Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

26
Visualizing High- Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    218
  • download

    0

Transcript of Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Page 1: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing High-Order Surface Geometry

Pushkar Joshi, Carlo Séquin

U.C. Berkeley

Page 2: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Clarification• This talk is NOT about a new CAD tool;

but it describes a “Meta-CAD tool.”

• This talk is NOT about designing surfaces; it is about understanding smooth surfaces.

This Presentation• Convey geometrical insights via a

visualization tool for basic surface patches.

• Give a thorough understanding of what effects higher-order terms can produce in smooth surfaces.

Page 3: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing Shape at Surface Point

Shape of small patch centered at surface point

• Build intuition behind abstract geometric concepts

• Applications: differential geometry, smoothness metrics, identifying feature curves on surfaces

Page 4: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Minimizing Curvature Variation for Aesthetic Design

Pushkar Joshi, Ph.D. thesis, Oct. 2008

Advisor: Prof. Carlo Séquin

U.C. Berkeley

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-129.html

Page 5: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Minimum Curvature Variation Curves, Networks, and Surfaces for Fair Free-Form Shape Design

Henry P. Moreton, Ph.D. thesis, March 1993

Advisor: Prof. Carlo Séquin

U.C. Berkeley

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/5219.html

Page 6: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Surface Optimization Functionals

2 2

1 2( )dA

Minimize: total curvature

MES optimal shape

2 2

1 2

1 2

d ddA

de de

MVS optimal shape

Minimize: variation of curvature

MVScross

optimal shape

dAde

dk

de

dk

de

dk

de

dk2

1

2

2

2

1

2

2

2

2

1

1

new termsnew terms

Page 7: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Open Questions• What is the right way to measure “total curvature variation” ?

– Should one average in-line normal curvature in all directions ?

• How many independent 3rd degree terms are there ?

– Does MVScross capture all of them, – with the best weighting ?

– Gravesen et al. list 18 different 3rd-degree surface invariants !

• How do these functionals influence surface shapes ?– Which functional leads to the fairest, most pleasing shape ?

• Which is best basis for capturing all desired effects ?– What is the geometrically simplest way to present that basis ?

Draw inspiration from principal curvatures and directions,which succinctly describe second-degree behavior.

Page 8: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing 2nd Degree Shape

Flat Parabolic

Hyperbolic Elliptic

Principal curvatures (κ1, κ2) and principal directions (e1, e2) completely characterize second-order shape.

Can we find similar parameters for higher-order shape?

Page 9: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Understanding the 2nd Degree Terms• Analyze surface curvature in a cylindrical coordinate system

centered around the normal vector at the point of interest.

• Observe: offset sine-wave behavior of curvature around you, with 2 maxima and 2 minima in the principal directions.

Curvature as a function of rotation angle around z-axis:z = n

phase-shifted sine-wave: F2

plus a constant offset: F0

Page 10: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Polynomial Surface Patch

z(u,v) =

C0u3 + C1u2v + C2uv2 + C3v3

+

Q0u2 + Q1uv + Q2v2

+

L0u + L1v

+

(const.)

4 Parameters!

Ignore (for now)

Page 11: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Fourier Analysis of Height Field

zc(r,θ) = r3 [ C0cos3(θ)+ C1cos2(θ)sin(θ)+ C2cos(θ)sin2(θ)+ C3sin3(θ)]

zc(r,θ) = r3 [ F1 cos( θ + α ) + F3 cos(3( θ + α + β )) ]

1 2 3 4 5 6

2

1

1

2

1 2 3 4 5 6

2

1

1

2

1 2 3 4 5 6

2

1

1

2

= +

F1cos(θ+α) F3cos(3(θ+α+β))zc(θ)

Page 12: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

3rd Degree Shape Basis Components

F3 (amplitude) β (phase shift)

F1 (amplitude) α (phase shift)

Page 13: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing 3rd Degree Shape in Fourier Basis

= + =

x2

x2

A cubic surface

F1 component

F3 component

(2 F1 + 2 F3 )/2

Page 14: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Directions Relevant to 3rd Degree Shape

Maximum F1 component

Maximum F3 component ( 3 equally spaced directions)

z

Page 15: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

GUI of the Visualization Tool

PolynomialCoefficients

Fourier CoefficientsSurface near point of analysis

Surface is modified by changing polynomial coefficients or Fourier coefficients. Changing one set of coefficients automatically changes the other set.

Page 16: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Polynomial & Fourier Coefficientsz(r, θ) = r3 [ J cos3θ + I sin3θ + H cos2θ sinθ + G cosθ sin2θ ]

+ r2 [ F cos2θ + E sin2θ + D cosθ sinθ ]

+ r [ C cosθ + B sinθ ]

+ A

z(r, θ) = r3 [ F3_1 cos(θ + α) + F3_3 cos3(θ + α + β) ] +

r2 [ F2_0 + F2_2 cos2(θ + γ) ] +

r [ F1_1 cos(θ + δ) ] +

F0_0

(equivalent)

For the math see:Joshi’s PhD thesis

Page 17: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

3rd Degree Shape Edits (Sample Sequence)

(a) (b) (c)

(d) (e) (f)

Page 18: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing the Properties of a Surface Patch

Quadratic overlaid on cubic

Page 19: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing the Properties of a Surface Patch

Arrows indicate significant directions

Page 20: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing the Properties of a Surface Patch

Inline curvature derivative plot

Page 21: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Visualizing the Properties of a Surface Patch

Cross curvature derivative plot

Page 22: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

(Mehlum-Tarrou 1998)

3rd Degree Shape Parameters for General Surface Patch

In-line curvature derivative

'( )n

κn(θ) κn(θ)

1 3cos( ) cos(3( ))F F

Page 23: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Recap: 3rd Degree Shape Parameters

2nd Degree: κ1, κ2, φF0 = (κ1+κ2)/2 F2 = (κ1–κ2)/2

3rd Degree: F1, α, F3, βThe F1 and F3 componentsrelate to curvature derivatives.

Page 24: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Higher-Order Shape Bases

4th degree: F0

5th degree: F1

F2

F3 F5

F4

Page 25: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

Application

Page 26: Visualizing High-Order Surface Geometry Pushkar Joshi, Carlo Séquin U.C. Berkeley.

SummaryVisualize 3rd degree basis shapes (using polynomial height field)

Develop theory of high-order basis shapes (Fourier coefficients)

Visualize higher-order (4th degree and 5th degree) basis shapes