VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX...

29
Œil et Physiologie de la Vision - VIII-2 VIII-2 : ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX SELECTIONNES COMME MODELES DE RETINOPATHIES HUMAINES Allison L. Dorfman Suna Jung Anna Polosa Julie Racine Pia Wintermark Pierre Lachapelle Pour citer ce document Allison L. Dorfman, Suna Jung, Anna Polosa, Julie Racine, Pia Wintermark et Pierre Lachapelle, «VIII-2 : ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX SELECTIONNES COMME MODELES DE RETINOPATHIES HUMAINES», Oeil et physiologie de la vision [En ligne], VIII-La vision et son exploration chez l'animal, mis à jour le 04/04/2014, URL : http://lodel.irevues.inist.fr/oeiletphysiologiedelavision/index.php?id=244, doi:10.4267/oeiletphysiologiedelavision.244 Plan Introduction Critères et modes de choix d’un animal modèle Essais thérapeutiques associés Sélection des modèles Pour la rétinopathie induite du prématuré Pour la rétinopathie pigmentaire et la DMLA Mécanismes physiopathologiques : critères pour le choix du modèle Le rat nouveau-né : modèle pour le stress oxydatif Le cochon d’Inde : modèle pour la rétine humaine à cônes Le cochon d’Inde albinos : modèle pour la CSNB de type I Techniques d’explorations par électrophysiologie L’ERG flash Préparation de l’animal Stimulations Recueil du signal L’ERG ON-OFF Stimulations Recueil du signal Analyse ERG flash & ERG ON-OFF ERG flash ERG ON-OFF L’ERG multifocal Préparation de l’animal Stimulations 1

Transcript of VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX...

Page 1: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

VIII-2 : ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX SELECTIONNES COMME MODELES DE RETINOPATHIES HUMAINES

Allison L. Dorfman

Suna Jung

Anna Polosa

Julie Racine

Pia Wintermark

Pierre Lachapelle

Pour citer ce document

Allison L. Dorfman, Suna Jung, Anna Polosa, Julie Racine, Pia Wintermark et Pierre

Lachapelle, «VIII-2 : ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX

SELECTIONNES COMME MODELES DE RETINOPATHIES HUMAINES», Oeil et physiologie

de la vision [En ligne], VIII-La vision et son exploration chez l'animal, mis à jour le

04/04/2014, URL :

http://lodel.irevues.inist.fr/oeiletphysiologiedelavision/index.php?id=244,

doi:10.4267/oeiletphysiologiedelavision.244

Plan

Introduction

Critères et modes de choix d’un animal modèle

Essais thérapeutiques associés

Sélection des modèles Pour la rétinopathie induite du prématuré Pour la rétinopathie pigmentaire et la DMLA

Mécanismes physiopathologiques : critères pour le choix du modèle Le rat nouveau-né : modèle pour le stress oxydatif Le cochon d’Inde : modèle pour la rétine humaine à cônes Le cochon d’Inde albinos : modèle pour la CSNB de type I

Techniques d’explorations par électrophysiologie

L’ERG flash Préparation de l’animal Stimulations Recueil du signal

L’ERG ON-OFF Stimulations Recueil du signal

Analyse ERG flash & ERG ON-OFF ERG flash ERG ON-OFF

L’ERG multifocal Préparation de l’animal Stimulations

1

Page 2: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Recueil et traitement du signal Réponses issues du système des cônes ou du système des bâtonnets

Potentiels évoqués visuels par flash (PEV flash) et recueil couplé ERG flash-PEV flash binoculaires Méthode Réponses ERG flash PEV flash binoculaires

Rétinopathie du prématuré

Rappel sur la vascularisation de la rétine humaine Développement normal Développement chez le prématuré

Le rat : modèle de ROP

Protocole d’induction de la rétinopathie par oxygène

Résultats à J+30 Variations histologiques de la rétine à J+30 Variations fonctionnelles de la rétine à J+30 Variations immuno-histo-chimiques Synthèse

Rétinopathie induite par la lumière

Induction de la rétinopathie à la lumière Exposition de l’animal à la lumière Résultats chez le rat albinos

Mécanisme de la rétinopathie induite à la lumière Déficience de la rhodopsine Dégénérescence des bâtonnets suivie de celle des cônes

Déficience de type rod-cone comme chez l’humain

Animal modèle : cochon d’Inde albinos mutant Comportement à la naissance : normal ERGs à la naissance : anormaux Evolution de l’ERG flash avec l’âge Caractéristiques histologiques et histochimiques de la rétine

Points forts de ce modèle CSNB/Rod-cone dystrophy

Conclusion

2

Page 3: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Texte intégral

Chaque co-auteur a également contribué à ce chapitre

Introduction

Les animaux modèles sont communément utilisés pour mieux comprendre la

pathogenèse de divers types de rétinopathies humaines, d’autant plus que les maladies

rétiniennes sont parmi les principales causes de cécité (Fletcher et al., 2011). Les

recherches menées dans notre laboratoire sont depuis longtemps axées sur la

caractérisation des processus physiopathologiques impliqués dans diverses maladies

rétiniennes et sur les mécanismes moléculaires complexes à l’origine de celles-ci.

Critères et modes de choix d’un animal modèle

Les études commencent souvent par une sélection attentive d’un animal modèle. Pour

être approprié, il faut en premier lieu, examiner le niveau de maturité de la rétine à la

naissance puis, entre autres, la taille de la portée, le coût et la durée de la gestation. Une

fois le modèle établi, il faut analyser de façon détaillée la vascularisation rétinienne par

l’utilisation des rétines étalées flat mounts, la cytoarchitecture rétinienne à l’aide de

coupes ultra minces de rétine, de cryosection et de techniques

d'immunohistochimie, l’expression des protéines rétiniennes par l'utilisation de

techniques d’immunobuvardage, puis, évaluer la fonction rétinienne par ERG flash et ERG

multifocal et les capacités de transmission du signal rétinien le long des voies visuelles

par les potentiels évoqués visuels. L’ensemble de ces paramètres permet d’entrevoir la

séquence des évènements qui sont à l’origine de la rétinopathie donnée.

Essais thérapeutiques associés

Des essais thérapeutiques peuvent aussi être menés en parallèle à l’aide de nouvelles

substances administrées par voie intravitréenne, sous-cutanée, intrapéritonéale ou

topique. Leurs effets sont testés sur les paramètres mentionnés ci-dessus et participent à

la mise au point de traitement pour ces maladies rétiniennes.

Sélection des modèles

Au cours de la dernière décennie, notre laboratoire a mis l'accent sur deux modèles de

rongeurs différents pris en période néonatale et soumis, en période post natale, à un

stress oxydatif (Lachapelle et al., 1999), (Dembinska et al., 2001), (Dembinska et al.,

2002), (Dorfman et al., 2006), (Joly et al., 2006a), (Joly et al., 2006b), (Joly et al.,

2007), (Dorfman et al., 2008), (Dorfman et al., 2011).

Pour la rétinopathie induite du prématuré

La rétinopathie induite par l'oxygène (RIO) chez un rat nouveau-né est utilisée comme

modèle humain de la rétinopathie du prématuré (RDP). Elle permet de mieux comprendre

ce qui se passe chez les nourrissons nés prématurément et exposés à des niveaux élevés

d'oxygène pour compenser leur fonction pulmonaire immature.

Pour la rétinopathie pigmentaire et la DMLA

La rétinopathie induite par la lumière (RIL) ressemble à bien des égards aux

rétinopathies humaines, y compris la rétinite pigmentaire (RP) et la dégénérescence

maculaire liée à l'âge (DMLA).

3

Page 4: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Mécanismes physiopathologiques : critères pour le choix du modèle

La rétinopathie induite par l’oxygène est souvent considérée comme une maladie

vasoproliférative avec déficiences structurelles et fonctionnelles qui se produisent

principalement dans la rétine interne (Reynaud & Dorey, 1994), (Penn et al., 1994),

(Madan & Penn, 2003), (Hardy et al., 2005), (Hardy et al., 2005).

La rétinopathie induite par la lumière se caractérise, quant à elle, par une

dégénérescence de la rétine externe, principalement au niveau de la couche des

photorécepteurs, en rapport avec une rhodopsine déficiente. Il en résulte des dommages

structurels et fonctionnels majeurs (Noell et al., 1966), (Penn & Thum, 1987), (Penn et

al., 1989), (Li et al., 2001), (Li et al., 2003).

Le rat nouveau-né : modèle pour le stress oxydatif

Le rat est une espèce nidicole dont la rétine est immature à la naissance à terme. C’est

donc un bon modèle pour le suivi de la maturation rétinienne depuis le début de

l'exposition à des stress oxydatifs exogènes soit par des niveaux élevés d'oxygène

(comme modèle de la rétinopathie du prématuré induite par l’oxygène) soit par des

niveaux intenses de lumière pour induire une rétinopathie à la lumière, modèle de

rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre l’évolution de ces rétines

sous ces stress oxydatifs et d’en caractériser les différents processus

physiopathologiques qui conduisent à l’involution de la rétine externe ou interne.

Le cochon d’Inde : modèle pour la rétine humaine à cônes

Contrairement au rat nidicole, le cochon d’Inde est une espèce précociale dont la rétine

est mature à terme. C’est un bon modèle pour l'étude de l'ERG humain. En utilisant le

cochon d’Inde albinos Hartley, nous avons non seulement montré que, à la naissance, sa

rétine a une structure et un fonctionnement rétinien semblables à ceux du cochon d’Inde

adulte avec une maturation rétinienne similaire à celle de l’humain (Racine et al., 2008),

mais aussi que son ERG photopique a les mêmes caractéristiques que l’ERG photopique

humain (Rosolen et al., 2004), (Racine et al., 2005).

D'autres modèles ont été découverts alors qu’ils se sont produits de façon spontanée.

Le cochon d’Inde albinos : modèle pour la CSNB de type I

En 2003, au cours de tests électrophysiologiques pratiqués en routine sur le cochon

d’Inde, nous avons découvert dans une population de cobayes Hartley albinos, des

animaux qui présentaient, à l’état naturel, un trouble rétinien similaire à la cécité

nocturne (Racine et al., 2003).

C’est par un accouplement consanguin accidentel entre un mâle et une femelle issus

d’une même portée que le premier cochon d’Inde mutant a été conçu. De cette union,

sont nés 4 bébés dont un seul présentait des électrorétinogrammes anormaux. Grâce à

un accouplement sélectif, nous avons pu reproduire ce phénotype encore 80 fois et ce,

sur plus de 14 générations. Sur 81 cochons d’Inde affectés, 35 étaient des mâles, 43 des

femelles et 3 autres ont été euthanasiés avant l’identification de leur sexe.

En examinant le pédigré sur 14 générations, il apparaît que cette anomalie est transmise

sur un mode autosomique récessif avec des caractéristiques qui ressemblent étroitement

aux formes humaines d’héméralopie congénitale essentielle stationnaire (CSNB).

4

Page 5: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Techniques d’explorations par électrophysiologie

Nous présentons ici quelques techniques électrophysiologiques actuellement utilisées

dans notre laboratoire qui nous permettent d’évaluer la fonction rétinienne et le devenir

du signal rétinien le long des voies visuelles. Elles sont importantes pour caractériser ces

signaux. Elles sont applicables aux rats, modèles de la rétinopathie du prématuré (induits

par l’oxygène) ou modèles de rétinopathie pigmentaire et DMLA (induits par la lumière)

ainsi qu’au cochon d’Inde, modèle spontané d’héméralopie congénitale essentielle.

Toutes les expérimentations animales réalisées dans notre laboratoire sont approuvées par l'Institut de recherche de l'Hôpital de l'Université McGill de Montréal pour enfants et conformes aux recommandations du conseil canadien de protection des animaux. Elles sont menées en conformité avec les recommandations de l’ARVO pour l'utilisation des animaux en recherche visuelle et ophtalmologique.

L’ERG flash

L’électrorétinogramme flash (ERG flash) est une réponse globale des cellules rétiniennes

à une stimulation lumineuse brève. Les signaux recueillis peuvent l’être de manière non

invasive ; c’est donc une technique précieuse non seulement chez l'homme mais aussi

chez les animaux. Elle permet de caractériser le fonctionnement physiologique de la

rétine normale et pathologique (Hebert & Lachapelle, 2003).

Préparation de l’animal

Les enregistrements des ERG flash standards plein champ sont réalisés chez le rat et le

cochon d’Inde anesthésiés -sous un éclairage de faible lumière rouge- par une injection

intramusculaire de kétamine (85 mg/kg) et de xylazine (5 mg/kg) à la suite d'une

période de 12 heures d'adaptation à l'obscurité. Leurs pupilles sont ensuite dilatées avec

1 à 2 gouttes de Mydriacyl 1% ; l'animal est alors placé sur le côté, dans une chambre

d'enregistrement de notre conception, qui inclut à la fois le stimulateur flash et la lumière

du fond adaptant (figure VIII-2-1).

Stimulations

Pour la courbe luminance-réponse Les courbes de luminance-réponse scotopiques sont évoquées par des flashs de lumière

achromatique couvrant une gamme de 6 unités logarithmique par pas de 0,3 unité

logarithmique, allant de -6,3 à 0,6 log cd.s.m-2.

La réponse (c'est-à-dire l’ERG flash) est obtenue après stimulation (en moyenne) de trois

à cinq flashs, délivrés à un intervalle de 9.60 secondes.

L'utilisation de flashs d’intensité croissante dans une ambiance scotopique va générer

une onde-b d’amplitude progressivement croissante. Le « rod Vmax » est l’amplitude

maximale de la réponse du système des bâtonnets que l'on obtient en absence de toute

contribution des cônes ; elle se produit pour une intensité inférieure ou égale à 2,4 log

cd.sec.m-2 (Naka & Rushton, 1966).

En augmentant encore l'intensité du flash au-delà de ce point, on observe une nouvelle

aumgnentation d'amplitude de l'onde-b : à la réponse du système des bâtonnets,

s’ajoute celle du système des cônes. Chez les rongeurs, l'onde-a n’apparaît qu’à la suite

d’une stimulation flash suffisamment intense pour que les deux systèmes (des bâtonnets

et des cônes) répondent conjointement donnant une réponse dite mixte (ou mixed-

response), généralement pour une intensité de 2,4 log cd.sec.m-2.

5

Page 6: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Pour la réponse photopique Les réponses du système des cônes sont obtenues dans des conditions d’ambiance

photopique ; elles sont évoquées par la répétition d’environ 20 flashs de lumière

achromatique de 0,9 log cd.s.m-2, délivrés à un intervalle d’une seconde alors que la

rétine de l’animal a été préalablement adaptée à un fond lumineux de 30 cd.m-2 durant

plus de 15 minutes : elles sont ensuite sommées et moyennées pour obtenir l’ERG

photopique. Contrairement aux réponses enregistrées dans ces conditions chez les

humains, les souris et les cochons d’Inde par exemple, la réponse photopique enregistrée

chez le rat ne présente pas d’onde-a, mais se compose uniquement d’une onde-b

(Rosolen et al., 2004), (Racine et al., 2005).

Recueil du signal

Appareillage utilisé Le système AcqKnowledge (Biopac MP 100 WS; BIOPAC System Inc., Goleta, CA, USA)

est utilisé pour l’acquisition des signaux. Dans notre laboratoire, l’enregistrement se fait

simultanément pour l’ERG flash (X10.000, bande passante 1-1000 Hz, 6 dB

d'atténuation, préamplificateurs analogiques P511 Grass Instruments) et les potentiels

oscillatoires (OPs) (X50.000, bande passante 100-1000 Hz, 6 dB d'atténuation,

préamplificateurs analogiques P511 Grass Instruments).

Electrodes L’ERG flash plein champ est enregistré chez les rongeurs entre une électrode active

posée à la surface de la cornée et une électrode de référence placée dans la bouche ;

l’électrode de masse est insérée dans la queue (figure VIII-2-1B et 1D, respectivement).

Electrode active Nous utilisons une fibre DTL (Dawson et al., 1979) (fil de nylon revêtu d'argent

conducteur 27/7 X-Static ; Sauquoit Industries, Scranton, PA) comme électrode active

posée à la surface de la cornée et maintenue en place par une solution gélatineuse de

2% de méthylcellulose (solution Gonioscopic ; Alcon Laboratories, Fort Worth, TX) qui

prévient aussi le dessèchement cornéen.

Electrodes de référence et de masse Chez le rat et le cochon d’Inde, l'électrode de référence est une cupule placée dans la

bouche (modèle E6GH, Grass Instruments, Quincy, MA). L’électrode de masse est insérée

en sous-cutanée dans la queue chez le rat ou dans la nuque chez le cochon d’Inde

(modèle E2 ; Grass Instruments).

L’ERG ON-OFF

Stimulations

Les ERG ON-OFF sont générés en réponse à des échelons de lumière achromatique de

125 cd.m-2 (lampe halogène, 12 V, 100 W) de longue durée (200 ms ou plus), délivrés

sur un fond de niveau lumineux 15 cd.m-2 (fond de niveau lumineux photopique). Ces

échelons lumineux sont générés par un déclencheur électromagnétique (obturateur

électronique Uniblitz, Vincent Associates, Rochester, NY).

Recueil du signal

Comme l’ERG flash, les ERG ON-OFF sont recueillis chez notre cochon d’Inde modèle

avec le système Acqknowledge Biopac MP 100 (Biopac MP 100 WS, BIOPAC System Inc.,

Goleta, CA, USA, bande passante : 1-1000 Hz, X10 000, préamplificateur Grass P511K).

6

Page 7: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Analyse ERG flash & ERG ON-OFF

Après l'enregistrement des ERG, leurs paramètres sont analysés c'est-à-dire qu’on

mesure les amplitudes et temps de culmination de chaque onde.

ERG flash

Onde-a, onde-b L'amplitude de l’onde-a, négative, est mesurée entre la ligne de base et son minimum

(négatif), tandis que l'amplitude de l'onde-b est mesurée entre le minimum de l’onde-a

et le maximum de l'onde-b.

Photopic negative-response La Photopic negative-response (PhNR) est calculée de la ligne de base et la dépression

négative qui suit l'onde-b.

ERG ON-OFF

Onde-a, onde-b-ON Une moyenne de 20 réponses est recueillie avec un intervalle entre stimulus de 1.024

secondes. L'onde-a de l’ERG ON-OFF est mesurée de la ligne de base et le premier

minimum négatif et l'onde-b-ON du minimum négatif au sommet de la première onde

positive de l'ERG.

Onde-OFF Les petites oscillations de la réponse OFF sont mesurées entre de la dépression

précédente jusqu'à leur sommet et sont ensuite additionnées : c’est la réponse OFF

(Racine et al., 2003).

L’ERG multifocal

Comme décrit ci-dessus, l'ERG flash est une technique utile pour évaluer la réponse

globale rétinienne après stimulation de toute sa surface par des flashs.

L’ERG multifocal ou ERG mf est une autre méthode qui permet la représentation de

l’ensemble de réponses obtenues après une succession de stimulations localisées, le tout

couvrant les 40 à 50 degrés centraux (Hood, 2000).

Les ERG mf sont régulièrement enregistrés sur les animaux modèles utilisés dans notre

laboratoire.

Préparation de l’animal

Brièvement, après l’anesthésie, les animaux sont placés sur une table d'enregistrement

dans une pièce faiblement éclairée (figure VIII-2-2).

La caméra de stimulation du fond de l’oeil (VerisTM Eye Monitoring System Stimulator) est

positionnée de façon à ce que le centre de la matrice de stimulation soit aligné avec le

centre de la pupille, comme observé sur le moniteur de l’ordinateur.

7

Page 8: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Stimulations

La matrice de stimulation visuelle est composée de 37 hexagones de taille égale (Veris,

5.1 Electro-Diagnosis Imaging, San Mateo, CA). Chaque hexagone alterne de façon

indépendante et pseudo-aléatoire (séquence-m) à une fréquence de 75 Hz, entre une

faible luminance (noire ~ 0 cd.m-2) et une luminance élevée (achromatique ~ 200 cd.m-

2), sur un fond adaptant photopique de 100 cd.m-2. La durée totale de la séquence-m est

de 4 minutes.

La luminance moyenne de la stimulation globale est toujours constante car, à n’importe

quel moment, la moitié des hexagones est achromatique tandis que l’autre moitié est

noire.

Recueil et traitement du signal

Électrodes Les ERG issus de chaque œil (monoculaires) sont ensuite enregistrés entre une électrode

active qui est une boucle en tungstène en contact avec le limbe cornéen (figure VIII-2-

2B) et une électrode de référence. L’électrode de référence et celle de masse sont

placées de façon identique à celles utilisées pour l'enregistrement de l’ERG flash comme

décrit ci-dessus (figure VIII-2-2C et 2D, respectivement).

Traitement du signal Le signal est amplifié 100.000 fois avec une bande passante de 10-100 Hz, pendant une

durée d'enregistrement de 4 minutes. L'analyse des données est limitée au kernel 1 ou

de premier ordre.

Réponses issues du système des cônes ou du système des

bâtonnets

L’onde standard de l'ERG mf est constituée d'une composante négative initiale (N1),

suivie d'une déflexion positive (P1) et d’une seconde composante négative (N2).

Dans la pratique clinique, les ERG mf sont généralement utilisés pour évaluer la fonction

du système des cônes, en particulier ceux qui sont situés dans la zone maculaire c'est-à-

dire la rétine centrale.

Cependant, des ajustements dans les paramètres du stimulus (c'est-à-dire une fixation

excentrée, une séquence-m plus lente, etc.) permettent l’enregistrement des réponses

du système des bâtonnets situés en périphérie (Hood et al., 1998), (Nusinowitz et al.,

1999), (Ball & Petry, 2000).

Potentiels évoqués visuels par flash (PEV flash) et recueil couplé ERG flash-PEV flash binoculaires

Les potentiels évoqués visuels sont couramment utilisés pour évaluer l'intégrité

fonctionnelle de la voie visuelle post-rétinienne, à condition d’avoir vérifié que le système

des cônes fonctionne normalement. Par conséquent, il est important d’associer à tout

enregistrement de PEV, un ERG flash (séquence photopique) afin d'exclure un

dysfonctionnement rétinien qui pourrait être la source de PEV anormaux.

8

Page 9: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Initialement, les enregistrements des ERG flash et PEV flash effectués dans notre

laboratoire étaient réalisés par stimulation monoculaire et recueil des réponses

monoculaires (Sirinyan et al., 2006). Récemment, nous avons effectués des stimulations

binoculaires avec, pour l’ERG flash, recueil simultané des réponses mais issues

séparément de chaque œil. Nous avons dénommé ce type de recueil : ERG flash

binoculaires.

Note : Les PEV flash binoculaires correspondent, comme chez l’homme, à la réponse évoquée visuelle corticale issue des signaux générés par les deux yeux en même temps.

Cette méthode est particulièrement intéressante pour l’ERG flash, surtout pour les

modèles qui présentent des pathologies monoculaires ou en cas d’injections monoculaires

d'agents pharmacologiques. Il est ainsi possible d’enregistrer simultanément les réponses

issues de chaque œil séparément et comparer les résultats électrophysiologiques entre

l’œil atteint ou traité et ceux de l’œil sain ou témoin.

Méthode

Ces enregistrements binoculaires sur les rongeurs sont effectués en utilisant un système

équipé d’un stimulateur Ganzfeld. Les techniques sont comparables à celles utilisées pour

les enregistrements des ERG flash (monoculaires) décrites ci-dessus, avec de légères

modifications.

Préparation de l’animal Suite à l’anesthésie et à la dilatation des pupilles (telles que décrites ci-dessus) les

animaux sont placés sur une plateforme en position couchée (figure VIII-2-3A).

Electrodes de recueil pour l’ERG flash binoculaire Comme décrit ci-dessus pour l’ERG flash monoculaire, on utilise, pour l’ERG flash

binoculaire, deux électrodes actives DTL placées sur chacune des cornées et maintenues

par du méthylcellulose à 2% (solution Gonioscopic ; Alcon Laboratories, Fort Worth, TX)

qui évite le dessèchement de la cornée (figure VIII-2-3D). On peut également ajouter

une lentille de contact transparente sur chacune des cornées (Saszik et al., 2002) pour

assurer un meilleur contact entre l’électrode fil DTL et les cornées, mais ce n'est pas

absolument nécessaire.

Il y a une seule électrode de référence - cupule en or- placée sous la langue de l’animal.

L’électrode de masse est une aiguille insérée en sous cutanée dans sa queue (figure VIII-

2-3B et 3C).

Electrodes de recueil pour les PEV flash On utilise soit une électrode active de type aiguille insérée en sous-cutanée et placée sur

la ligne médiane en regard du cortex occipital, soit deux électrodes aiguilles placées de

part et d’autre de la ligne médiane en regard de chaque zone occipitale, entre l’oreille et

la ligne médiane (figure VIII-2-3E). Une fois que toutes les électrodes sont placées et

sécurisées, la plateforme est glissée à l’intérieur de la coupole Ganzfeld de sorte à ce que

la tête de l’animal soit totalement à l’intérieur de la coupole.

L’animal peut aussi être préparé pour les enregistrements simultanés des ERG flash et

PEV flash.

Appareillage et stimulations Le système utlisé pour ces enregistrements simultanés (ERG flash et PEV flash

binoculaires) est le LKC UTAS-E3000 (LKC Systems Inc., Gaitherburg, MD, USA) avec le

logiciel EMWIN pour Windows™.

9

Page 10: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Les caractéristiques des stimulations utilisées pour l’ERG flash binoculaire sont les

mêmes que celles décrites ci-dessus pour les ERG flash monoculaires. Les

caractéristiques des stimulations utilisées pour les PEV flash binoculaires sont des flashs

de lumière achromatique (0.9 log cd.s.m–2) délivrés sur un fond lumineux adaptant de 30

cd·m–2 et répétés 100 fois, toutes les secondes. Les PEV flash résultent d’un traitement

des signaux avec sommation/moyennage de 100 réponses filtrées avec une bande

passante entre 5 et 30 Hz.

Réponses ERG flash PEV flash binoculaires

ERG flash binoculaire/monoculaire Les ERG flash scotopiques (figure VIII-2-4A) ou photopiques (figure VIII-2-4B)

binoculaires et monoculaires sont comparables voire superposables : similitude des

morphologies, amplitudes et temps de culmination des ondes.

PEV flash binoculaires Un PEV flash enregistré avec une seule électrode médiane est montré sur la figure VIII-

2-4C ; il présente une onde positive culminant vers 100 ms (dite onde P100). Son

amplitude est mesurée entre le creux de la première onde négative (N) qui précède

immédiatement l’onde P100 et le sommet de l’onde P100.

Les ERG flash et PEV flash binoculaires peuvent être enregistrés de manière fiable et

reproductible chez les rongeurs en utilisant le stimulateur Ganzfeld. Pour que les

résultats soient optimaux, il faut veiller à bien mettre en place l’ensemble des électrodes

actives et de référence et bien positionner la tête de l'animal, ces facteurs pouvant

modifier considérablement l'amplitude des ondes.

Remarque : PEV flash monoculaires Des PEV flash monoculaires peuvent aussi être enregistrés à l’aide de deux électrodes

actives placées de chaque côté du cortex occipital tandis que l’œil droit puis l’oeil gauche

sont stimulés successivement. Couplé à l’enregistrement des ERG flash monoculaires,

cette technique peut être utile pour l’étude des animaux modèles dont les deux yeux

peuvent fonctionner ou évoluer différemment. Elle permet une comparaison directe des

résultats entre les deux yeux, de manière rapide et efficace.

Rétinopathie du prématuré

Cette rétinopathie est habituellement binoculaire et peut, dans les cas les plus sévères,

conduire à la cécité. Son origine implique la vascularisation rétinienne (Patz & Palmer,

1989), (Patz A. & Payne J.W., 1998), (Moore, 1990), (Smith, 2002), (Hutcheson, 2003),

(Chen & Smith, 2007).

Rappel sur la vascularisation de la rétine humaine

Développement normal

Le développement de la vascularisation rétinienne commence chez le fœtus humain au

cours du quatrième mois de gestation (Ashton, 1970) à partir du disque optique et migre

vers le pôle postérieur ; elle se propage ensuite progressivement en périphérie vers l'ora

serrata. La prolifération et la maturation subséquente de ces vaisseaux est complète à 36

semaines de gestation en rétine nasale et entre la 40ième et 45ième semaine de gestation

en rétine temporale (Michaelson, 1948). Par conséquent, la vascularisation de la rétine

temporale d’un bébé né à terme, peut être encore immature.

10

Page 11: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Développement chez le prématuré

Chez les prématurés, la rétine est incomplètement vascularisée à leur naissance,

particulièrement la rétine périphérique qui est largement avasculaire. Ces prématurés

sont souvent immédiatement placés dans des incubateurs avec un niveau élevé

d’oxygène pour compenser leur fonction pulmonaire immature et leur pression d’oxygène

relativement faible.

L’environnement hyperoxique résultant conduit à une vasoconstriction et vaso-

oblitération des vaisseaux sanguins de la rétine existante et qui ne se sont pas encore

complètement développés vers la rétine périphérique (Chen & Smith, 2007), (Smith,

2003), (Smith, 2004). Après retour à l’air ambiant, c'est-à-dire à une situation de

normoxie, la rétine est confrontée à une hypoxie relative, à l’origine d’une angiogenèse

anormale, située en grande partie à la périphérie rétinienne mais aussi en dehors de la

rétine, dans le vitré. Les complications sont fréquentes avec hémorragies et décollements

rétiniens qui peuvent conduire à la cécité dans les cas de rétinopathies les plus graves

(Saugstad, 2006), (Chen & Smith, 2007).

Le rat : modèle de ROP

Le rat est une espèce nidicole ; il nait avec les yeux fermés et un système visuel

immature (Braekevelt & Hollenberg, 1970), (Weidman & Kuwabara, 1969). De plus, il a

été montré que l’état de maturation de la rétine du rat nouveau-né correspond à celui

d'un fœtus humain de 24-26 semaines de gestation (Weidman & Kuwabara, 1968),

(Ricci, 1990).

Le rat albinos Sprague Dawley est un excellent modèle utilisé couramment pour l’étude

du retentissement de l’exposition hyperoxique postnatale sur la structure et la fonction

rétinienne. Il permet de mieux comprendre les anomalies structurelles et fonctionnelles

de la rétinopathie humaine (induite par l’oxygène) du prématuré, qui affecte les

prématurés nés avant la 29ème semaine de gestation et pesant moins de 1000 g à la

naissance (Robinson & O'Keefe, 1993), (Hebbandi et al., 1997), (Patz A. & Payne J.W.,

1998).

Protocole d’induction de la rétinopathie par oxygène

Hyperoxie à la naissance ou J0 Le protocole expérimental utilisé pour créer l’animal modèle de la ROP consiste à exposer

les rongeurs nouveau-nés à des niveaux d’oxygène élevés (80% d’O2 ou hyperoxie).

Dans notre laboratoire, les rats nouveau-nés (albinos et pigmentés) sont exposés avec

leur mère à 80% d’oxygène (mélange d’O2 de qualité médicale et d’air ambiant), mesuré

par un compteur d’oxygène MaxO2 (Ceramatec). Cette exposition est interrompue trois

fois par jour, durant une demi heure où les conditions redeviennent normales c'est-à-dire

normoxiques (21% d’O2). Cette alternance hyperoxie-normoxie représente fidèlement les

fluctuations en teneur d’oxygène de l’atmosphère qui se produisent dans l'unité

néonatale de soins intensifs.

Normoxie à J+14 Après cessation de l’exposition à l’oxygène, les rats nouveau-nés sont replacés dans des

conditions normales d’oxygène jusqu’à ce que des études histologiques et fonctionnelles

(par ERG) soient effectuées à J+30 comme celles présentées ci-dessous.

11

Page 12: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Résultats à J+30

Les comparaisons se font entre un groupe de rats témoins, élevés dans l'air ambiant et

un groupe de rats soumis à une hyperoxie durant 14 jours comme décrit ci-dessus.

Variations histologiques de la rétine à J+30

On constate que la couche des photorécepteurs est intègre et que la variation cyto-

architecturale la plus importante, due à la rétinopathie induite par l’oxygène, se situe au

niveau de la couche plexiforme externe (CPE). On observe que la couche plexiforme

externe est amincie par diminution des cellules horizontales et par diminution, voire

disparition, de leurs contacts synaptiques entre la couche de photorécepteurs et la rétine

interne (figure VIII-2-5A et B) (Lachapelle et al., 1999), (Dembinska et al., 2001),

(Dorfman et al., 2006), (Dorfman et al., 2008); ces modifications sont essentiellement

localisées à la zone centrale. La rétine périphérique présente des cellules de morphologie

normale avec des contacts synaptiques normaux (Dorfman et al., 2011).

Variations fonctionnelles de la rétine à J+30

ERG au flash La réponse mixte des deux systèmes bâtonnets et cônes (enregistrée en ambiance

scotopique mixed-response) présente une amplitude de l’onde-a similaire à celle

enregistrée chez le groupe témoin (approximativement 80% de l’amplitude normale),

alors que l’amplitude de l’onde-b est significativement diminuée (figure VIII-2-5C et 5D –

mixed-response).

Ces résultats fonctionnels coïncident avec les constatations histologiques : la couche des

photorécepteurs étant intacte, son fonctionnement est sensiblement normal (onde-a

normale), alors que les anomalies constatées au niveau de la couche plexiforme externe

et de leurs synapses sont probablement à l’origine de la déficience de transmission du

signal vers la rétine interne (onde-b diminuée) (Lachapelle et al., 1999), (Dembinska et

al., 2001), (Dorfman et al., 2006), (Dorfman et al., 2008), (Dorfman et al., 2011).

La réponse du système photopique présente une onde-b d’amplitude diminuée par

rapport à celle enregistrée sur le groupe témoin (figure VIII-2-5C et 5D)

ERG multifocal Jusqu’à récemment, seul l’ERG flash était enregistré pour tester le fonctionnement

rétinien de divers animaux modèles de maladies rétiniennes. Il correspond à l’évaluation

du fonctionnement de toute la surface rétinienne. L’introduction de l’ERG mf dans les

cliniques et laboratoires permet d’enregistrer la réponse de la zone centrale de la rétine,

avec mise en évidence possible de zones localisées de dysfonctionnements (Sutter &

Tran, 1992), (Ball & Petry, 2000), (Hood, 2000).

Chez nos rats modèles de RDP, nous avons montré que les réponses des régions

centrales sont d’amplitudes moindres que celles enregistrées chez les rats témoins alors

que les réponses des zones périphériques restent dans les limites de la normale (figure

VIII-2-5E et figure VIII-2-5F).

Cet aspect fonctionnel avec déficience localisée à la zone centrale ou fovéale correspond

bien aussi à ce qui a été trouvé à l’histologie.

Cette technique d’ERG mf apporte de précieux renseignements. Elle est de mise en

œuvre facile chez le rongeur et sera probablement perfectionnée à l’avenir.

12

Page 13: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Variations immuno-histo-chimiques

On observe un amincissement significatif des couches plexiformes confirmé par une

diminution de la coloration de la synaptophysine (Dorfman et al., 2011) avec

perturbation de l’organisation des cellules rétiniennes internes où des synapses

aberrantes sont observées tandis que l’organisation de la couche des photorécepteurs

reste sensiblement intacte.

Synthèse

Les résultats obtenus avec les différentes techniques électrophysiologiques décrites ci-

dessus nous ont permis d'identifier la rétine interne comme étant la région

principalement affectée dans la rétinopathie induite à l’oxygène (RIO) -et probablement

dans la rétinopathie du prématuré (RDP)- compte tenu de l'amplitude relativement stable

de l’onde-a (issues des photorécepteurs) et de la diminution significative de l'amplitude

de l’onde-b (générée au niveau de la rétine interne par les cellules bipolaires et avec une

participation –tardive- des cellules de Müller). Nos résultats obtenus avec la cyto-

architecture rétinienne et avec l’immunohistochimie corroborent nos résultats

fonctionnels.

Rétinopathie induite par la lumière

La rétinopathie induite par la lumière (RIL) est couramment utilisée comme modèle de

maladies dégénératives de la rétine qui présentent des dysfonctionnements au niveau de

la couche des photorécepteurs tel que la rétinite pigmentaire (RP) et la dégénérescence

maculaire liée à l’âge (DMLA).

Induction de la rétinopathie à la lumière

Exposition de l’animal à la lumière

Le modèle de rétinopathie à la lumière est créé en exposant de jeunes rats ou des rats

adultes à un environnement lumineux d’une intensité donnée, mesurée au niveau de

l’œil.

La lumière d’exposition se compose de tubes fluorescents, type lumière du jour, placés

au dessus et de chaque côté de leur cage. Différents paramètres comme l’intensité de la

lumière, ses longueurs d’onde et la durée de l’exposition, sont combinés de façon

variable sur des animaux d’âges différents : il en résulte des rétinopathies de sévérités

différentes (O'Steen & Anderson, 1972), (O'Steen et al., 1974), (Ham et al., 1976),

(Ham et al., 1979), (White & Fisher, 1987), (Organisciak et al., 1989), (Organisciak et

al., 2003), (Grimm et al., 2000a), (Grimm et al., 2000b), (Joly et al., 2006a), (Joly et

al., 2006b).

Après l’exposition à ces paramètres contrôlés de lumière, les animaux sont remis dans

des conditions normales, à savoir dans un cycle de 12 heures d’obscurité alternant avec

12 heures d’un éclairement à 80 lux en attendant la prochaine séance de tests.

13

Page 14: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Résultats chez le rat albinos

Effet de la lumière chez le rat adulte : phototoxicité Jusqu’ici, la plupart des travaux effectués dans le domaine de la rétinopathie induite par

la lumière ont été réalisés chez rat albinos adulte (Noell et al., 1966), (Penn & Thum,

1987), (Organisciak et al., 1989), (O'Steen et al., 1974), (Organisciak & Winkler, 1994),

(Organisciak et al., 2003). Dans la majorité des cas, cette exposition à la lumière s’est

révélée extrêmement phototoxique pour la rétine de l’animal adulte.

Effet de la lumière chez le jeune rat Afin de mieux suivre la progression de la rétinopathie induite par la lumière, nous avons

étudié au cours de la dernière décennie l’effet d’une lumière intense chez de jeunes rats

dont les rétines n’étaient pas encore matures au début de l’exposition. Nous avons

montré que les rétines du groupe des jeunes rats présentent une plus grande résistance

à la lumière que celles du groupe de rats adultes donc plus âgés (Joly et al., 2006a),

(Joly et al., 2006b), (Joly et al., 2007). Cette meilleure résistance des rétines juvéniles

par rapport aux rétines adultes a été en partie associée à une plus grande expression des

facteurs neurotrophiques comme le CNTF ou le FGF2 (Joly et al., 2007).

Nous présentons ci-dessous les résultats histologiques et fonctionnels recueillis chez de

jeunes rats Sprague Dawley, modèles de rétinopathie induite par la lumière, après une

exposition à un éclairement de 10.000 lux durant 12 heures alternant avec 12 heures

d’obscurité de J 14 à J 28 c'est-à-dire 14 jours après leur naissance et ce, durant 14

jours.

Variations histologiques de la rétine du jeune rat L’histologie rétinienne montre qu’immédiatement après la cessation de l’exposition à la

lumière, soit à J 30, les photorécepteurs présentent un amincissement de leur segment

externe (OS) et de leur segment interne (IS), tandis que la rétine interne demeure

relativement comparable à celle des rats témoins (figure VIII-2-6A et 6B). On observe de

plus, des modifications plus importantes en rétine supérieure qu’en rétine inférieure

(figure VIII-2-6B).

Variations fonctionnelles de la rétine du jeune rat Les ERG flash (mixed-response) sont caractérisés par une diminution importante de

l’amplitude de l’onde-a tandis que celle de l’onde-b reste d’amplitude comparable à celle

du rat témoin. Les amplitudes de ERG flash photopique sont diminuées mais dans une

moindre mesure que celles des mixed-responses (figure VIII-2-6C et 6D).

Ces résultats suggèrent que la couche des photorécepteurs présente un certain degré de

dysfonctionnement après une exposition à une lumière intense tandis que la rétine

interne continue à fonctionner de façon sensiblement normale. Ils montrent aussi que le

système photopique résiste mieux à une lumière intense que le système scotopique, ce

qui est cohérent avec nos résultats histologiques.

Mécanisme de la rétinopathie induite à la lumière

Déficience de la rhodopsine

Depuis l’introduction du modèle de rétinopathie induite par la lumière par Noell (Noell et

al., 1966), la compréhension des mécanismes impliqués dans la genèse de ce type de

rétinopathie a progressé.

14

Page 15: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

On sait maintenant que la rétinopathie induite par la lumière correspond à une

dégénérescence initiale des segments externes des bâtonnets en rapport avec une

déficience de la rhodopsine. On se rappelle en effet que la transduction est initiée par la

rhodopsine qui se situe sur les disques contenus dans les segments externes des

bâtonnets (Noell et al., 1966), (Kuwabara & Gorn, 1968), (Grignolo et al., 1969),

(O'Steen et al., 1972), (Wiegand et al., 1983), (Williams & Howell, 1983), (De La Paz &

Anderson, 1992), (Grimm et al., 2000b).

Le spectre d’action des dommages lumineux correspond au spectre d’absorption de la

rhodopsine (Williams & Howell, 1983).

Les premiers signes néfastes d’une exposition lumineuse intense ont lieu au niveau de la

partie la plus distale du segment externe du photorécepteur (Kuwabara & Gorn, 1968),

(Grignolo et al., 1969), (O'Steen & Anderson, 1972).

Altérations observées En effet, suite à une stimulation lumineuse intense à l’origine du stress oxydatif, on

observe des changements morphologiques importants ° au niveau du segment externe à

savoir : une désorganisation et une rupture des structures lamellaires des saccules qui

contiennent les pigments visuels, l’apparition de vacuoles et de tubules, mais aussi ° au

niveau des segments internes qui s’atrophient avec dysfonctionnement des

mitochondries. Ces modifications peuvent compromettre de façon significative le

métabolisme des photorécepteurs ainsi que la transmission du signal (Reme et al.,

1999), (Reme, 2005). Finalement, la condensation de la chromatine au niveau des

noyaux des photorécepteurs a été identifié comme étant le mécanisme principal

conduisant à la mort cellulaire dans ce type de rétinopathie (Abler et al., 1996), (Reme,

1995), (Hafezi et al., 1997), (Wenzel et al., 2005).

Altérations dépendant de la dose de rhodopsine Les atteintes liées à l’exposition lumineuse résumées ci-dessus sont dose dépendantes :

plus il y a de rhodopsine, plus les dommages sont importants. En effet, il a été montré

que les animaux adaptés préalablement à l’obscurité avant l’exposition à la lumière,

étaient affectés de façon plus sévère que ceux qui étaient maintenus ou élevés dans des

conditions lumineuses avec cycles d’alternance d’obscurité et de lumière, même si le

niveau lumineux de la période d’éclairement était plus fort que celui mis en œuvre après

la préadaptation à l’obscurité. Cette préadaptation à l’obscurité permet une régénération

maximale de la rhodopsine rétinienne ce qui augmente la susceptibilité de la rétine aux

dommages lumineux (Birch & Jacobs, 1980), (Organisciak et al., 1998).

Altérations dépendant de sa vitesse de régénération De façon similaire, plus la rhodopsine est régénérée rapidement, plus les dommages

résultants sont importants. En effet, différentes études ont montré que les animaux dont

le métabolisme de régénération de la rhodopsine est lent -comme c’est par exemple le

cas lors de mutations de la protéine RPE65- présentent des effets à l’exposition à la

lumière moindres que ceux dont le métabolisme est plus rapide (Grimm et al., 2000b),

(Wenzel et al., 2001).

On rappelle que la protéine RPE65 de l’épithélium pigmentaire est impliquée dans la phagocytose des segments externes et donc nécessaire à la régénération du pigment visuel.

15

Page 16: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Dégénérescence des bâtonnets suivie de celle des cônes

Les deux types des photorécepteurs ne présentent pas la même susceptibilité face aux

dommages lumineux. Comme montré ci-dessus, la rétinopathie induite à la lumière est

liée au contenu en rhodopsine, elle touche donc plus sévèrement les bâtonnets. De plus,

les bâtonnets sont structurellement plus longs présentant ainsi une surface lipidique plus

importante que les cônes et ils contiennent davantage de pigment visuel. Ces facteurs les

prédisposent à un stress oxydatif beaucoup plus important que les cônes.

Par contre, alors que les cônes sont initialement plus résistants, differentes études ont

montré que toute déficience des bâtonnets va entraîner de façon plus ou moins

progressive celle des cônes (Cicerone, 1976), (Leveillard et al., 2004), (Tanito et al.,

2007) ce que nos résultats fonctionnels mettent bien aussi en évidence.

Déficience de type rod-cone comme chez l’humain

Animal modèle : cochon d’Inde albinos mutant

Comme mentionné ci-dessus, les tests électrophysiologiques de routine ont conduit notre

groupe à sélectionner une cohorte de cochons d’Inde Hartley albinos mutants, présentant

les caractéristiques électrophysiologiques de l’héméralopie congénitale essentielle (CSNB)

et transmise sur 14 générations (figure VIII-2-7).

Comportement à la naissance : normal

À la naissance, les cochons d’Inde Hartley mutants sont d’aspects identiques à tous les

autres cochons d’Inde Hartley albinos; leurs comportements sont similaires, ce qui rend

impossible leur séparation des cochons d’Inde normaux à leur simple inspection. Ce ne

sont que leurs résultats électrophysiologiques qui permettent de les distinguer.

ERGs à la naissance : anormaux

ERG flash Leurs ERGs scotopiques ne sont pas discernables. Les réponses mixtes sont similaires en

morphologie et amplitude aux réponses évoquées en condition photopique (ERG

photopique), ce qui suggère que seul le système des cônes participe à cette réponse

mixte (figure VIII-2-8). On en conclut que ce type de réponse est compatible avec un

dysfonctionnement majeur du système des bâtonnets, comme dans le cas d’une cécité

nocturne de type I.

ERG ON-OFF L’ERG ON-OFF chez les cochons d’Inde mutants est de morphologie anormale : l’onde-b-

ON est de type électronégatif et l’onde-OFF est d’amplitude un peu diminuée. La voie ON

du système photopique présente donc un degré dysfonctionnement plus important que la

voie OFF.

Synthèse Les cochons d’Inde mutants présentent à la naissance un dysfonctionnement rétinien qui

porte essentiellement sur la voie ON des bâtonnets (absence de la réponse du système

des bâtonnets) mais aussi sur la voie ON du système des cônes avec peu de modification

du fonctionnement de la voie OFF (figure VIII-2-8).

16

Page 17: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Les anomalies fonctionnelles mises en évidence par l’ERG flash et l’ERG ON-OFF sur cet

animal modèle de cochon d’Inde albinos Hartley sont similaires à celles enregistrées au

cours de l’héméralopie congénitale essentielle stationnaire de type I, autosomique

récessive chez les humains (VII-2-41 et VII-2-44)

Evolution de l’ERG flash avec l’âge

L’évolution du fonctionnement rétinien avec l’âge a été suivie par enregistrements d’ERG

flash réguliers.

De J 1 à J 450, les ERG flash montrent des amplitudes, aussi bien du système scotopique

que photopique, qui diminuent progressivement avec augmentation de leurs temps de

culmination (figure VIII-2-9). On observe donc une progression du dysfonctionnement

rétinien. Cette rétinopathie initialement présumée stationnaire doit en fait être qualifiée

de dégénérative.

Caractéristiques histologiques et histochimiques de la rétine

La structure rétinienne a aussi été étudiée par histologie et immunohistochimie afin de

mieux caractériser la structure cellulaire rétinienne de ces cochons d’Inde mutants.

Résultats histologiques L’analyse de la structure rétinienne montre une absence de segments externes pour les

bâtonnets associés à de petits segments externes pour les cônes, qui restent toutefois

visibles, mais qui sont déplacés vers la zone des segments internes des photorécepteurs.

Avec l’évolution (augmentation de l’âge), leurs nombres et leurs tailles diminuent,

associés à un amincissement de la couche nucléaire externe et de celle des cellules

ganglionnaires.

L’évolution fonctionnelle évaluée par l’ERG flash est parallèle à ces évolutions

histologiques progressives.

Résultats histochimiques L’analyse immunohistochimique effectuée sur ces rétines mutantes montre °que les

pigments rétiniens présentent une forte immunoréactivité de la rhodopsine,

essentiellement au niveau de la couche nucléaire externe, contrairement à ce qui est

observé chez les animaux contrôle où la rhodopsine reste localisée au niveau des

segments externes ; par contre, °les pigments de cônes restent intacts dans les

segments externes. De plus, elle montre que le réseau synaptique des cônes est normal

(figure VIII-2-10).

En résumé, nos résultats suggèrent que la forme progressive de l’héméralopie

congénitale du cochon d’Inde se caractérise autant par des déficits structurels que

fonctionnels.

Points forts de ce modèle CSNB/Rod-cone dystrophy

Tous les résultats obtenus au cours de ces dernières années sur notre colonie de cochons

d’Inde mutants montrent qu’à la naissance leurs comportements fonctionnels et

structurels rétiniens sont très similaires à ceux trouvés dans l’héméralopie congénitale

stationnaire humaine de type I ou forme complète. Cependant l’évolution des résultats

de ce modèle avec l’âge est différente de celle constatée dans la CSNB de type I chez

l’homme. Elle se rapproche davantage de ceux enregistrés au cours d’une dystrophie

rétinienne de type rod-cone où l’évolution se fait vers une atteinte initiale prépondérante

du système des bâtonnets puis déficience progressive du système des cônes.

17

Page 18: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Ce modèle reste donc intéressant d’une part par l’apparition spontanée d’un modèle de

cécité nocturne chez le cochon d’Inde, fait unique et, d’autre part, comme modèle valable

pour les études des mécanismes physiopathologiques de rétinopathies humaines. Il sera

probablement utilisé à l’avenir.

Conclusion

Quels que soient les mécanismes par lesquels les maladies de la rétine surviennent, que

ce soit par un stress environnemental tel qu’un niveau d’oxygène élevé ou une lumière

intense par exemple, des mutations génétiques comme l’apparition spontanée d’une

héméralopie congénitale chez le cochon d’Inde ou simplement le vieillissement normal,

les outils et les techniques visant à mieux comprendre et à surveiller la vulnérabilité de la

rétine sont inestimables.

Les animaux modèles étudiés, développés et sélectionnés avec soin, sont une aide

précieuse pour suivre l’évolution de l’architecture rétinienne, comme d’autres paramètres

(système vasculaire par exemple) ainsi que celle du fonctionnement rétinien.

Ils sont à la base et un préalable incontournable et indispensable à toutes études

thérapeutiques en vue d’application à des soins de rétinopathies humaines.

18

Page 19: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Figures

Figure VIII-2-1. Enregistrement d’un ERG flash monoculaire. Lumière délivrée par une

lampe de large surface. Electrode acitve : fil DTL, de référence : dans la bouche, de

masse : piquée dans la queue.

Figure VIII-2-2. Enregistrement d’un ERG multifocal. Stimulation par 37 hexagones

projetés au centre de la pupille. Electrode active : fil de tungstène, de référence : dans la

bouche, de masse : piquée dans la queue.

19

Page 20: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Figure VIII-2-3. Enregistrement d’un ERG flash et PEV flash binoculaires. Lumière

délivrée par une coupole dans laquelle la tête de l’animal est insérée. Electrodes actives

pour ERG : fil DTL sur chaque œil. Electrodes actives pour PEV flash binoculaires en Oz,

O3 et O4. Electrode de référence : une dans la bouche, de masse : piquée dans la queue.

Figure VIII-2-4. Stimulation binoculaire. ERG flash binoculaire scotopique A et

photopique B : enregistrement simultané des réponses séparées issues des deux yeux :

droit (OD) et gauche (OS), les réponses OD OS sont superposables. C : PEV flash

binoculaires recueillis en Oz.

20

Page 21: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Figure VIII-2-5. Coupe histologique de rétine A : rat témoin (control) et B : rat à J+30,

soumis à une hyperoxie durant 14 jours. Modifications essentiellement en couche interne

et zone centrale. ERG flash : C mixed-response; D photopic-response, comparaison

témoin-animal RIO. ERG multifocal : E témoin : réponse normale ; F rat RIO : réponse

d’amplitudes diminuées au centre.

Figure VIII-2-6. Coupe histologique de rétine A : rat témoin (control) et B : rat soumis à

la lumière (RIL) entre J 14 et J 28. Les photorécepteurs présentent un Amincissement

des segments externes (OS) et internes (IS) des photorécepteurs. ERG flash mixed-

response et photopique : C : rat témoin ; D : rat RIL.

21

Page 22: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Figure VIII-2-7. Arbre généalogique sur 14 générations de la famille de cochons d’Inde

Hartley albinos mutants (CSNB dépistée par ERG) montrant le mode de transmission de

la mutation.

Figure VIII-2-8. ERG flash : cochon d’Inde normal et mutant : dysfonctionnement majeur

du système des bâtonnets. ERG ON-OFF : atteinte majeure de la voie ON des cônes.

22

Page 23: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Figure VIII-2-9. Evolution dans le temps des ERG flash d’un cochon d’Inde mutant

modèle de CSNB : majoration des dysfonctionnements dans le sens d’une rod-cone

dystrophy.

Figure VIII-2-10. Coupes représentatives de microscopie optique (épaisseur rétinienne:

0.7μm; grossissement: 40X) et de lames d’immunoréactivité de cônes bleus, de cônes

verts/rouges, de la rhodopsine et de la synaptophysine (épaisseur rétinienne: 14 μm;

grossissement: 40X) obtenues chez un cochon d’Inde contrôle (A) et mutant (B) à J30.

Calibration horizontale: 15 μm. RPE: l'épithélium pigmentaire de la rétine, OS: segment

externe des photorécepteurs, IS: segment interne des photorécepteurs, ONL: couche

nucléaire externe, OPL: couche plexiforme externe, INL: couche nucléaire interne, IPL:

couche plexiforme interne, GCL: couche de cellules ganglionnaires.

23

Page 24: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Bibliographie

Abler, A.S., Chang, C.J., Ful, J., Tso, M.O., & Lam, T.T. (1996). Photic injury triggers

apoptosis of photoreceptor cells. Res Commun Mol Pathol Pharmacol, 92 (2), 177-189.

[Abstract]

Ashton, N. (1970). Retinal angiogenesis in the human embryo. Br Med Bull, 26 (2), 103-

106. [Abstract]

Ball, S.L., & Petry, H.M. (2000). Noninvasive assessment of retinal function in rats using

multifocal electroretinography. Invest Ophthalmol Vis Sci, 41 (2), 610-617. [Abstract]

Birch, D.G., & Jacobs, G.H. (1980). Light-induced damage to photopic and scotopic

mechanisms in the rat depends on rearing conditions. Exp Neurol, 68 (2), 269-283.

[Abstract]

Braekevelt, C.R., & Hollenberg, M.J. (1970). The development of the retina of the albino

rat. Am J Anat, 127 (3), 281-301. [Abstract]

Chen, J., & Smith, L.E. (2007). Retinopathy of prematurity. Angiogenesis, 10 (2), 133-

140. [Abstract]

Cicerone, C.M. (1976). Cones survive rods in the light-damaged eye of the albino rat.

Science, 194 (4270), 1183-1185. [Abstract]

Dawson, W.W., Trick, G.L., & Litzkow, C.A. (1979). Improved electrode for

electroretinography. Invest Ophthalmol Vis Sci, 18 (9), 988-991. [Abstract]

De La Paz, M.A., & Anderson, R.E. (1992). Lipid peroxidation in rod outer segments. Role

of hydroxyl radical and lipid hydroperoxides. Invest Ophthalmol Vis Sci, 33 (7), 2091-

2096. [Abstract]

Dembinska, O., Rojas, L.M., Chemtob, S., & Lachapelle, P. (2002). Evidence for a brief

period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy.

Invest Ophthalmol Vis Sci, 43 (7), 2481-2490. [Abstract]

Dembinska, O., Rojas, L.M., Varma, D.R., Chemtob, S., & Lachapelle, P. (2001). Graded

contribution of retinal maturation to the development of oxygen-induced retinopathy in

rats. Invest Ophthalmol Vis Sci, 42 (5), 1111-1118. [Abstract]

Dorfman, A., Dembinska, O., Chemtob, S., & Lachapelle, P. (2008). Early manifestations

of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest

Ophthalmol Vis Sci, 49 (1), 458-466. [Abstract]

Dorfman, A.L., Cuenca, N., Pinilla, I., Chemtob, S., & Lachapelle, P. (2011).

Immunohistochemical evidence of synaptic retraction, cytoarchitectural remodeling, and

cell death in the inner retina of the rat model of oygen-induced retinopathy (OIR). Invest

Ophthalmol Vis Sci, 52 (3), 1693-1708. [Abstract]

Dorfman, A.L., Dembinska, O., Chemtob, S., & Lachapelle, P. (2006). Structural and

functional consequences of trolox C treatment in the rat model of postnatal hyperoxia.

Invest Ophthalmol Vis Sci, 47 (3), 1101-1108. [Abstract]

Fletcher, E.L., Jobling, A.I., Vessey, K.A., Luu, C., Guymer, R.H., & Baird, P.N. (2011).

Animal models of retinal disease. Prog Mol Biol Transl Sci, 100, 211-286. [Abstract]

24

Page 25: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Grignolo, A., Orzalesi, N., Castellazzo, R., & Vittone, P. (1969). Retinal damage by visible

light in albino rats. An electron microscope study. Ophthalmologica, 157 (1), 43-59.

[Abstract]

Grimm, C., Reme, C.E., Rol, P.O., & Williams, T.P. (2000a). Blue light's effects on

rhodopsin: photoreversal of bleaching in living rat eyes. Invest Ophthalmol Vis Sci, 41

(12), 3984-3990. [Abstract]

Grimm, C., Wenzel, A., Hafezi, F., Yu, S., Redmond, T.M., & Reme, C.E. (2000b).

Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced

retinal degeneration. Nat Genet, 25 (1), 63-66. [Abstract]

Hafezi, F., Marti, A., Munz, K., & Reme, C.E. (1997). Light-induced apoptosis: differential

timing in the retina and pigment epithelium. Exp Eye Res, 64 (6), 963-970. [Abstract]

Ham, W.T., Jr., Mueller, H.A., Ruffolo, J.J., Jr., & Clarke, A.M. (1979). Sensitivity of the

retina to radiation damage as a function of wavelength. Photochem Photobiol, 29 (4),

735-743. [Abstract]

Ham, W.T., Jr., Mueller, H.A., & Sliney, D.H. (1976). Retinal sensitivity to damage from

short wavelength light. Nature, 260 (5547), 153-155. [Abstract]

Hardy, P., Beauchamp, M., Sennlaub, F., Gobeil, F., Jr., Tremblay, L., Mwaikambo, B.,

Lachapelle, P., & Chemtob, S. (2005a). New insights into the retinal circulation:

inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot Essent Fatty

Acids, 72 (5), 301-325. [Abstract]

Hardy, P., Beauchamp, M., Sennlaub, F., Jr Gobeil, F., Jr., Mwaikambo, B., Lachapelle,

P., & Chemtob, S. (2005b). Inflammatory lipid mediators in ischemic retinopathy.

Pharmacol Rep, 57 Suppl, 169-190. [Abstract]

Hebbandi, S.B., Bowen, J.R., Hipwell, G.C., Ma, P.J., Leslie, G.I., & Arnold, J.D. (1997).

Ocular sequelae in extremely premature infants at 5 years of age. J Paediatr Child

Health, 33 (4), 339-342. [Abstract]

Hebert, M., & Lachapelle, P. (2003). Evaluation of retinal function: Electroretinography.

In: L. Levin, & A. DiPolo (Eds.), Ocular Neuroprotection. (pp. 249-272). New York: Marcel

Dekker.

Hood, D.C. (2000). Assessing retinal function with the multifocal technique. Prog Retin

Eye Res, 19 (5), 607-646. [Abstract]

Hood, D.C., Wladis, E.J., Shady, S., Holopigian, K., Li, J., & Seiple, W. (1998). Multifocal

rod electroretinograms. Invest Ophthalmol Vis Sci, 39 (7), 1152-1162. [Abstract]

Hutcheson, K.A. (2003). Retinopathy of prematurity. Curr Opin Ophthalmol, 14 (5), 286-

290. [Abstract]

Joly, S., Dorfman, A.L., Chemtob, S., Moukhles, H., & Lachapelle, P. (2006a). Structural

and functional consequences of bright light exposure on the retina of neonatal rats. Doc

Ophthalmol, 113 (2), 93-103. [Abstract]

Joly, S., Pernet, V., Chemtob, S., Di Polo, A., & Lachapelle, P. (2007). Neuroprotection in

the juvenile rat model of light-induced retinopathy: evidence suggesting a role for FGF-2

and CNTF. Invest Ophthalmol Vis Sci, 48 (5), 2311-2320. [Abstract]

25

Page 26: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Joly, S., Pernet, V., Dorfman, A.L., Chemtob, S., & Lachapelle, P. (2006b). Light-induced

retinopathy: comparing adult and juvenile rats. Invest Ophthalmol Vis Sci, 47 (7), 3202-

3212. [Abstract]

Kuwabara, T., & Gorn, R.A. (1968). Retinal damage by visible light. An electron

microscopic study. Arch Ophthalmol, 79 (1), 69-78. [Abstract]

Lachapelle, P., Dembinska, O., Rojas, L.M., Benoit, J., Almazan, G., & Chemtob, S.

(1999). Persistent functional and structural retinal anomalies in newborn rats exposed to

hyperoxia. Can J Physiol Pharmacol, 77 (1), 48-55. [Abstract]

Leveillard, T., Mohand-Said, S., Lorentz, O., Hicks, D., Fintz, A.C., Clerin, E., Simonutti,

M., Forster, V., Cavusoglu, N., Chalmel, F., Dolle, P., Poch, O., Lambrou, G., & Sahel,

J.A. (2004). Identification and characterization of rod-derived cone viability factor. Nat

Genet, 36 (7), 755-759. [Abstract]

Li, F., Cao, W., & Anderson, R.E. (2001). Protection of photoreceptor cells in adult rats

from light-induced degeneration by adaptation to bright cyclic light. Exp Eye Res, 73 (4),

569-577. [Abstract]

Li, F., Cao, W., & Anderson, R.E. (2003). Alleviation of constant-light-induced

photoreceptor degeneration by adaptation of adult albino rat to bright cyclic light. Invest

Ophthalmol Vis Sci, 44 (11), 4968-4975. [Abstract]

Madan, A., & Penn, J.S. (2003). Animal models of oxygen-induced retinopathy. Front

Biosci, 8, d1030-1043. [Abstract]

Michaelson, I.C. (1948). The mode of development of the vascular system of the retina

with some observations on its significance for certain retinal diseases. Trans Ophthalmol

Soc UK, 68, 137-180.

Moore, A. (1990). Retinopathy of prematurity. In: D. Taylor (Ed.) Pediatric

Ophthalmology. (pp. 365-375). Boston: Blackwell Scientific.

Naka, K.I., & Rushton, W.A. (1966). S-potentials from colour units in the retina of fish

(Cyprinidae). J Physiol, 185 (3), 536-555. [Abstract]

Noell, W.K., Walker, V.S., Kang, B.S., & Berman, S. (1966). Retinal damage by light in

rats. Invest Ophthalmol, 5 (5), 450-473. [Abstract]

Nusinowitz, S., Ridder, W.H., 3rd, & Heckenlively, J.R. (1999). Rod multifocal

electroretinograms in mice. Invest Ophthalmol Vis Sci, 40 (12), 2848-2858. [Abstract]

O'Steen, W.K., & Anderson, K.V. (1972). Photoreceptor degeneration after exposure of

rats to incandescent illumination. Z Zellforsch Mikrosk Anat, 127 (3), 306-313. [Abstract]

O'Steen, W.K., Anderson, K.V., & Shear, C.R. (1974). Photoreceptor degeneration in

albino rats: dependency on age. Invest Ophthalmol, 13 (5), 334-339. [Abstract]

O'Steen, W.K., Shear, C.R., & Anderson, K.V. (1972). Retinal damage after prolonged

exposure to visible light. A light and electron microscopic study. Am J Anat, 134 (1), 5-

21. [Abstract]

Organisciak, D.T., Darrow, R.M., Barsalou, L., Darrow, R.A., Kutty, R.K., Kutty, G., &

Wiggert, B. (1998). Light history and age-related changes in retinal light damage. Invest

Ophthalmol Vis Sci, 39 (7), 1107-1116. [Abstract]

26

Page 27: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Organisciak, D.T., Darrow, R.M., & Barsalou, L.S. (2003). Light-induced retinal

degeneration. In: L. Levin, & A. DiPolo (Eds.), Ocular Neuroprotection. (pp. 85-107.).

New York: Marcel Dekker.

Organisciak, D.T., Jiang, Y.L., Wang, H.M., Pickford, M., & Blanks, J.C. (1989). Retinal

light damage in rats exposed to intermittent light. Comparison with continuous light

exposure. Invest Ophthalmol Vis Sci, 30 (5), 795-805. [Abstract]

Organisciak, D.T., & Winkler, B.S. (1994). Retinal light damage: practical and theoretical

considerations. In: N.N. Osborne, & G.J. Chader (Eds.), Progress in Retinal Research., 13

(pp. 1-29.). Oxford: Pergamon Press.

Patz, A., & Palmer, E.A. (1989). Retinopathy of prematurity in retina. In: S.J. Ryan (Ed.)

Retina (pp. 509-530.). St. Louis: CV Mosby.

Patz A., & Payne J.W. (1998). Retinopathy of prematurity in retina. In: Ryan S.J. (Ed.)

Retina (pp. 509-530). St Louis: CV Mosby.

Penn, J.S., & Thum, L.A. (1987). A comparison of the retinal effects of light damage and

high illuminance light history. Prog Clin Biol Res, 247, 425-438. [Abstract]

Penn, J.S., Thum, L.A., & Naash, M.I. (1989). Photoreceptor physiology in the rat is

governed by the light environment. Exp Eye Res, 49 (2), 205-215. [Abstract]

Penn, J.S., Tolman, B.L., & Henry, M.M. (1994). Oxygen-induced retinopathy in the rat:

relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol

Vis Sci, 35 (9), 3429-3435. [Abstract]

Racine, J., Behn, D., & Lachapelle, P. (2008). Structural and functional maturation of the

retina of the albino Hartley guinea pig. Doc Ophthalmol, 117 (1), 13-26. [Abstract]

Racine, J., Behn, D., Simard, E., & Lachapelle, P. (2003). Spontaneous occurrence of a

potentially night blinding disorder in guinea pigs. Doc Ophthalmol, 107 (1), 59-69.

[Abstract]

Racine, J., Joly, S., Rufiange, M., Rosolen, S., Casanova, C., & Lachapelle, P. (2005). The

photopic ERG of the albino guinea pig (Cavia porcellus): a model of the human photopic

ERG. Doc Ophthalmol, 110 (1), 67-77. [Abstract]

Reme, C.E. (2005). The dark side of light: rhodopsin and the silent death of vision the

proctor lecture. Invest Ophthalmol Vis Sci, 46 (8), 2671-2682. [Abstract]

Reme, C.E., Wellep, M., Szczesny, P., Munz, K., Hafezi, F., Reinboth, J-J., Clausen, M.

(1995). Light-Induced Apoptosis in the rat retina in vivo. In: R.E. Anderson (Ed.)

Degenerative diseases of the retina. (pp. 19-25.). New York: Plenum Press.

Reme, C.E., Wolfrum, U., Imsand, C., Hafezi, F., & Williams, T.P. (1999). Photoreceptor

autophagy: effects of light history on number and opsin content of degradative vacuoles.

Invest Ophthalmol Vis Sci, 40 (10), 2398-2404. [Abstract]

Reynaud, X., & Dorey, C.K. (1994). Extraretinal neovascularization induced by hypoxic

episodes in the neonatal rat. Invest Ophthalmol Vis Sci, 35 (8), 3169-3177. [Abstract]

Ricci, B. (1990). Oxygen-induced retinopathy in the rat model. Doc Ophthalmol, 74 (3),

171-177. [Abstract]

27

Page 28: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Robinson, R., & O'Keefe, M. (1993). Follow-up study on premature infants with and

without retinopathy of prematurity. Br J Ophthalmol, 77 (2), 91-94. [Abstract]

Rosolen, S.G., Rigaudiere, F., LeGargasson, J.F., Chalier, C., Rufiange, M., Racine, J.,

Joly, S., & Lachapelle, P. (2004). Comparing the photopic ERG i-wave in different

species. Vet Ophthalmol, 7 (3), 189-192. [Abstract]

Saszik, S.M., Robson, J.G., & Frishman, L.J. (2002). The scotopic threshold response of

the dark-adapted electroretinogram of the mouse. J Physiol, 543 (Pt 3), 899-916.

[Abstract]

Saugstad, O.D. (2006). Oxygen and retinopathy of prematurity. J Perinatol, 26 Suppl 1,

S46-50; discussion S63-44. [Abstract]

Sirinyan, M., Sennlaub, F., Dorfman, A., Sapieha, P., Gobeil, F., Jr., Hardy, P.,

Lachapelle, P., & Chemtob, S. (2006). Hyperoxic exposure leads to nitrative stress and

ensuing microvascular degeneration and diminished brain mass and function in the

immature subject. Stroke, 37 (11), 2807-2815. [Abstract]

Smith, L.E. (2002). Pathogenesis of retinopathy of prematurity. Acta Paediatr Suppl, 91

(437), 26-28. [Abstract]

Smith, L.E. (2003). Pathogenesis of retinopathy of prematurity. Semin Neonatol, 8 (6),

469-473. [Abstract]

Smith, L.E. (2004). Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res,

14 Suppl A, S140-144. [Abstract]

Sutter, E.E., & Tran, D. (1992). The field topography of ERG components in man--I. The

photopic luminance response. Vision Res, 32 (3), 433-446. [Abstract]

Tanito, M., Kaidzu, S., & Anderson, R.E. (2007). Delayed loss of cone and remaining rod

photoreceptor cells due to impairment of choroidal circulation after acute light exposure

in rats. Invest Ophthalmol Vis Sci, 48 (4), 1864-1872. [Abstract]

Weidman, T.A., & Kuwabara, T. (1968). Postnatal development of the rat retina. An

electron microscopic study. Arch Ophthalmol, 79 (4), 470-484. [Abstract]

Weidman, T.A., & Kuwabara, T. (1969). Development of the rat retina. Invest

Ophthalmol, 8 (1), 60-69. [Abstract]

Wenzel, A., Grimm, C., Samardzija, M., & Reme, C.E. (2005). Molecular mechanisms of

light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog

Retin Eye Res, 24 (2), 275-306. [Abstract]

Wenzel, A., Reme, C.E., Williams, T.P., Hafezi, F., & Grimm, C. (2001). The Rpe65

Leu450Met variation increases retinal resistance against light-induced degeneration by

slowing rhodopsin regeneration. J Neurosci, 21 (1), 53-58. [Abstract]

White, M.P., & Fisher, L.J. (1987). Degree of light damage to the retina varies with time

of day of bright light exposure. Physiol Behav, 39 (5), 607-613. [Abstract]

Wiegand, R.D., Giusto, N.M., Rapp, L.M., & Anderson, R.E. (1983). Evidence for rod outer

segment lipid peroxidation following constant illumination of the rat retina. Invest

Ophthalmol Vis Sci, 24 (10), 1433-1435. [Abstract]

28

Page 29: VIII 2 ÉLECTROPHYSIOLOGIE VISUELLE CHEZ DES ANIMAUX ...lodel.irevues.inist.fr/oeiletphysiologiedelavision/... · rétinopathie pigmentaire ou DMLA. Il est ainsi possible de suivre

Œil et Physiologie de la Vision - VIII-2

Williams, T.P., & Howell, W.L. (1983). Action spectrum of retinal light-damage in albino

rats. Invest Ophthalmol Vis Sci, 24 (3), 285-287. [Abstract]

29