Viscous Flow in Ducts

download Viscous Flow in Ducts

of 13

Transcript of Viscous Flow in Ducts

  • 8/3/2019 Viscous Flow in Ducts

    1/13

    ViscousFlowinDuctsWewant tostudy theviscous flow inductswithvariousvelocities, fluidsandductshapes. Thebasic

    problem is this:Given thepipegeometryand itsadded components (e.g. fittings,valves,bends,and

    diffusers)plus thedesired flow rateand fluidproperties,whatpressuredrop isneeded todrive the

    flow?

    ReynoldsnumberregimesThemostimportantparameterinfluidmechanicsistheReynoldsnumber:

    whereisthefluiddensity,Uistheflowvelocity,Listhecharacteristicslengthscalerelatedtotheflowgeometry, and is the fluid viscosity. The Reynolds number can be interpreted as the ratio ofmomentum(orinertia)toviscousforces.

    Aprofound

    change

    in

    fluid

    behavior

    occurs

    at

    moderate

    Reynolds

    number.

    The

    flow

    ceases

    being

    smoothandsteady(laminar)andbecomesfluctuating(turbulent).Thechangeoveriscalledtransition.

    Transitiondependsonmanyeffectssuchaswallroughnessorthefluctuations inthe inletstream,but

    theprimaryparameter istheReynoldsnumber.Turbulencecanbemeasuredbysensitive instruments

    suchasahotwireanemometerorpiezoelectricpressuretransducer.

    Fig.1:Thethreeregimesofviscousflow:a)laminar(lowRe),b)transitionatintermediateRe,andc)

    turbulentflowinhighRe.

    Thefluctuations,typicallyrangingfrom1to20%oftheaveragevelocity,arenotstrictlyperiodicbutare

    randomandencompassacontinuousrangeoffrequencies.InatypicalwindtunnelflowathighRe,the

    turbulentfrequencyrangesfrom1to10,000Hz.

    Thehigher

    Re

    turbulent

    flow

    is

    unsteady

    and

    irregular

    but,

    when

    averaged

    over

    time,

    is

    steady

    and

    predictable.ForafluidflowwithaveragevelocityUwhichitsshear layerhasthecharacteristicslength

    scaleL, ,thefollowingapproximaterangesoccur:0

  • 8/3/2019 Viscous Flow in Ducts

    2/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 2

    103

  • 8/3/2019 Viscous Flow in Ducts

    3/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 3

    Fig.4:Reynoldsssketchesofpipetransition.

    InternalandexternalviscousflowBothlaminarandturbulentflowmaybeinternalorexternal.

    Internal flow:An internal flow iscontained (orbounded)bywallsand theviscous flowwillgrowandmeet and permeate the entire flow. As a result, there is an entrance region where nearly inviscid

    upstreamflowconvergesandenterstheduct.

    Fig.5:Developingvelocityprofilesandpressurechangesintheentranceofaduct.

  • 8/3/2019 Viscous Flow in Ducts

    4/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 4

    Beyond the entrance region,which is a finitedistance from the entrancex = Le, the velocity profilebecomesconstant,i.e.itnolongerchangeswithxandissaidtobefullydeveloped, .Forlaminarflow,theentranceregioncanbefoundformthefollowingempiricalcorrelation:

    0.06

    AssumingthemaximumReforthelaminarflowinaductisRed,crit=2300thelongestlaminardevelopingregionbecomes:Le=138d,i.e.138timesofthetubediameter.Turbulentflowboundarylayersgrowfaster,andtheentranceregion(Le)isrelativelyshorter: 4.4/ AssumingRe=10

    6forturbulentflowinaduct,atypicalturbulentdevelopingregionbecomes:Le=44d.

    Note: the entrance region length can vary from 40d to 100d for turbulent and laminar regimes,

    respectively.However,fortypicalpipeflowapplication,thepipelengthis1000ofitsdiameterinwhich

    casetheentranceeffectmaybeneglected.Thereforeasimpleanalysisforfullydevelopedregioncanbe

    usedfortheentirepipelength.

    Externalflow:Hasnorestrainingwallsandisfreetoexpandnomatterhowthicktheviscouslayersontheimmersedbodymaybecome.Asaresult,farfromthebodytheflowisnearlyinviscidandthereisno

    externalequivalentoffullydevelopedinternalflow.

    Flowheadloss(thefrictionfactor)Considerincompressiblesteadyflowbetweensections1and2oftheinclinedconstantareapipeshown

    inFig.6.

    Fig.6:Steadyfullydevelopedflowinaninclinedpipe.

  • 8/3/2019 Viscous Flow in Ducts

    5/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 5

    The1Dcontinuityequation:

    Foraconstantareapipe,thesteadyenergyequationbecomes:

    2 2 SinceV1=V2,thefrictionheadlostis:

    Applyingthemomentumequation,thesummationontheforcesalongthexdirection,wefind:

    2 0Rearrangingthis,wefindthattheheadlossisrelatedtowallshearstress:

    2 4 where .Note that regardlessofwhether thepipe ishorizontalor tilted, thehead loss isproportionaltothewallshearstress.AGermanprofessor,JuliusWeisbach1850,arguedthatthefriction

    factorisproportionaltoL/dandV2(observedexperimentallyinturbulentregime).Hethenproposedto

    representthefrictionlesshead losswithadimensionlessparameterf(calledtheDarcyfrictionfactor),

    thatisdefinedas:

    2wheref=f(Red,ductroughness,ductshape).Byequatingtheaboveequations,wefind: 8LaminarfullydevelopedpipeflowConsiderfullydevelopedPoiseuilleflow inaroundductofdiameterd.Theanalyticalvelocitysolution,

    fromthepreviouschapter,is:

    1

    4

    2 8 8 4 2

    32 128

  • 8/3/2019 Viscous Flow in Ducts

    6/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 6

    Note:thepressuredropininverselyproportionaltothepipediametertothepower4.So,ifthesizeof

    thepipeisdoubled,thepressuredropwilldecreasebyafactorof16foragivenQ.

    These formulas are valid whenever the Re

  • 8/3/2019 Viscous Flow in Ducts

    7/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 7

    Thethreecorrelationterms , , arecalledturbulentstressesbecausetheyhavethesame dimensions and occur right alongside the newtonian (laminar) stress terms.Actually, they are

    convective acceleration terms (that is why the density appears), not stresses but they have the

    mathematicaleffectofstress.

    TurbulentpipeflowThereare three regions in turbulent flow, inner layer (orviscous sublayer)whereviscouseffectsare

    dominant (near thewall),overlap layer (transition to turbulentoccurs)andouter region (the flow is

    completelyturbulent)asshowninFig.8.

    Fig.8:turbulentflowregimes.

    Sincetheinnerwall layerformstypicallyonly2%ofthefluidflowprofile,wecanneglectit.Therefore,

    weonlyconsidertheoverlaplayervelocityprofilefortheentirepipeflow:

    1 ln where

    0.4 5.0,

    /isthekinematicviscosityofthefluid,and

    / iscalledthefrictionalvelocity,because ithasvelocitydimensions,although it isnotactuallyaflowvelocity.

    Thefrictionfactorfortheturbulentpipeflowcanbecalculatedfromthefollowingcorrelations:

  • 8/3/2019 Viscous Flow in Ducts

    8/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 8

    0.316/ 4000 101.8 6.9

    where

    .

    Forahorizontalpipe,wehave:

    0.158////Orintermsof 4 ,wefindanalternativeform:

    0.24//..Note:Thepressuredrop for the turbulent flowdecreaseswithdiameterevenmore sharply than the

    laminarflow.Doublingthepipesizedecreasesthepressuredropbyafactorof27foragivenQ.

    Note:As

    depicted

    in

    Fig.

    9,

    aturbulent

    velocity

    profile

    is

    very

    flat

    in

    the

    center

    and

    drops

    off

    sharply

    to

    zeroatthewall.

    Fig.9:Comparisonofa)laminarandb)turbulentpipeflowvelocity.

    EffectofroughwallsThe surface roughness has an effect on friction resistance; for laminar flow, however, this effect is

    negligible.Theturbulentflow isstronglyaffectedbyroughness.Nikuradse(1933)simulatedroughness

    bygluinguniformsandgrainsontothe innerwallsofthepipes.Hethenmeasuredthepressuredrops

    andflowratesandcorrelatedfrictionfactorversusReynoldsnumber,asshowninFig.10.

    Note:

    Thelaminarfrictionisunaffected, Theturbulent friction,afteranonsetpoint, increasesmonotonicallywiththeroughness ratio,/, Thefrictionfactorbecomesconstant(fullyrough)athighReynoldsnumbers.

    Threeregionscanbedetectedinthechart:

  • 8/3/2019 Viscous Flow in Ducts

    9/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 9

    Fig.10:Effectofwallroughnessonturbulentpipeflow.

    5:Hydraulicallysmoothwalls,noeffectofroughnessonfriction5 70:Transitionalroughness,moderateReynoldsnumbereffect

    70:

    Fully

    rough

    flow,

    sub

    layer

    totally

    broken

    up

    and

    friction

    independent

    of

    Reynolds

    number.

    Thelogarithmlawmodifiedforroughnessbecomes:

    1 8.5Integratingthisequation,wecanfindtheaveragevelocityinthepipe:

    2.44 3.2For

    fully

    rough

    flow,

    we

    have:

    1/ 2.0 /3.7 NoticethatthereisnoReynoldsnumbereffect;hencetheheadlossvariesexactlyasthesquareofthe

    velocityinthiscase.

  • 8/3/2019 Viscous Flow in Ducts

    10/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 10

    TheMoodychartColebrook(1939)combinedthesmoothwallandfullyroughrelationsintoaclevercombined

    interpolationformula:

    1 2.0 /3.7 2.51

    Itisplottedin1944byMoody(1944)intowhatiscalledtheMoodychartforpipefriction,Fig.11.

    Moodychartisoneofthemostfamousandusefulfigureinfluidmechanics.Itisaccurateto15%and

    canbeusedforcircularandnoncircularductsandopenchannels.

    Fig.11:TheMoodychartforpipefrictionwithsmoothandroughwalls.

    TheColebrookequationiscumbersometoevaluatef,Haaland(1983)proposedanothercorrelation:

    1 1.8 6.9 /3.7 .HydraulicdiameterIftheductisnoncircular,theanalysisoffullydevelopedflowfollowsthatofthecircularpipebutismore

    complicatedalgebraically.Forturbulentflow,thelogarithmlawvelocityprofilecanbeused.Ingeneral,

  • 8/3/2019 Viscous Flow in Ducts

    11/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 11

    forcomplexgeometries,itisverychallengingtoperformtheanalysisdirectly.Therefore,theconceptof

    thehydraulicdiameterisintroducedforconvenience.

    Fig.12:Flowinnoncircularducts.

    For noncircular ducts, the above analyses are correct, however, the crosssectional area A does not

    equaltoandthecrosssectionalperimeterwettedbytheshearstress,,isnotequalto2. Forthisreasonanoncircularductissaidtohaveahydraulicdiameter:

    4 4

    Weusethehydraulicdiameter,asalengthscalefornoncircularducts,andusetheanalysesderivedfor

    thecircularpipes.

    MinorlossesinpipesystemsForanypipesystems,inadditiontotheMoodytypefrictionloss,computedforthelengthofpipe,there

    areadditionalminor losses, including:pipeentranceorexit, suddenexpansionorcontraction,bends,

    elbows,tees,otherfittings,valves(openorpartiallyclosed),andgradualexpansionsorcontractions.

    Theflowpatternsinmostoftheabovementionedgeometriesarequitecomplex,seeFig.13,andthus

    thelosses

    commonly

    measured

    experimentally

    and

    correlated

    with

    the

    pipe

    flow

    parameters.

    Themeasuredminor loss isusuallygivenasaratioofthehead lossthroughthedevicetothevelocity

    head/2oftheassociatedpipingsystem: /2 12

  • 8/3/2019 Viscous Flow in Ducts

    12/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 12

    Fig.13:Typicalcommercialvalvegeometriesa)gatevalve,b)globevalve,c)anglevalve,d)swingcheck

    valve,e)disktypegatevalve.

    Asinglepipesystemmayhavemanyminor losses.Sinceallarecorrelatedwith/2,theycanbesummedintoasingletotalsystemlossifthepipehasconstantdiameter:

    2

    Fig.14:Kfactorfor90degreeelbows.

  • 8/3/2019 Viscous Flow in Ducts

    13/13

    M.Bahrami FluidMechanics(S09) ViscousFlowinDucts 13

    K isanondimensional factor, likef,and isoftencorrelatedwith the raw sizeof thepipe, tablesand

    figuresareavailable inthetextbook forvariousminorchanges,seeFig.14forexample.Notethatwe

    must sum the losses separately if thepipe size changes so thatV2 changes.The length L is the total

    lengthofthepipeaxis.