Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

97
Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods By Melissa Bess, Nutrition and Health Education Specialist FNEP STAFF TRAINING ONLY, DO NOT USE WITH FNEP PARTICIPANTS 05/200 7

description

Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods. By Melissa Bess, Nutrition and Health Education Specialist. FNEP STAFF TRAINING ONLY, DO NOT USE WITH FNEP PARTICIPANTS. 05/2007. Overview. What are vitamins? Categories of vitamins Functions Food sources Deficiencies - PowerPoint PPT Presentation

Transcript of Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Page 1: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamins, Minerals, Antioxidants,

Phytonutrients,Functional Foods

By Melissa Bess, Nutrition and Health Education Specialist

FNEP STAFF TRAINING ONLY, DO NOT USE WITH FNEP PARTICIPANTS

05/2007

Page 2: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Overview

What are vitamins?What are vitamins? Categories of vitaminsCategories of vitamins FunctionsFunctions Food sourcesFood sources DeficienciesDeficiencies What are minerals?What are minerals? Categories of mineralsCategories of minerals AntioxidantsAntioxidants

Page 3: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Overview (continued)

PhytonutrientsPhytonutrients Functional FoodsFunctional Foods Food LabelsFood Labels ActivityActivity

Page 4: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

What are vitamins?

Complex substances that regulate Complex substances that regulate body processesbody processes

Coenzymes (partners) with Coenzymes (partners) with enzymes in reactionsenzymes in reactions

No calories, thus no energyNo calories, thus no energy

Page 5: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Categories

Fat-solubleFat-soluble

Dissolve in fatDissolve in fat

Can be storedCan be stored

Water-solubleWater-soluble

Dissolve in waterDissolve in water

Carried in Carried in bloodstream, not bloodstream, not storedstored

A, D, E, KA, D, E, K C and B-complex C and B-complex vitaminsvitamins

A and D excess can A and D excess can be harmfulbe harmful

E and K usually notE and K usually not

Excess amounts Excess amounts may cause extra may cause extra work on kidneyswork on kidneys

Page 6: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 7: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin A (and carotenoids)

Functions:Functions: Normal visionNormal vision Protects from Protects from

infectionsinfections Regulates Regulates

immune systemimmune system Antioxidant Antioxidant

(carotenoids)(carotenoids)

Food sources:Food sources: LiverLiver Fish oilFish oil EggsEggs Fortified milk or Fortified milk or

other foodsother foods Red, yellow, Red, yellow,

orange, and dark orange, and dark green veggies green veggies (carotenoids)(carotenoids)

Page 8: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 9: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 10: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance

• The RDA of vitamin A for adults is around 1000 retinol equivalents (3500 IU) for man and around 800 retinol equivalents (2500) for woman.

• One international unit (IU) equals to 0.3 mg of retinol.

• The requirements increases in growing childern, pregnant woman and lactating mothers.

Page 11: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin A deficiency

• The deficiency manifestations are related to the eyes, skin and growth.

• Deficiency manifestation of the eyes: night blindness (nyctalopia), is one of the earliest symptoms of vitamin A deficiency. Difficult to see in dim light- as dark adaptation time is increased. Prolonged deficiency irreversibly damages a number of visual cells.

Page 12: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Severe deficiency of vitamin A leads to xeropthalmia. This is characterized by dryness in conjuctiva and cornea, keratinization of epithelial cells.

• If xeropthalmia persists for a long time, corneal ulceration and degeneration occur. This results in the destruction of cornea, a condition referred to as keratomalacia, causing total blindness.

Page 13: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 14: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Effect on Growth:

Vitamin A deficiency results in growth retardation due to imperiment in skeletal formation.

Effect on Reproduction :

The reproductive system is adversely affected in Vitamin A deficiency. Degeneration of germinal epithelium leads to sterility in males.

Effect on Skin and epitelial cells :

The skins becomes rough and dry. Keratiniza

Page 15: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Of epithelial cells of gastrointestinal tract, urinary tract and respiratory tract is noticed. This leads to increased bacterial infection. Vitamin A deficiency is associated with formation of urinary stones. The plasma level of retinol binding protein is decreased in Vitamin A deficiency .

Page 16: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Hypervitaminosis A

• Excessive consumption of vitamin A leads to toxicity.

• The symptoms of hypervitaminosis A include dermatitis (drying and redness of skin), enlargement of liver, skeletal decalcification, tenderness of long bones, loss of weight, irritability, loss of hair, joint pains etc.

Page 17: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin D (the sunshine vitamin)

Functions:Functions: Promotes Promotes

absorption of absorption of calcium and calcium and phosphorusphosphorus

Helps deposit Helps deposit those in those in bones/teethbones/teeth

Regulates cell Regulates cell growthgrowth

Plays role in Plays role in immunityimmunity

Sources:Sources: Sunlight (10 – 15 Sunlight (10 – 15

mins 2x a week)mins 2x a week) Salmon with Salmon with

bonesbones MilkMilk Orange juice Orange juice

(fortified)(fortified) Fortified cerealsFortified cereals

Page 18: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Chemistry

• Ergocalciferol (vitamin D2) is formed from ergosterol and is present on plants.

• Cholecalciferol (vitamin D3) is found in animals. Both the sterol are similar in structure except that ergocalciferol has an additional methyl group and a double bond.

• Ergocalciferol and cholecalciferol are

Page 19: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 20: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Biochemical functions

• Calcitriol (1, 25- DHCC) is the biologically active form of vitamin D.

• It regulates the plasma level of calcium and phosphate.

• Calcitriol acts at 3 different levels (intestine, kidney and bone) to amintain plasma calcium level ( normal 9-11 mg/dl)

Page 21: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Action of calcitriol on the intestine: calcitriol increases the intestinal absorption of calcium and phosphate.

• Action of calcitriol on the bone:• Calcitriol stimulates the calcium uptake for

deposition as calcium phosphate. Calcitriol is essential for bone formation.

• Action of calcitriol on the kidney:• Calcitriol is also involved in mininmizing

the excretion of calcium and phosphate through the kidney by decreasing their excretion and enhancing reabsorption.

Page 22: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin D is a hormone not a vitamin- a justification.

• Calcitriol is now considered as an important calcitropic hormone, while cholecalciferol is the prphormone.

• Cholecalciferol (vitamin D3) is synthesized in the skin by ultra violet rays of sunlight.

• The biologically active form of vitamin D, calcitriol is produced in the kidney.

• Calcitriol has target organs- intestine bone and kidney, where it specifically acts.

Page 23: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 24: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Calcitrol action action is similar to steroid hormobnes.

• Actinomycin D inhibits the action of calcitriol . This support the view that calcitriol excerts its effect on DNA leadind to the synthesis of RNA (transcription).

• Cacitriol synthesis is self regulated by a feedback mechanism i.e., calcitriol decreases its own synthesis.

Page 25: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary Allowance

• The daily requirements of vitamin D is 400 international units or 10 mg of cholecalciferol.

Page 26: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 27: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptoms

• Insufficient exposure to sunlight and consumption of diet lacking vitamin D results in its deficiency.

• Deficiency of vitamin D causes rickets in childern and osteomalacia in adults.

• Vitamin d is often called as antirachitic vitamin.• In rickets plasma calcitriol level is decreased and alkaline

phosphatase activity is elevated.

Page 28: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Renal rickets

• This seen in patients with chronic renal failure.

• Renal rickets is mainly due to decreased synthesis of calcitriol in kidney.

• It can be treated by the administration of calcitriol.

Page 29: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Hypervitaminosis

• Vitamin D is stored mostly in liver and slowly metabolized.

• Vitamin D is the most toxic in overdoses.

• Toxic effects- demineralization of bone (resorption) and increased calcium absorption from the intestine, hypercalcemia, loss of appetite, nausea, increased thirst, loss of weight.

Page 30: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin E

Functions:Functions: Antioxidant, may Antioxidant, may

lower risk for lower risk for heart disease and heart disease and stroke, some stroke, some types of cancerstypes of cancers

Protects fatty Protects fatty acids and vitamin acids and vitamin AA

Sources:Sources: Vegetable oilsVegetable oils Foods made from Foods made from

oil (salad oil (salad dressing, dressing, margarine)margarine)

NutsNuts SeedsSeeds Wheat germWheat germ Green, leafy Green, leafy

veggiesveggies

Page 31: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 32: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Absorption , transport and storage

Vitamin E is absorbed along with fat in the small intestine. Bile salts are necessary for the absorption. In the liver, it is incorporated into lipoproteins (VLDL and LDL) and transported. Vitamin E is stored in adipose tissue, liver and muscle. The normal plasma level of tocopherol in less than 1 mg/dl.

Biochemical Functions

Most of the functions of vitamin E are related to its antioxidant property.

Page 33: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• It prevents the non-enzymatic oxidations of various cell components (e.g unsaturated fatty acids) by molecular oxygen and free radicals such as superoxide (O2) and hydrogen peroxide (H2 O2). The element selenium helps in these function.

• Vitamin E is lipohilic in character and is found in association with lipoproteins , fat deposits and cellular membranes. It protects the per oxidation reactions.

Page 34: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Vitamin E acts as a scavenger and gets itself oxidized (to quinone form) by free radicals (r) and spares PUFA.

• FUNCTIONS1) Vitamin E is essential for the membrane

structure and integrity of the cell, hence it is regarded as a membrane antioxidant.

2) It prevents the peroxidation of poly-unsaturated fatty acids in various tissues and membranes.It protects RBC from hemolysis by oxidizing agent (e.g H2O2).

Page 35: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

3) It is closely associated with reproductive functions and prevents sterility. Vitamin E preserves and maintains germinal epithelium of gonads for proper reproductive function.

4) It increases the synthesis of heme by enhancing the activity of enzymes aninolevulinic acid (ALA) synthase and ALA dehydratase.

5) It is required for cellular respiration through electron transport chain (believed to stabilize coenzyme Q).

Page 36: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

6) Vitamin E prevents the oxidation of vitamin A and carotenes.

7) It is required for proper storage of creatine in skeletal muscle.

8) Vitamin E is needed for optimal absorption of amino acids from the intestine.

9) It is involved in proper synthesis of nucleic acids.

10)Vitamin E protects liver from being damaged by toxic compounds such as carbon tetrachloride.

Page 37: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

11) It works in association with vitamin A , C and B carotene, to delay the onset of cataract.

12)Vitamin E has been recommended for the prevention of chronic diseases such as cancer and heart diseases.

Page 38: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin K

Functions:Functions: Helps blood clotHelps blood clot Helps body make Helps body make

some other some other proteinsproteins

Sources:Sources: Body can produce Body can produce

on its own (from on its own (from bacteria in bacteria in intestines)intestines)

Green, leafy Green, leafy veggiesveggies

Some fruits, other Some fruits, other veggies, and nutsveggies, and nuts

Page 39: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 40: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

VITAMIN K

Vitamin K is the only fat soluble vitamin with a specific coezyme function. It is required for the production of blood clotting factors, essential for coagulation (in German – Koagulation; hence the name k for this vitamin.

CHEMISTRY

Vitamin K exists in different forms vitamin K1 (Phylloquinone) is present in plants. Vitamin K2 (menaqquinone) is produced by the

Page 41: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Intestinal bacteria and also found in animals. Vitamin K3 (menadione) is synthetic form.

All the three vitamin (k1,k2,k3) are naphthoquinone derivatives. Isoprenoid side chain is present in vitamins K1 and k2. The three vitamins are stable to heat. Their activity is, however, lost by oxidizing agents, irradiation, strong acids and alkalies.

Absorption , transport and storage

Vitamin k is taken in the diet or synthesized by the intestinal bacteria. Its absorption takes place along with fat (chylomicrons) and is dependent on bile

Page 42: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Salt. Vitamin K is transported along with LDL and is stored mainly in liver and , to a lesser extent, in other tissues.

Biochemical functions

The functions of vitamin K are concerned with blood clotting process. It brings about the post-translational (after protein biosynthesis in the cell) modification of certain blood clotting factors. The clotting factors II (prothrombin) VII IX and X are synthesized as inactive precursors (zymogens) in the liver. Vitamin K act as a

Page 43: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Coenzyme for the carboxylation of glutamic acid residues present in the proteins and this reaction is catalysed by a carboxylase (microsomal). It involves the conversion of glutamate (Glu) to carboxyglutamate is inhibited by dicumarol, an anticoagulant found in spoilt sweet clover. Warfarin is a synthetic analogue that can inhibit vitamin K action.

Page 44: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance (RDA)

Strictly speaking there is no RDA for vitamin K, since it can be adequately synthesized in the gut. It is however , recommended that half of the body requirement is provided in the diet, while the other half is met from the bacterial synthesis. Accordingly , the suggested RDA for an adult is 70-140 µg/day.

Dietary Sources

Cabbage, cauliflower , tomatoes ,

Page 45: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Spinach and other green vegetables are good sources. It also present in egg yolk, meat, liver, cheese and dairy products.

Deficiency symptoms

The deficiency of vitamin K is uncommon , since it is present in the diet in sufficient quantity and is adequately synthesized by the intestinal bacteria. However , vitamin K deficiency may occur due to its faulty absorption (lack of bile salts) loss of vitamin into feces (diarrheal diseases ) and

Page 46: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Administration of antibiotics (killing of intestinal flora).

Deficiency of vitamin k leads to the lack of active prothrombin in the circulation. The result is that blood coagulation is adversely affected. The individual bleeds profusely even for minor injuries .The blood clotting time is increased.

Hypervitaminsis K

Administration of large doses of vitamin K produces hemolytic anaemia and jaundice,

Page 47: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Particularly in infants. The toxic effect is due to increased breakdown of RBC.

Antagonists of vitamin k

The compounds namely heparin, bishydroxycoumarin act as anticoagulants and are anatagonists to vitamin k. The salicylates and dicumarol are also anatagonists to vitamin K.

Dicumarol is structurally related to vitamin k and acts as a competitive inhibitor in the synthesis of active prothrombin.

Page 48: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Thiamin (B1)

Functions:Functions: Helps produce Helps produce

energy from carbsenergy from carbs

Sources:Sources: Whole-grain and Whole-grain and

enriched grain enriched grain productsproducts

PorkPork LiverLiver

Page 49: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Glycolysis

TCAcycle

Glycogenolysis

KGDHvit B1,B2,B3

PP avit B6

Glc

GlycogenG1P

R5PTK

vit B1

PDHvit B1,B2,B3

KGSCoA

Acetyl-CoA

G6P

Pyr

G3PALTvit B6Ala

ASTvit B6

OAAsp

vit B6 Glu

PPP

Role in Pathways

Page 50: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended diatary allowance (RDA)The daily requirement of thiamine depends on the intake of carbohydrate. A dietary supply of 1-1.5 mg/day is recommended for adults (about 0.5 mg/1000 cals of energy). For children RDA is 0.7-1.2 mg/day. The requirement marginally increases in pregnancy an location (2 mg/day) old range and alcoholism.Dietary SourcesCereals, pulses, oil seed, nuts and yeast are good sources. Thiamine is mostly concentrated in the outer layer (bran) of

Page 51: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Cereals. Polishing of rice removes about 80% of thiamine. Vitamin B1 is also present in animal food like pork, liver, heart, kidney, milk etc. In the parboiled (boiling of paddy with husk) and milled rice, thiamine is not lost in polishing , since thiamine is a water soluble vitamin, It is extracted into the water during cooking process. Such water should not be discarded.

Page 52: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptomsThe deficiency of vitamin B1 results in a

condition called beri-beri [ sinhalese:1 cannot said twice]. Beri – beri is mostly seen in populations consuming exclusively polished rice as staple food. The early symptoms of thiamine deficiency are loss of appetite (anorexia) weekness, constipation , nausea, mental depression, Peripheral neuropathy irritability etc. Numbness in the legs complaints of pins and needles sensation are reported.

Page 53: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Riboflavin (B2)

Functions:Functions: Produce energyProduce energy Changes Changes

tryptophan tryptophan (amino acid) into (amino acid) into niacinniacin

Sources:Sources: LiverLiver Yogurt and milkYogurt and milk Enriched grainsEnriched grains EggsEggs Green, leafy Green, leafy

veggiesveggies

Page 54: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance (RDA)

The daily requirement of riboflavin for an adult is 1.2-1.7 mg. Higher intakes (by 0.2-0.5 mg/day) are advised for pregnant and lactating women.

Dietary sources

Milk and milk products, meat, eggs, liver , kidney are rich sources. Cereals , fruit, vegetables and fish are moderate sources.

Page 55: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptoms

Riboflavin deficiency symptoms include cheilosis (fissures at the corners of the mouth), glossitis (tongue smooth and purplish) and dermatitis.Riboflavin deficiency as such is uncommon. It is mostly seen along with other vitamin deficiences. Chronic alcoholics are suscepitible to B2 deficiency. Assay of the enzymes glutathione reductase in erythrocytes will be useful in assessing

Riboflavin deficiency.

Page 56: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Niacin

Functions:Functions: Helps body use Helps body use

sugars/fatty acidssugars/fatty acids Helps enzymes Helps enzymes

function normallyfunction normally Produces energyProduces energy

Sources:Sources: Foods high in Foods high in

protein typically protein typically (poultry, fish, (poultry, fish, beef, peanut beef, peanut butter, legumes)butter, legumes)

Enriched and Enriched and fortified grainsfortified grains

Page 57: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance (RDA)

The daily requirement of niacin for an adult is 15-20 mg and for children around 10-15 mg . Very often the term niacin equivalents (NE) is used while expressing its RDA. One NE= 1 mg niacin or 60 mg of tryptophan. Pregnancy an lacatation in women impose an additional metabolic burden and increase the niacin requirement.

Dietary Sources

The rich natural sources of niacin include

Page 58: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Liver, yeast, whole grains, cereals, pulses like beans and peanuts. Milk, fish, egg and vegetables are moderate sources. The essential amino acid typtophan can serve as a precursor for the synthesis of nicotinamide coenzymes. Tryptophan has many other essential and important function in the body , hence dietary tryptophan cannot totally replace niacin.

Deficiency symptoms

Niacin deficiency results in a condition

Page 59: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Called pellagra (Italian rough skin). This disease involves skin , gastrointestinal tract and central nervous system. The symtoms of pellagra are commonly referred to a three Ds. The disease also progresses in that order dermatitis, diarrhea, dementia, and if not treated may rarely lead to death .

Dermatitis (inflammation of skin) is usually found in the areas of the skin exposed to sunlight (neck , dorsal part of feet, ankle

Page 60: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Pyridoxine (B6)

Functions:Functions: Helps body make Helps body make

non-essential non-essential amino acidsamino acids

Helps turn Helps turn tryptophan into tryptophan into niacin and niacin and serotoninserotonin

Help produce Help produce body chemicals body chemicals (insulin, (insulin, hemoglobin, etc)hemoglobin, etc)

Sources:Sources: ChickenChicken FishFish PorkPork LiverLiver Whole grainsWhole grains NutsNuts LegumesLegumes

Page 61: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Neurotransmitter Overview

Dopamine

Norepinephrine

Epinephrine

Glutamate -Aminobutyrate

Serotonin

Tyrosine

Tryptophan

PLP (vit B6)

deCO2ase

PLP (vit B6)

deCO2ase

PLP (vit B6)

deCO2ase

Page 62: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Neurotransmitter Pathway

Dopamine

Norepinephrine

Serotonin(5-HT)

Tyrosine

Tryptophan

PLP (vit B6)

AAA deCO2ase

PLP (vit B6)

AAA deCO2ase

Catecholamines

DOPA

DOHase Vit C, O2

Tyr OHase

THBP, O2

5HTPTrp OHase

O2THBP,

EpinephrinePNMT

SAMSAHC

Page 63: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance

• The requirement of pyridoxine for an adult is 2- 2.2mg/day.

• During lactation, pregnancy and old age, an intake of 2.5mg/dl is recommended.

Page 64: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptoms

Pyridoxine deficiency is associated with neurological symtoms such as depression, irritability, nervousness and mental confusion. Convulsions and peripheral neuropathy are observed in severe deficiency. These symptoms are related to the decreased synthesis of biogenic amines (serotonin, GABA, norepinephrine and epinephrine). In children B6 deficiency with

Page 65: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

A drastically reduced GABA production results in convulsions (epilepsy).

Decrease in hemoglobin levels, associated with hypochromic microcytic anamia, is seen in B6 deficiency. This is due to a reduction in hemo production.

Page 66: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Folate (folic acid)

Functions:Functions: Produces DNA and Produces DNA and

RNA, making new RNA, making new body cellsbody cells

Works with vitamin Works with vitamin B12 to form B12 to form hemoglobinhemoglobin

May protect against May protect against heart diseaseheart disease

Lowers risk of Lowers risk of neural tube defects neural tube defects in babiesin babies

Controls plasma Controls plasma homocystine levels homocystine levels (related to heart (related to heart disease)disease)

Sources:Sources: Fortified and Fortified and

enriched grains enriched grains and breakfast and breakfast cerealscereals

Orange juiceOrange juice LegumesLegumes Green, leafy Green, leafy

veggiesveggies PeanutsPeanuts AvacadosAvacados

Page 67: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

THF

Most reduced

Most oxidized

Tetrahydrofolate ConversionsFolate

DHF

DHF reductase

DHF reductase

(HC to Met)

N5-formimino-THF

(His to Glu)

(dUMP to dTMP to DNA)

(Ser to Gly) N10-formyl-THF

N5,N10-methenyl-THF

N5,N10-methylene-THF

N5-methyl-THF

Page 68: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

His Gluglutamate formimino transferase

THF N5-FTHF

Ser Glyserine hydroxymethyl

transferase

CO2 + NH4+

glycine synthase

THFN5,N10-MLTHFPLP

THF

NAD+ NADH + H+

N5,N10-MLTHF

dUMP dTMPthymidylate synthase

N5,N10-MLTHF

7,8-DHF

Tetrahydrofolate examples

THF DHF reductaseA series of reductases

Page 69: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance (RDA)The daily requirement of folic acid is around 200 µg. In the women, higher intakes are recommended during pregnancy (400 µg / day) and loctation (300 µg/day).Dietary sourcesFolic acid is widely distributed in nature. The rich sources are green leafy vegetables, whole grains, cereals, liver , kidney, yeast and eggs. Milk is rather a poor source of folic acid.

Page 70: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptoms

Folic acid deficiency is probably the most common vitamin deficiency, observed primarily in the pregnant women, in both developed (including USA) and developing countries (including india). The pregnant women, lactating women, women on oral contraceptives, and alcoholics are also susceptible to folate deficiency. The folic acid deficiency may be due to (one or more causes) inadequate dietary intake, defective

Page 71: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Use of anticonvulsant drugs (phenobarbitone, dilantin , phenyltoin), and increased demand.

The microcytic anemia (abnormally large RBC) associated with megaloblastic changes in bone marrow is a characteristic feature of folate deficiency.

Folic acid and hyperhomocysteinemia

Elevated plasma levels of homocysteine are associated with increased risk of atherosclerosis, thrombosis and hypertension. Hyperhomocysteinemia is mostly due to functional folate deficiency caused by impairment to form

Page 72: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Methyl-tetrahydrofolate reductase. This results in a failure to convert homocysteine to methionine. Folic acid supplementation reduces hyperhomocysteinemia, and thereby the risk for various health complications.

Folic Acid antagonists

Aminopterin and amethopterin (also called as methotrexate) are structural analogues of folic acid. They competitively inhibit dihydrofolate reductase and block the

Page 73: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin B12 (cobalamin)

Functions:Functions: Works with folate Works with folate

to make RBC’sto make RBC’s In many body In many body

chemicals and chemicals and cellscells

Helps body use Helps body use fatty acids/amino fatty acids/amino acidsacids

Sources:Sources: Animal productsAnimal products MeatMeat FishFish PoultryPoultry EggsEggs Milk, other dairyMilk, other dairy

Page 74: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

B12 Pathways

L-MMCoA SCoA

Met S-AdMet

S-AdHCHC

ATP +

Methyl transfers(1C metabolism)

Met synthaseVit B12

TCAcycle

Odd-chainFA oxidation/

AA metabolismMMCoA mutase

Vit B12

(H exchange)

Met Ad transferase

A varietyof MTs

hydrolase

THF

N5MTHF

R

R-CH3

Purines, dTMP

Page 75: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Biotin

Functions:Functions: Produces energyProduces energy Helps body use Helps body use

proteins, carbs, proteins, carbs, and fats from and fats from foodsfoods

Sources:Sources: Wide variety of Wide variety of

foodsfoods EggsEggs LiverLiver Wheat germWheat germ PeanutsPeanuts Cottage cheeseCottage cheese Whole grain breadWhole grain bread

Page 76: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance (RDA)

A daily intake of about 100-300 mg is recommended for adults. In fact, biotin is normally synthesized by the intestinal bacteria. However , to what extent the synthesized biotin contributes to the body requirements is not clearly known.

Dietary Sources

Biotin is widely distributed in both animal and plant foods. The rich sources are liver , kidney , egg yolk, milk, tomatoes grain etc.

Page 77: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptoms

The symptoms of biotin deficiency include anemia , loss of appetite, nausea, dermatitis, glossitis etc. Biotin deficiency may also result in depression , hallucinations, muscle pain and dermatitis.

Page 78: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Pantothenic Acid

Helps produce Helps produce energyenergy

Helps the body Helps the body use proteins, fat, use proteins, fat, and carbs from and carbs from foodfood

Sources:Sources: Found in almost Found in almost

all foodsall foods Meat, poultry, fishMeat, poultry, fish Whole grain Whole grain

cerealscereals LegumesLegumes MilkMilk Fruits, veggiesFruits, veggies

Page 79: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance (RDA)

The requirement of pantothenic acid for humans is not clearly known. A daily intake of about 5-10 mg is advised for adults.

Dietary sources

Pantothenic acid is one of the most widely distributed vitamins found in plant and animals. The rich sources are egg, liver , meat , yeast , milk etc.

Page 80: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Vitamin C

Functions:Functions: Helps produce Helps produce

collagen collagen (connective tissue (connective tissue in bones, muscles, in bones, muscles, etc)etc)

Keeps capillary Keeps capillary walls, blood walls, blood vessels firmvessels firm

Helps body absorb Helps body absorb iron and folateiron and folate

Healthy gumsHealthy gums

Heals cuts and Heals cuts and woundswounds

Protects from Protects from infection, boosts infection, boosts immunityimmunity

AntioxidantAntioxidant SourcesSources

Citrus fruitsCitrus fruits Other fruits, Other fruits,

veggiesveggies

Page 81: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods
Page 82: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Biochemical functions

• Most of the function of vitamin C are related to its property to undergoes reversible oxidation – reduction.

• Collagen formation: vitamin C plays the role of a coenzyme in hydroxylation of proline and lysine while protocollagen is converted to collagen. In this way, Vitamin C is necessary for maintenance of normal connective tissue and wound healing process.

Page 83: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Bone formation: vitamin C is required for bone formation.

• Iron and hemoglobin metabolism: Ascorbic acid enhances iron absorption by keeping it in the ferrous form. This is due to reducing property of Vitamin C. it help in the formation of ferritin (storage form of iron) and metaboilzation of iron from ferritin. Vitamin C is useful in the reconversion of methemoglobin to hemoglogin. The degradation of hemoglobin to bile pigments requires ascorbic acid.

Page 84: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Tryptophan metabolism: vitamin C is essential for the the hydroxylation of tryptophan to hydroxytryptophan in the the synthesis of serotonin.

• Tyrosine metabolism: ascorbic acid is required for the oxidation of p-hydroxyphenylpyruvate to homogentisic acid in tyrosine metabolism.

• Folic acid metabolism: Ascorbic acid is involve in the formation of the active form of folic acids. Also involved in maturation of erythrocytes.

Page 85: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Peptide hormone synthesis: many peptide hormone synthesis require vitamin C.

• Synthesis of corticosteroid hormones: vitamin C is necessay for the hydroxylation reactions in the synthesis of corticosteroid hormones.

• Sparing action of other vitamins: asorbic acid is a strong antioxidant. It spares vitamin A, vitamin E and some B-complex vitamins from oxidation.

Page 86: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

• Immunological function: vitamin C enhances the synthesis of immunoglobulins (antibodies) and increses the phagocytic action of leucocytes.

• Prevention action on cataract: vitamin C reduces the risk of cataract formation.

• Preventive action on chronic diseases: as an antioxidant, vitamin C reduces the risk of cancer, cataract, and coronary heart diseases.

Page 87: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Recommended dietary allowance.

• About 60 to 70 mg vitamin C intake per day will meet the adult requirement. Additional intakes (20%-40%) are recommended for women during pregnancy and lactation.

Page 88: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Dietary sources

• Citrus fruits, gooseberry, guava, green vegetables (cabbage, spinach) tomatoes, potatoes (particularly skin) are rich in ascorbic acid.

• Milk is poor source of vitamin C.

Page 89: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Deficiency symptoms

• The deficiency of ascorbic acid result in the Scurvy. This disease is characterized by spongy and sore gums, loose teeth, anemia, swollen joints, fragile blood vessels, decreased immunocompetence, delayed wound healing, sluggish hormonal function of adrenal cortex and gonads, haemorrage, osteoporosis etc.

Page 90: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

What are minerals?

Regulate body processesRegulate body processes Give structure to things in the Give structure to things in the

bodybody No calories (energy)No calories (energy) Cannot be destroyed by heatCannot be destroyed by heat

Page 91: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Categories of minerals

Major mineralsMajor minerals CalciumCalcium PhosphorusPhosphorus MagnesiumMagnesium Electrolytes Electrolytes

(sodium, chloride, (sodium, chloride, potassium)potassium)

Trace mineralsTrace minerals ChromiumChromium CopperCopper FlourideFlouride IodineIodine IronIron ManganeseManganese SeleniumSelenium ZincZinc

Page 92: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Calcium

Bone buildingBone building Muscle contractionMuscle contraction Heart rateHeart rate Nerve functionNerve function Helps blood clotHelps blood clot

Page 93: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Phosphorus

Generates energyGenerates energy Regulate energy metabolismRegulate energy metabolism Component of bones, teethComponent of bones, teeth Part of DNA, RNA (cell growth, Part of DNA, RNA (cell growth,

repair)repair) Almost all foods, especially Almost all foods, especially

protein-rich foods, contain protein-rich foods, contain phosphorusphosphorus

Page 94: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Magnesium

Part of 300 enzymes (regulates Part of 300 enzymes (regulates body functions)body functions)

Maintains cells in nerves, musclesMaintains cells in nerves, muscles Component of bonesComponent of bones Best sources are legumes, nuts, Best sources are legumes, nuts,

and whole grainsand whole grains

Page 95: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Electrolytes

Chloride:Chloride: Fluid balanceFluid balance Digestion of food, transmits nerve impulsesDigestion of food, transmits nerve impulses

PotassiumPotassium Maintains blood pressureMaintains blood pressure Nerve impulses and muscle contractionNerve impulses and muscle contraction

SodiumSodium Fluid balanceFluid balance Muscles relax, transmit nerve impulsesMuscles relax, transmit nerve impulses Regulates blood pressureRegulates blood pressure

Page 96: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Electrolytes

Sources:Sources: Salt (sodium chloride)Salt (sodium chloride) Fruits, veggies, milk, beans, fish, Fruits, veggies, milk, beans, fish,

chicken, nuts (potassium)chicken, nuts (potassium)

Page 97: Vitamins, Minerals, Antioxidants, Phytonutrients, Functional Foods

Iron

Part of hemoglobin, carries oxygenPart of hemoglobin, carries oxygen Brain developmentBrain development Healthy immune systemHealthy immune system Sources:Sources:

Animals (heme) vs. plants (non-Animals (heme) vs. plants (non-heme)heme)

Better absorbed from hemeBetter absorbed from heme Consume vitamin C with non-heme Consume vitamin C with non-heme Fortified cereals, beans, eggs, etc.Fortified cereals, beans, eggs, etc.