

TTd When , should become high earlier and Q can become high

When , should retain at high longer and Q can be still at highTTd

dTTST

TTT dS

T

hT dT

TTT dh

inD

D

inD

D

Page 62: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

62EE613 VLSI DesignNational Central University

QD QD

T

M 1

T c1 T c2

Td2

T c2

Td2

c1

clk

New DataOld data

Logic

clk

M 2

delay delay

Clocking Strategies – Clocking Strategies – Setup & Hold TimeSetup & Hold Time

Tdc

Tdq Tdl

q1 d2

Tdc

1. When Tdc>Tdq+Tdl, M2 latches

the New data

2. When Tdq+Tdl-Tdc>TC , M2

latches Old data twice

Therefore, 0<Tdq+Tdl-Tdc<TC

TC

New data

Page 63: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

63EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – D RegisterD Register

D

-clk

-clk

clk clk -clk

clk

clk

-clk

Q

-Q

D Q-clk

clk

clk

-clk

clk

-clk

-clk

clk

Page 64: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

64EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Clock SkewClock Skew

clk

-clk

QD

Feedthrough condition

-clk

clkclk-in

-clk

clk

Buffers Necessary for Large Loads

Page 65: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

65EE613 VLSI DesignNational Central University

Clocking Strategies–Clocking Strategies–Skew Clock PipelineSkew Clock Pipeline

clk

clk1 clk2

-2ns 0ns

CL1

(5ns)

CL2

(9ns)

CL3

(5ns)

FF FF FF FF

7ns

clk

clk1

clk2

A B C D

A B C D

A B

-2ns

clk3

Aclk3

C D

B C

Page 66: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

66EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – LatchesLatches

D Q

-clk

clk

1. Low area cost

2. Driving capability of D must override the feedback inverter

D Q

-clk

clk

clk

-clk

Page 67: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

67EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – LatchesLatches

D Q-clk

clk

clk

-clkD

Q

-clkclk

Vss

Vdd

Page 68: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

68EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – DETDFFDETDFF

clk

clk

D -D

Q1 -Q1

Latch 1

Q1

clk

Page 69: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

69EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – DETDFFDETDFF

clk

clk

D -D

Q2 -Q2

Latch 2

Q2

clk

Page 70: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

70EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – DETDFFDETDFF

clk Latch 1 enabled Latch 2 enabled

Q2=-Q2=low Q1=-Q1=high

Latch 2

-Q

Q

Q2

-Q2

D

Latch 1

-Q1

Q1clk

Page 71: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

71EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – RegisterRegister

clk

-clk

clk

-clk

-clk

-clk

clk

-clk

-reset

D

Q

Asynchronously resettable register

clk

-reset

Q

Page 72: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

72EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – RegisterRegister

clk

-clk

clk

-clk

-clk

-clk

clk

-clk

-reset

D

Q

Asynchronously settable and resettable register

-set

Page 73: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

73EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Dynamic RegistersDynamic Registers

clk

-clkDDD

clk

-clk

clk

-clk

-Q

D

clk

-clk

-Q

-clk

clk

Qclk

-clkD

-clk

clkQ

Dynamic single clock latches

Dynamic single clock registers

Page 74: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

74EE613 VLSI DesignNational Central University

Clocking Strategies – Clocking Strategies – Single ClockSingle Clock

Logic

Logic

L1 L2

clock

L1 opaque

L2 transparent

L2 opaque

L1 transparentclock

Page 75: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

75EE613 VLSI DesignNational Central University

Dynamic Latches – Dynamic Latches – Single-Phase ClockingSingle-Phase Clocking

CLK

D X

Q

Xn QnDnCLK

0

1

1

0

H

H

L

L

1

0

1

0

1

Xn-1 Qn-1

Qn-1

CLK

D X

-Q

Clock active high latch Clock active high latch with buffer

Page 76: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

76EE613 VLSI DesignNational Central University

Dynamic Latches – Dynamic Latches – Single-Phase ClockingSingle-Phase Clocking

CLK

D

X Q

Xn QnDnCLK

0

1

1

0

L

L

H

H

1

0

1

0

1

Xn-1 Qn-1

Qn-1

Clock active low latch

CLK

D

X -Q

Clock active low latch with buffer

Page 77: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

77EE613 VLSI DesignNational Central University

Dynamic Latches – Dynamic Latches – Single-Phase ClockingSingle-Phase Clocking

CLK

D

X Q

Clock active high latch without feedback

Clock active low latch without feedback

CLK

D X

Q

Assume that the capacitance of node X

is 0.002pF and the leakage current I is

1nA.

Therefore, T=CV/I=0.002pFx5V/1nA=100us.

That is, the latch needs to be refreshed each 100us.

Otherwise, the output Q will become high.

Page 78: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

78EE613 VLSI DesignNational Central University

Dynamic Registers – Dynamic Registers – TSPCTSPC

Positive edge trigger register

CLKD

A

-QB

CLK

D

A

B

-Q

The value of the hold time of this flip flop is close to zero.

tf

tr

Page 79: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

79EE613 VLSI DesignNational Central University

• PLL for synchronization

Phase Locked Loop Clock TechniquesPhase Locked Loop Clock Techniques

T1

T2

clock

dclk

data out

clock

dclk

output pad

dclk+dpad

clock pad

clock route

chip

dclk

output pad

dclk+dpad

clock pad

clock route

chip

clock

dclk

data out

T2

T1=Input buffer delay

+routing RC delay

T2=Clock-to-Q delay

+output buffer delay

PLL

clock

Page 80: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

80EE613 VLSI DesignNational Central University

Phase Locked Loop – Phase Locked Loop – Clock MultiplyingClock Multiplying

dclk

output pad

dclk+dpad

clock pad

clock route

chip PLL

/4

clock

dclk

clock

PLL PLL

system clock

clock clock

bus

Clock-multiplying PLL Synchronize data transfer between chips

Synchronize the output enable signals

1. Reduce tristate fights

2. Improve overall timing

Page 81: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

81EE613 VLSI DesignNational Central University

Typical Phase Locked LoopTypical Phase Locked Loop

Phase Detector Charge Pump Filter VCO

ProgrammableFrequency divider

(/n)

reference clock fn

U

DnxfnVc

U

D

Vc

Low-pass filter

Vdd

Page 82: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

82EE613 VLSI DesignNational Central University

Phase Locked Loop – Phase Locked Loop – Phase DetectorPhase Detector

S

R

Q

S

R

Q

clkext

clk

U

D

UP DNNOP

clkext

clk

clkext

clk

R

SQ

Page 83: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

83EE613 VLSI DesignNational Central University

• Charge pump circuits

Phase Locked Loop – Phase Locked Loop – Charge PumpCharge Pump

Out

U

D

Out

U

D

Vrefp

Vrefn

Pref

Nref

Biased by current mirror

The output current of the charge pump can be adjusted through the control of the current mirror.

Page 84: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

84EE613 VLSI DesignNational Central University

• Simple implementation of low-pass filter

• The two capacitors C1 and C2 are in the order of tens of pF

• The capacitor C2 is added in parallel to the simple RC low-pass filter to form a second order filter The stability of the system is maintained even with the process

variation of these on-chip components

• Note that these capacitors can occupy a large portion of the PLL

Phase Locked Loop – Phase Locked Loop – Low-Pass FilterLow-Pass Filter

In Out

TG

NC2NC1

Page 85: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

85EE613 VLSI DesignNational Central University

Phase Locked Loop – Phase Locked Loop – VCOVCO

Odd number of stages

Control voltage

fVCO

Current-starved inverter type VCO

II

V

I

Control voltage

tin tin+t

Voltage-Controlled Delay Line (VCDL) type VCO

V-I converter

Delay cell

Page 86: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

86EE613 VLSI DesignNational Central University

Phase Locked LoopPhase Locked Loop

U

D

Vc

Low-pass filter

VCOfout

fin

fout

fin

D

Phase Detector

Page 87: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

87EE613 VLSI DesignNational Central University

Phase Locked Loop – Phase Locked Loop – Programmable VCOProgrammable VCO

VC

V-I

co

nve

rte

r

De

lay

cell

De

lay

cell

De

lay

cell

Shift register

Generated clock

Page 88: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

88EE613 VLSI DesignNational Central University

• NP-Domino Logic Allow pipelined system architecture

Single-Phase Logic – Single-Phase Logic – NP Domino LogicNP Domino Logic

nMOS

Logic

pMOS

Logic

clk -clk

clk

-clk

clk section

The circuit performs precharge-discharge operation when clock is low,

and all stage evaluate output levels when the clock is high.

Page 89: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

89EE613 VLSI DesignNational Central University

• -clk section

Single-Phase Logic – Single-Phase Logic – NP-Domino Logic NP-Domino Logic

nMOS

Logic

pMOS

Logic

-clk clk

-clk

clk

The circuit performs precharge-discharge operation when clock is high,

and all stage evaluate output levels when the clock is low.

Page 90: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

90EE613 VLSI DesignNational Central University

• A pipelined NP-Domino CMOS system

Single-Phase Logic – Single-Phase Logic – NP-Domino Logic NP-Domino Logic

clk

section

-clk

section

clk

section

A B C

a0 a1A

clk

B

C c0

b0 b1 b2

a2

b1 b2

Page 91: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

91EE613 VLSI DesignNational Central University

• Uses of clock skew to extend clock cycle (not recommended)

Single-Phase Logic – Single-Phase Logic – Clock SkewClock Skew

Logic

delay

Td2

Tc1clock

old data new data

Tc1

Td2

clock

< Tc1Td2

Page 92: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

92EE613 VLSI DesignNational Central University

• Lock-up Latch

• Contra-data-direction clock

Single-Phase Logic – Single-Phase Logic – Avoiding Clock SkewAvoiding Clock Skew

Logic

delayclock

Lock-up latch

Logic

clockdelay

Page 93: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

93EE613 VLSI DesignNational Central University

• Dynamic register

Two-Phase ClockingTwo-Phase Clocking

QD

-ph1

ph1

-ph2

ph2

ph1

ph2

ph1=1,ph2=0

ph1=0,ph2=1

C1 C2

C1 C2

Page 94: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

94EE613 VLSI DesignNational Central University

• Failure due to clock skew

Two-Phase ClockingTwo-Phase Clocking

ph1

ph2

ph1=1,ph2=1C1 C2

Page 95: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

95EE613 VLSI DesignNational Central University

• Two-phase registers with single-polarity clocks

Two-Phase ClockingTwo-Phase Clocking

ph1 ph2

ph1 ph2

Page 96: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

96EE613 VLSI DesignNational Central University

• In a large CMOS chip, clock distribution is a serious problem Vdd=5V Creg=2000pF (20K register bits @ 0.1pF) Tclk=10ns Trise/fall=1ns Ipeak=Cdv/dt=(2000px5)/1n=10A Pd=CVdd2f=2000px25x100=5W

• Methods for reducing the values of Ipeak and Pd Reduce C Interleaving the rise/fall time

Clock DistributionClock Distribution

Page 97: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

97EE613 VLSI DesignNational Central University

• Clocking is a floorplanning problem because clock delay varies with position on the chip

• Ways to improve clock distribution Physical design

Make clock delays more even At least more predictable

Circuit design Minimizing delays using several stages of drivers

• Two most common types of physical clocking networks H tree Balanced tree

Clock DistributionClock Distribution

Page 98: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

98EE613 VLSI DesignNational Central University

Clocking Distribution – Clocking Distribution – H Tree H Tree

clock

Page 99: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

99EE613 VLSI DesignNational Central University

Clocking Distribution – Clocking Distribution – Balanced Tree Balanced Tree

clock

Page 100: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

100EE613 VLSI DesignNational Central University

Clocking Distribution – Clocking Distribution – Reducing Power Reducing Power

• Techniques used to reduce the high dynamic power dissipation Use a low capacitance clock routing line such as

metal3. This layer of metal can be, for example, dedicated to clock distribution only

Using low-swing drivers at the top level of the tree or in intermediate levels

Page 101: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

101EE613 VLSI DesignNational Central University

Clocking Distribution – Clocking Distribution – Half-Swing Driver Half-Swing Driver

C1

C3

C2

C4

CA

CB

Vdd

Gnd

Clock

Vout

clkn

clkp

-clkn

-clkp

Page 102: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

102EE613 VLSI DesignNational Central University

• Types of pads Vdd, Vss pad Input pad (ESD) Output pad (driver) I/O pad (ESD+driver)

• All pads need guard ring for latch-up protection

• Core-limited pad & pad-limited pad

I/O Structures – I/O Structures – Pads Pads

PAD PAD

I/O circuitry I/O circuitry

Core-limited pad Pad-limited pad

Page 103: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

103EE613 VLSI DesignNational Central University

Input Pads – Input Pads – ESD Protection ESD Protection

PAD

Input pad without ESD protection

Assume I=10uA, Cg=0.03pF, and t=1us

The voltage that appears on the gate is about 330volts

Input pad with ESD protection

PAD

Page 104: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

104EE613 VLSI DesignNational Central University

I/O Pads – I/O Pads – Tristate & Bidirectional Pads Tristate & Bidirectional Pads

PAD

Tristate pad

PAD

Bidirectional pad

OUT

P

N

OE

Ddata

output-enable

OUTPNOE D

0

1

1

X

0

1

0

1

0

1

1

0

Z

0

1

Page 105: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

105EE613 VLSI DesignNational Central University

Input Pads – Input Pads – Schmitt Trigger CircuitSchmitt Trigger Circuit

Transfer characteristic of Schmitt trigger

Vout

Vin

VT- VT+ VDD

VDD

1. Hysteresis voltage VH=VT+-VT-

2. When the input is rising, it switches when V in=VT+

3. When the input is falling, it switches when V in=VT-

Page 106: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

106EE613 VLSI DesignNational Central University

Input Pads – Input Pads – Schmitt Trigger CircuitSchmitt Trigger Circuit

Voltage waveforms for slow input

Vout

Time

VT-

VT+

VDD

Schmitt trigger turns a signal with a very slow transition into a signal with a sharp

transition

Vin

Page 107: VLSI Design Chapter 5 CMOS Circuit and Logic Design VLSI Design Chapter 5 CMOS Circuit and Logic Design Jin-Fu Li.

107EE613 VLSI DesignNational Central University

Input Pads – Input Pads – Schmitt Trigger CircuitSchmitt Trigger Circuit

A CMOS version of the Schmitt trigger

Vout

N1

VFP

VDD

FNinGS VVV 2

Vin

VFN

N2

P2

P1

N3

P3

1. When the input is rising, the VGS of the transistor N2 is given by

2. When , N2 enters in conduction mode which means Tin VV TnGS VV 2

3. Then TnTFN VVV