authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web...

43
Global Change Biology Supplementary Information for “Application of the metabolic scaling theory and water-energy balance equation to model large-scale patterns of maximum forest canopy height” Sungho Choi 1* , Christopher P. Kempes 2 , Taejin Park 1 , Sangram Ganguly 3 , Weile Wang 4 , Liang Xu 5 , Saikat Basu 6 , Jennifer L. Dungan 7 , Marc Simard 8 , Sassan S. Saatchi 8 , Shilong Piao 9 , Xiliang Ni 10 , Yuli Shi 11 , Chunxiang Cao 10 , Ramakrishna R. Nemani 12 , Yuri Knyazikhin 1 , Ranga B. Myneni 1 1 Department of Earth and Environment, Boston University, Boston, MA 02215, USA 2 Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125, USA / The Santa Fe Institute, Santa Fe, NM 87501, USA 3 Bay Area Environmental Research Institute (BAERI) / NASA Ames Research Center, Moffett Field, CA 94035, USA 4 Department of Science and Environmental Policy, California State University at Monterey Bay / NASA Ames Research Center, Moffett Field, CA 94035, USA 5 Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA -1- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Transcript of authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web...

Page 1: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Global Change Biology

Supplementary Information for “Application of the metabolic scaling theory

and water-energy balance equation to model large-scale patterns of maximum

forest canopy height”

Sungho Choi1*, Christopher P. Kempes2, Taejin Park1, Sangram Ganguly3, Weile Wang4,

Liang Xu5, Saikat Basu6, Jennifer L. Dungan7, Marc Simard8, Sassan S. Saatchi8, Shilong Piao9,

Xiliang Ni10, Yuli Shi11, Chunxiang Cao10, Ramakrishna R. Nemani12, Yuri Knyazikhin1,

Ranga B. Myneni1

1Department of Earth and Environment, Boston University, Boston, MA 02215, USA2Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125,

USA / The Santa Fe Institute, Santa Fe, NM 87501, USA3Bay Area Environmental Research Institute (BAERI) / NASA Ames Research Center, Moffett

Field, CA 94035, USA4Department of Science and Environmental Policy, California State University at Monterey Bay /

NASA Ames Research Center, Moffett Field, CA 94035, USA5Institute of the Environment and Sustainability, University of California, Los Angeles, CA

90095, USA6Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA7Earth Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA8Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA9College of Urban and Environmental Sciences and Sino-French Institute for Earth System

Science, Peking University, Beijing 100871, China10State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing Applications,

Chinese Academy of Sciences, Beijing 100101, China11School of Remote Sensing, Nanjing University of Information Science and Technology,

Nanjing 210044, China12NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA

94035, USA

*Corresponding author: Sungho Choi ([email protected])

-1-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Page 2: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

LIST OF SUPPORTING INFORMATION

S0. ACRONYMS, SYMBOLS AND ABBREVIATIONS USED IN THIS STUDY

S0.1. Main manuscript

S0.2. Supplementary Information

S1. ASRL MODEL FRAMEWORK

S1.1. Tree branching architecture

S1.2. Basal metabolic flow rate (Q0)

S1.3. Potential (available) inflow rate (Qp)

S1.4. Evaporative flow rate (Qe)

S1.5. Implementation of large-scale disturbance history

S1.6. Parametric adjustments and physical meanings

S2. REFERENCES

S3. SUPPORTING TABLES

Table S1. Ecoregion codes and full names over the CONUS

Table S2. FLUXNET data used for the evaluation of the ASRL model framework

S4. SUPPORTING FIGURE

Figure S1. Spatial distribution of independent reference datasets

Figure S2. Inter-comparisons between reference and model predicted heights

Figure S3. Adjusted ASRL parameters

Figure S4. Comparisons between FIA- and GLAS-derived ASRL parameters

S5. SAMPLE CODE FOR ASRL MODEL (MATLAB)

-2-

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Page 3: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S0. ACRONYMS, SYMBOLS AND ABBREVIATIONS USED IN THIS STUDY

S0.1 Main manuscript99thhASRL: 99th Percentile of the ASRL modeled height (Unit: m)

a, b and c: Curvature parameters for the Chapman-Richards growth curve

aL: Effective tree area (Unit: m2)

ASRL: Allometric Scaling and Resource Limitations

Atree: Effective tree area (Unit: m2)

B: Plant metabolic rate (respiration, photosynthesis or xylem flow)

CA: Catchment area (Unit: km2)

CA0: Normalization catchment area at a flat hilltop (Unit: km2)

CV: Coefficient of variations

Eflux: Evaporative molar flux (Evapotranspiration flux) (Unit: Mmol m–2 month–1)

FIA: Forest Inventory and Analysis

G: Soil heat flux (Unit: W m–2)

GEDI: Global Ecosystem Dynamics Investigation Lidar

GLAS: Geoscience Laser Altimeter System

Group A (○): Pacific Northwest/California forest corridors and Rocky Mountain forests

Group B (□): Intermountain, Southwest semi-desert, Nevada-Utah, Colorado, Arizona-New

Mexico, and Great Plain Dry Steppe forests

Group C (△): North Woods (Laurentian forests), Midwest, and Northeastern Appalachian forests

Group D (▽): Southeast and Outer Coastal Plain forests

H: Sensible heat flux (Unit: W m–2)

h: Tree height (Unit: m)

hASRL: ASRL modeled maximum forest canopy height (Unit: m)

hc: Contemporary forest height (Unit: m)

hcro: Tree crown height (Unit: m)

hf: Field-measured height (Unit: m)

hGLAS: 90th percentile of the Geoscience Laser Altimeter System (GLAS) heights (Unit: m)

hLVIS: 90th percentile of the Laser Vegetation Imaging Sensor (LVIS) heights (Unit: m)

hmax: Maximum potential forest canopy height (ASRL initial prediction) (Unit: m)

ICESat-2: Ice, Cloud, and land Elevation Satellite-2

-3-

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Page 4: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Iwater: Accessible water supply

L: Thermal radiation flux (Unit: W m–2)

LVIS: Laser Vegetation Imaging Sensor

M: Plant mass

MAE: Mean Absolute ErrormhASRL: Average of the ASRL modeled height (Unit: m)

MODIS: Moderate Resolution Imaging Spectroradiometer

MST: Metabolic Scaling Theory

NACP: North American Carbon Program

NCEP/NCAR: National Centers for Environmental Prediction/National Center for Atmospheric

Research

P: Precipitation (Unit: mm month–1)

PET: Potential evapotranspiration (Unit: mm month–1)

Pinc: Long-term monthly incoming precipitation (Unit: mm)

PM: Penman-Monteith

Q0: Basal metabolic flow rate (Xylem flow rate) (Unit: L year–1)

Qe: Evaporative flow rate (Unit: L year–1)

Qp: Potential water inflow rate (Unit: L year–1)

Rabs: Absorbed solar radiation (Unit: W m–2)

rroot: Radial root extent (Unit: m)

rstem: Tree stem radius (Unit: m)

sleaf: Area of single leaf (Unit: m2)

slp: Terrain slope (Unit: °)

slp0: Normalization terrain slope at a flat hilltop (Unit: °)

tc: Forest age information (Unit: year)

tf: Field-measured forest age (Unit: year)

USGS: US Geological Survey

USFS: US Forest Service

AM: Alpine Meadow

OW: Open Woodland

SD: Semi-Desert

-4-

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Page 5: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

V: Plant volume

vwater: Molar volume of water (Unit: m3 mol–1)

β1: Normalization constant for the basal metabolism (Unit: L day–1 m–η1)

γ: Water absorption efficiency

η1: Normalization exponent for the basal metabolism

θ: Metabolic scaling exponent (theoretical value = 3/4)

λ : Latent heat of evaporation (Unit: J mol–1)

λEflux: Latent heat flux (W m–2)

ρ: Plant tissue density

σwater: Water absorptance

ϕ : Exponent for the tree height and stem radius allometry (theoretical value = 2/3)

Ψ: Topographic index

S0.2 Supplementary Information#aL: Theoretical effective tree area (Unit: m2)#hcro: Theoretical tree crown height (Unit: m)#LAI: Theoretical Leaf Area Index (Unit: m2 m–2)#rcro: Theoretical crown radius (Unit: m)#V: Theoretical crown volume (Unit: m3)#β3: Theoretical crown ratio (= 0.79)#τcro: Theoretical crown transmittance of light

a, b and c: Curvature parameters for the Chapman-Richards growth curveadj-best sleaf: Adjusted area of single leaf (Unit: m2)adj-best γ: Adjusted water absorption efficiencyadj-bestβ1: Adjusted normalization constant for the basal metabolism (Unit: L day–1 m–η1)adjNleaf: Adjusted number of leaves

aL: Effective tree area (Unit: m2)

ASRL: Allometric Scaling and Resource Limitations

astm: Area of a stoma (Unit: m2)

B: Plant metabolic rate (respiration, photosynthesis or xylem flow)

-5-

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Page 6: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

cp: Specific heat of air (unit: J mol–1 °K–1)

csoil: Soil heat flux constant (unit: MJ m–2 day–1 °C–1)

dh: Displacement height (Unit: m)

dleaf: Volumetric leaf density (Unit: number m3)

dstm: Leaf stomatal density (Unit: number m–2)

Dvpr: Vapor diffusivity (Unit: m2 s–1)

ea: Actual vapor pressure (unit: kPa)

ED: Ecosystem Demography Model

Eflux: Evaporative molar flux (Evapotranspiration flux) (Unit: Mmol m–2 month–1)

Fcro: Crown shape factor

FIA: Forest Inventory and Analysis

FLUX-ID: FLUXNET site IDs

G: Soil heat flux (Unit: W m–2 or MJ m–2 day–1)

gBv: boundary layer vapor conductance (Unit: Mmol m–2 day–1)

gdyn: aerodynamic conductance (Unit: Mmol m–2 day–1)

gHa: Heat conductance (unit: Mmol m–2 day–1)

GLAS: Geoscience Laser Altimeter System

gr: Radiative conductance (unit: Mmol m–2 day–1)

Group A (○): Pacific Northwest/California forest corridors and Rocky Mountain forests

Group B (□): Intermountain, Southwest semi-desert, Nevada-Utah, Colorado, Arizona-New

Mexico, and Great Plain Dry Steppe forests

Group C (△): North Woods (Laurentian forests), Midwest, and Northeastern Appalachian forests

Group D (▽): Southeast and Outer Coastal Plain forests

GRP: Regional groups

gstm: stomatal vapor conductance for a leaf (unit: Mmol m–2 day–1)

gSv: Total stomatal vapor conductance (unit: Mmol m–2 day–1)

gv: Vapor conductance (unit: Mmol m–2 day–1)

H: Sensible heat flux (Unit: W m–2 or MJ m–2 day–1)

h: Tree height (Unit: m)

hc: Contemporary forest height (Unit: m)

hcro: Tree crown height (Unit: m)

-6-

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Page 7: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

hmax: Maximum potential forest canopy height (ASRL initial prediction) (Unit: m)

hobs : Observed forest height (Unit: m)invkB: Inverse von Karman-Stanton number

J: Cost function solved by the constrained non-linear multivariable optimization

k: von Karman constant

Ks: Extinction coefficient of the spherical leaf angle distribution

L: Thermal radiation flux (Unit: W m–2 or MJ m–2 day–1)

LAI: Leaf Area Index (Unit: m2 m–2)

Lgen: Total number of leaves generation

LM3-PPA: Land Model 3-Perfect Plasticity Approximation Model

LMA: Leaf Mass per unit of leaf Area

lN: Terminal branch length (Unit: m)

Lstm: Pore perimeter of a cylinder stoma (Unit: m)

LVIS: Laser Vegetation Imaging Sensor

M: Plant massmo–1Tair: Air temperature of preceding month (unit: °C)mo+1Tair: Air temperature of following month (unit: °C)

Mroot: Root mass (Unit: kg)

Mstem: Stem mass (Unit: kg)

N: Number of branch generations

n: Number of daughter branches

NACP: North American Carbon Program

Nleaf: Number of leaves

pa: Air pressure (Unit: kPa)

PFT: Plant Functional Type

Pinc: Long-term monthly incoming precipitation (Unit: mm)

PM: Penman-Monteith

Pr: Pradtl number for air

Q0: Basal metabolic flow rate (Xylem flow rate) (Unit: L year–1)

Qe: Evaporative flow rate (Unit: L year–1)

Qp: Potential water inflow rate (Unit: L year–1)

-7-

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Page 8: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Rabs: Absorbed solar radiation (Unit: W m–2 or MJ m–2 day–1)

rcro: Crown radius (Unit: m)

rN: Terminal branch radius (Unit: m)

Rnet~abs: Net absorbed shortwave radiation (Unit: W m–2 or MJ m–2 day–1)

Rnet~lw: Net absorbed longwave radiation (Unit: W m–2 or MJ m–2 day–1)

rroot: Radial root extent (Unit: m)

Rso: Clear-sky solar radiation (Unit: W m–2 or MJ m–2 day–1)

rstem: Tree stem radius (Unit: m)

Rsw~abs: Absorbed shortwave radiation (Unit: W m–2 or MJ m–2 day–1)

Rsw~inc: Total incident solar radiation (Unit: W m–2 or MJ m–2 day–1)

Sc: Schmidt number for water vapor

sleaf: Area of single leaf (Unit: m2)

SZA: Solar Zenith Angle (Unit: °)

Tair: Air temperature (unit: °C)

Tair: Air temperature (unit: °K)

tc: Forest age information (Unit: year)

Tcro: crown temperature (unit: °C)

Tcro: crown temperature (unit: °K)

u*: Friction velocity with surface obstacles

u200: Wind speed at 200 meters height (Unit: m s–1)

uz: Wind speed at measurement height z (= 10 m) (Unit: m s–1)

V: Crown volume (Unit: m3)

vwater: Molar volume of water (Unit: m3 mol–1)

zh: roughness height for heat transfer (Unit: m)

zl: roughness length for forests (Unit: m)

zm: Roughness length for open flat terrain (Unit: m)

zstm: Depth of a stoma (Unit: m)

αcro: Crown reflectance

αleaf: Mean reflectivity of a leaf

αsoil: Soil reflectance

αsoil*: Deep soil reflectance

-8-

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Page 9: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

β1: Normalization constant for the basal metabolism (Unit: L day–1 m–η1)

β2: Isometric coefficient for relationship between stem and root mass

β3: Crown ratio (relationship between height and crown height)

Δ: Derivative of saturation vapor pressure (unit: kPa °C–1)

εcro: Leaf emissivity

η1: Normalization exponent for the basal metabolism

λ: Latent heat of evaporation (unit: J mol–1)

λEflux: Latent heat flux (Unit: W m–2 or MJ m–2 day–1)

μwater: Molar mass of water (Unit: kg mol–1)

ρair: Molar density of air (Unit: mol m–3)

ρwater: Density of water (Unit: kg m–3)

σ: Stefan-Boltzmann constant (Unit: MJ m–2 day–1 °K–4)

σcro: Crown absorptance

ϕ : Exponent for the tree height and stem radius allometry (theoretical value = 2/3)

ψ: Plant senescence ratio

Ψ: Topographic index

ψmax: Maximal senescence ratio

-9-

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Page 10: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S1. ASRL MODEL FRAMEWORK

* Sample code for the ASRL model (Matlab) is also provided (asrl_height_unopt_sample.m).

S1.1. Tree branching architecture

Tree geometry is considered using a fractal branching architecture (West et al., 1997). The model

describes a tree of height h with a terminal branch radius of rN (≈ 4×10–4 m) and terminal length

of lN (≈ 4×10–2 m) after N branching generations. Each branch generation results in n (= 2)

daughter branches, in which case h can be expressed as (West et al., 1997; 1999):

h ≈nN ( ϕ /2) lN

1−n−ϕ /2 (S1)

where ϕ is the regional-specific allometric relationship between h and stem radius rstem: h rstemϕ.

We can calculate the number of branch generations as N = (2/ϕ) ln [(1 – n–ϕ/2)h/lN] / ln n, and the total number of leaves generated as nN, given overall tree size and the theoretical branching architecture.

S1.2. Basal metabolic flow rate (Q0)

The basal metabolic flow rate Q0 (unit: L year–1) represents the minimum required, life-sustaining

water circulation. The tree-size dependent Q0 is expressed as:

Q0= ∑❑

12 months

β1 hη1 (S2)

where 1 and η1 are the normalization constant and exponent for the metabolism, respectively. The theoretical value of η1 (= 3) was replaced with the regional-specific 2/ϕ.

The parameter 1 also varies across study regions and forest plant functional types, and their

initial values (= 0.0177 L day–1 m–η1 on average from data) are iteratively adjusted to minimize

the modeling errors. The dashed curve of Fig. 2 in the main text is derived from a natural

logarithm equation:

ln Q0=η1 ln h+ ln∑ β1 (S3)

S1.3. Potential (available) inflow rate (Qp)

The potential inflow rate Qp (unit: L year–1) is determined by water absorptance and accessible

local water supply. Mechanical stability for trees predicts an isometric relationship between stem

and root mass (Niklas & Spatz, 2004; Niklas, 2007): Mroot ≈ β2Mstem (β2 ≈ 0.423 from data). The

metabolic scaling theory for plant B rstem2 h2/ϕ Mθ Mϕ/(2+ϕ) allows for mass-to-length inter-

-10-

258

259

260

261

262

263

264

265266267268269

270

271

272

273274275

276

277

278

279

280

281

282

283

284

285

Page 11: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

conversion: Mstem h2/(θϕ) h(2+ϕ)/ϕ and Mroot rroot2/(θϕ) rroot

(2+ϕ)/ϕ. Thus, the radial root extent is

given by: rroot = β2ϕ/(2+ϕ)h. We used hemispheric root surface area accessible to local water supply:

2πrroot2. The tree-size dependent Qp with local water availability is expressed as:

Q p= ∑❑

12 months

γ (2 π rroot2 )Ψ Pinc= ∑

12 months

γ 2 π (β2ϕ /(2+ϕ )h )2 ΨPinc (S4)

where γ is the absorption efficiency related to local soil/terrain properties, and its initial value (= 0.5) is also adjusted during the parametric optimization. The normalized topographic index Ψ accounts for both terrain slope and surface water flow direction and accumulation. Pinc is an input geospatial predictor representing the long-term monthly incoming precipitation rate (unit: m month–

1).

Note that the model estimates annual potential inflow rate (unit: L year–1). The dash-dot curve of

Fig. 2 in the main text is derived from a natural logarithm equation:

ln Qp=2 lnh+ ln∑ γ 2 π β22ϕ /(2+ϕ)ΨPinc (S5)

S1.4. Evaporative flow rate (Qe)

The evaporative flow rate Qe (unit: L year–1) is a good proxy for the metabolic energy use. The

effective tree area aL (unit: m2) is derived from the branching architecture and crown plasticity

(Purves et al., 2007) with possible plant interaction and self-competition for light. The Penman-

Monteith (PM) theory (Monteith & Unsworth, 2013) estimates monthly evaporative molar flux

Eflux (unit: Mmol m–2 month–1). The tree-size dependent Qe incorporates geospatial predictors such

as altitude and long-term monthly solar radiation, air temperature, vapor pressure and wind speed

and can be expressed as:

Qe=aL vwater ∑❑

12 months

E flux (S6)

where the molar volume of water vwater is derived from the molar mass of water μwater (= 1.8×10–2 kg mol–1) and the density of water ρwater (= 103 kg m–3). The model accumulates the monthly mean evaporative flow rate over the growing-degree months (unit: L year–1).

The dashed curve of Fig. 2 in the main text is derived from the Qe. Because both aL and Eflux scale

with the h, it is difficult to rewrite the Qe in a natural logarithm form, opposed to the Q0 and the

Qp. Hence, detailed information on the tree-crown geometry and the PM equation is delivered in

the following sections.

-11-

286

287

288

289290291292293294

295

296

297

298

299

300

301

302

303

304

305

306307308309

310

311

312

313

314

Page 12: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S1.4.1. Tree crown geometry

The crown height hcro has an isometric relationship with h (Enquist et al., 2009; Kempes et al.,

2011): hcro ≈ β3h. The theoretical crown ratio #β3 = 1 – n–1/3 (≈ 0.79) is generally greater than the

measured β3 in actual forests where open habitat is not common. Trees typically compete for light

and this changes their crown geometry. This crown-rise (β3 ≤ #β3) is likely due to crown

plasticity. Our model assumes that the crown-rise should be accompanied by shrinking crown

radius rcro for the mechanical stability of spheroidal tree-crown shape. Self-pruning of branches

(or leaves) explains the disparity between the actual h to hcro relationships and those predicted by

the theory.

The model supposes a large tree at the h with the theoretical crown height #hcro.

hcro❑¿ = β3❑

¿ h (S7)

For the simplicity of the model, we retained for each region the uniform crown shape factor Fcro =

2rcro/hcro during the self-pruning process. Then, we obtain the theoretical crown radius #rcro from

r cro❑¿ = hcro❑

¿ F cro /2 (S8)

The tree branching architecture provides the total number of leaves generated Lgen = nN. We can

use the theoretical crown volume #Vcro and the Lgen to derive the volumetric leaf density dleaf.

V cro❑¿ =( 4/3 ) π r cro❑

¿ 2 hcro❑¿ /2=π Fcro

2 hcro❑¿ 3 /6 (S9a)

d leaf=Lgen / V cro❑¿ =nN / V cro❑

¿ (S9b)

Then, the number of leaves Nleaf is calculated from the regional dleaf and the crown volume Vcro =

(4/3) πrcro2hcro/2. The value of Nleaf does not exceed Lgen: Nleaf ≤ Lgen. Because the self-pruning rate

is dependent on tree size (Mäkinen & Colin, 1999), we further located the regional-specific plant

senescence ratio ψ, which is proportional to the probability of light interception by the tree

crown. We can calculate theoretical total leaf area and Leaf Area Index (LAI) as

aL❑¿ =sleaf Lgen (S10a)

LAI❑¿ = aL❑

¿ /(π rcro❑¿ 2 ) (S10b)

-12-

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Page 13: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

where #aL is the theoretical effective tree area with the area of single leaf sleaf ≈ 0.0010 m2 (initial value from data). The sleaf is iteratively adjusted during the model optimization. The theoretical leaf area index #LAI can be calculated using the #aL and the #rcro.

Based on Beer’s law, we can estimate the theoretical crown transmittance of light #τcro with the

mean reflectivity of a leaf αleaf = 0.5 (full spectrum) and the extinction coefficient of the spherical

leaf angle distribution Ks = 0.5sec(SZA) = 0.5 (where the Solar Zenith Angle (SZA) = 0°).

τ cro❑¿ =exp (−√α leaf K s LAI❑

¿ ) (S11)

The maximal senescence rate ψmax is applied to trees with the least transmittance: ψmax = (Lgen –

Nleaf) / Lgen. The estimated ψ value is used to calculate the adjusted number of leaves adjNleaf =

ψLgen.

ψ=1−(1−ψmax ) /( 1− τ cro❑¿ ) (S12)

S1.4.2. Penman-Monteith equation

The total Eflux is derived from the PM equation:

Rabs−L−G−H −λ Eflux=0 (S13)

where Rabs is the absorbed solar radiation (shortwave and longwave, unit: MJ m–2 day–1), L is the thermal radiation loss (unit: MJ m–2 day–1), G is the soil heat flux (unit: MJ m–2 day–1), H is the sensible heat loss (unit: MJ m–2 day–1) and λEflux is the latent heat loss (unit: MJ m–2 day–1).

The absorbed shortwave radiation Rsw~abs is obtained from the crown absorptance σcro and the total

incident solar radiation Rsw~inc (input data, normal to ground, unit: MJ m–2 day–1).

R sw |¿|=σ cro Rsw inc¿ (S14)

Here, the crown geometry (aL and LAI using adjNleaf and rcro) and the radiation coefficients (αleaf,

Ks, τcro, crown reflectance αcro, soil reflectance αsoil and deep soil reflectance αsoil*) determine the

σcro. We first calculate the adjusted total leaf area, LAI, and crown transmittance using the similar

equation S10–S11 above:

aL=sleaf N leaf❑adj (S15a)

LAI=aL/ (π rcro❑❑ 2 ) (S15b)

τ cro=exp (−√α leaf K s LAI ) (S15c)

-13-

338339340341

342

343

344

345

346

347

348

349

350

351352353354

355

356

357

358

359

360

361

362

Page 14: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Then, the crown reflection coefficient αcro can be derived from Eq. S15 based on an assumption

that canopy is not dense and the effect of the soil is significant (Monteith & Unsworth, 2013).

α cro=αsoil

¿ +α soil

¿ −α soil

α soil¿ α soil−1

exp (−2√αleaf K s LAI )

1+α soil¿ α soil

¿ −α soil

α soil¿ α soil−1

exp (−2√αleaf K s LAI )

(S16)

where the αsoil = 0.3 (full spectrum) and the αsoil* = 0.11 (full spectrum).

Finally, the crown absorptance σcro can be approximated as:

σ cro=1−α cro−(1−α soil ) τ cro (S17)

The monthly G is estimated from the input air temperature (unit: °C) of preceding month mo–1Tair

and following month mo+1Tair and the soil heat flux constant csoil = 0.07 (unit: MJ m–2 day–1 °C–1) as

(Allen et al., 1998):

G=csoil ( T air❑mo−1 + Tair❑

mo+1 ) (S18)

The L is obtained from the linearization of the PM given the crown temperature Tcro (unit: °K) as:

L=ϵ cro σ Tcro4 ≈ ϵ cro σ Tair

4 +c p gr (T cro−T air ) (S19)

¿ g2+g1 ( Tcro−T air )where the emissivity εcro = 0.95 (leaf) and the Stefan-Boltzmann constant σ = 4.9×10–9 MJ m–2 day–1

°K–4. The air temperature Tair (unit: °K), the specific heat of air cp = 29.3 (unit: J mol–1 °K–1) and the radiative conductance gr = 4εcroσTair

3/cp are used to estimate the thermal radiative energy loss. The g2

term in the L will be combined with the Rsw~abs to achieve the net absorbed solar radiation Rnet~abs.

The H is obtained from the difference between the Tcro and the Tair as:

H=c p gHa (T cro−T air ) (S20)

¿ j1 (T cro−Tair )where gHa is the heat conductance (unit: Mmol m–2 day–1) explained in SI Section S1.4.3.

The λEflux is obtained from the linearization of the PM equation using the crown temperature Tcro

(unit: °C) and the air temperature Tair (unit: °C) as:

λ E flux=λ gv (es (T cro)−ea )/ pa ≈ λ gv (∆ / pa ) (Tcro−T air )+λ gv (es (T air )−ea ) / pa (S21)

-14-

363

364

365366

367

368

369

370

371

372

373

374375376377378

379

380

381

382

383

Page 15: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

¿ f 1 (T cro−T air )+f 2

where λ is the latent heat of evaporation (unit: J mol–1). The vapor conductance gv is derived from aerodynamic, boundary layer and leaf stomatal conductance values (unit: Mmol m–2 day–1) (see SI Section S1.4.3). The actual vapor pressure ea (unit: kPa) is an input geospatial predictor. The input altitude data are used to estimate the air pressure pa (unit: kPa) (Allen et al., 1998). The saturation vapor pressure es (unit: kPa) is a function of temperature T (unit: °C): es(T) = b1exp[b2T / (b3 + T)] (where b1 = 0.61 kPa, b2 = 17.5 and b3 = 240.97 °C). We obtain the derivative of saturation vapor pressure Δ (unit: kPa °C–1) = b1b2b3exp[b2T / (b3 + T)] / (b3 + T)2.

To estimate the λEflux, we rearrange the Rsw~abs, G, L and H in the PM equation by eliminating the

temperature difference term (Tcro – Tair) because it is difficult to obtain the Tcro from data. The

λEflux is expressed as:

λ E flux=f 1 ¿¿ (S22)

where the Rnet~abs = σcroRsw~inc – Rnet~lw. Because the input solar radiation accounts only for the shortwave incident radiation, we should further incorporate the L (longwave radiation) to estimate the net absorbed solar energy Rnet~abs (shortwave and longwave). We implemented the g2, the clear-sky radiation Rso (based on the Sun-Earth geometry, unit: MJ m–2 day–1) and the ea to retrieve the net longwave radiation Rnet~lw = g2 (0.34 – 0.14ea

1/2) × (1.35Rsw~inc / Rso – 0.35) (Allen et al., 1998).

S1.4.3. Conductances (gHa and gv)

First, we can calculate the friction velocity with surface obstacles using the input wind speed data

(Gerosa et al., 2012):

u200=uz ln (200/ zm )/ ln (z /zm) (S23a)

u¿=k u200 / ln (( 200−dh ) /z l) (S23b)

where uz (unit: m s–1) is the wind speed at measurement height z (= 10 m), u200 is the wind speed at 200 m height and u* is the friction velocity with surface obstacles. The roughness length for open flat terrain zm = 0.03 m, the von Karman constant k = 0.41, the displacement height dh = (2/3) h (unit: m), the roughness length for forests zl = (1/10) h (unit: m) and the roughness height for heat transfer zh = zl / exp(invkB) where the inverse von Karman-Stanton number invkB = 2. The molar density of air ρair (unit: mol m–3) is derived from the Tair and the air pressure pa (unit: kPa, Boyle-Charles’ law).

Then, gHa (unit: Mmol m–2 day–1) and the aerodynamic conductance gdyn (unit: Mmol m–2 day–1)

can be estimated from the h and the friction velocity u* following

gHa=gdyn=k u¿ ρair / ln(( 200−dh ) /zh) (S24)

where the molar density of air ρair (unit: mol m–3) is derived from the Tair and the pa (Boyle-Charles’ law).

-15-

384385386387388389390391

392

393

394

395396397398399400

401

402

403

404405406407408409410411

412

413

414415

Page 16: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

The boundary layer vapor conductance gBv (unit: Mmol m–2 day–1) also incorporates h and u* as

(Gerosa et al., 2012):

gBv=k u¿ ρair / kB❑inv / (Sc / Pr )2 /3 (S25)

where Sc is the Schmidt number for water vapor and Pr is the Pradtl number for air.

Lastly, the total stomatal vapor conductance gSv (unit: Mmol m–2 day–1) is estimated as (Gerosa et

al., 2012):

gstm=dstm ρair D vpr /( zstm

astm+ π

2 Lstm) (S26a)

gSv=gstm N leaf❑adj (S26a)

where the stomatal vapor conductance for a leaf gstm is derived from the leaf stomatal density dstm = 101×106 m–2, the depth of a stoma zstm = 10×10–6 m, the area of a stoma astm = 459×10–12 m2 (Kempes et al., 2011), the pore perimeter of a cylinder stoma Lstm = 2π(astm/π)1/2 and the vapor diffusivity Dvpr

(unit: m2 s–1). Combining all conductance terms (gdyn, gBv and gSv), we can obtain the final vapor conductance gv = 1 / (1/gdyn + 1/gBv + 1/gSv).

S1.5. Implementation of large-scale disturbance history

The preliminary ASRL model treated all forests as being at their maximum growth state and thus

carried overestimations in forests with recent disturbance. However, forest structure is clearly

related to stand ages (Obrien et al., 1995; Shugart et al. 2010). Indirect and non-physical solution,

which implemented lidar altimetry information and adjusted model parameters to reduce overall

errors (Shi et al., 2013), did not suffice. The updated model still retains the initial prediction of

maximum potential h, but alternatively traces the h-age trajectory of regional forests based on a

generalized growth equation, Chapman-Richards’ curve (Richards, 1959; Chapman, 1961): hc =

hmax[1 – exp(–atc)]1/b. In this function, the contemporary height hc is estimated from the upper

asymptote hmax, which is the maximum potential h that the model initially generates using the

local metabolic/geometry parameters and geospatial predictors. Large-scale disturbance history

data feeds age information tc into the model. The curvature parameters a and b regulate inflection

point, growth rate and maturation age (0.3 ≤ b ≤ 1.0 and 0 < a for the h-age trajectory (Garcia

1983)).

S1.6. Parametric adjustments and physical meanings

-16-

416

417

418

419420

421

422

423424425426427428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

Page 17: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Each flow rate is determined by one free, but meaningful parameter (β1 for the Q0, γ for the Qp

and area of single leaf sleaf for the Qe). The modeled h is sensitive to all three variables, which are

simultaneously, and iteratively, adjusted to minimize the overall difference between the

predictions and input in-situ observations for each sub-region. We allocate β1 to the second-level

factor embracing the intra-/inter-species deviation while the η1 is treated as the first-order cue

affecting the xylem water fluidity. The natural logarithm Q0 curve (Fig. 2) is transformed by both

the β1 and η1 that determine y-intercept and slope, respectively.

The parameters γ and sleaf have more apparent controls during the parametric adjustment. The

local soil and terrain properties are reflected in γ showing how well a tree converts accessible

water supply into the Qp. A combination of γ, tree size, and local water availability attributes to y-

intercept of the natural logarithm Qp curve (Fig. 2). Similarly, aL is a product of the sleaf and

number of leaves Nleaf, and thus, sleaf alters the Eflux and its expansion to the whole-plant Qe. Both

y-intercept and slope of the natural logarithm Qe curve (Fig. 2) couple with the sleaf. The updated

model uses a cost function J solved by the constrained non-linear multivariable optimization

(MathWorks, 2014) as:

J(β1, γ, sleaf) = ∑{[hobs – hc(β1, γ, sleaf)]2} (S27)

where the cost function J has initial ASRL parameters (β1 = 0.010 L day–1 m–η1, γ = 0.5 and sleaf = 0.0010 m2, Enquist et al., 1998; Kempes et al., 2011). In-situ observed height hobs and the modeled hc are compared in the J. For each sub-region, we minimize the J by calibrating all three parameters within ranges (0.005 < β1 < 0.020, 0.01 < γ < 1.00 and 0.0001 < sleaf < 0.0100). β1 range was derived from Enquist et al., 1998 (based on 95% confidence intervals of scaling exponent for stem radius to xylem transport) while sleaf range was achieved from the TRY Database (WWW1: www.try-db.org). The model finally replaces each hc with the hASRL that uses the best-adjusted regional parameters as: hASRL(adj-bestβ1, adj-best γ, adj-best sleaf).

It should be noted that many widely used models have a variety of parameters that are adjusted to

local environments or plant functional types (PFTs). A type of strategies in the model

optimization is matching model outputs with actual observations and finding best parameter

values that minimize local errors. General circulation models in climate change science make

numerous assumptions with bulk parameters, and they are individually palatable and adjustable in

real-world applications. Ecosystem models require summarizing the rich detail of ecology and

evolution, and those details are replaced with bulk parameters when applied to real-world

patterns or problems.

-17-

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462463464465466467468469470

471

472

473

474

475

476

477

478

Page 18: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

For instance, a bulk quantity, LMA (leaf mass per unit of leaf area), used in the LM3-PPA model

(Land Model 3-Perfect Plasticity Approximation) cannot be simply derived from basic principles.

The LM3-PPA model digests PFT-specific constants. Weng et al. (2015) tuned several model

parameters to yield realistic predictions. In addition, a remarkable improvement in the Ecosystem

Demography (ED) model performance was reported in Medvigy et al. (2009). This was

associated with significant changes in a number of parameters away from their initial, literature-

prescribed values when the ED was applied at Harvard forests.

The original ASRL model also used the bulk quantities of β1, γ, and sleaf. It is a way to summarize

entire study region with single parameter values. Kempes et al. (2011) already tested sensitivity

of bulk parameters and showed the potential for the parametric adjustments. The bulk parameters

allow the flexibility in process-based models. We believe that this is an advantage of the ASRL

model because the results of the parametric adjustments provide a set of testable values for future

studies, and these values will have true biophysical meanings given realistic model predictions

for different study regions and time.

We made a simple analysis to show physical meanings of those ASRL parameters. For instance,

the adjusted sleaf of broadleaf were larger than of needleleaf. This implies that the demand for

water (Qe) is higher in broadleaf forests than in conifer forests (Figs. S3a,b). It should be noted

that the ED model also showed similar water demand patterns for hardwoods and coniferous

given different specific leaf area (Medvigy et al., 2009). The adjusted γ were highest at ~100 mm

of monthly mean precipitation for growing season. Southeast and Northwest forests have

relatively low γ that explains large amount of annual runoff. Intermediate γ in the US Southwest

implies relatively low water use efficiency compared to the US Northeast. The γ showed a typical

mono-modal curve against the growing season mean temperature, which indicates less

photosynthetic activities or water use efficiency in cold or hot environments (Figs. S3c–e).

Lastly, the β1 showed mono-modal relationships with precipitation and temperature (Figs. S3f–h).

These patterns can be explained by less xylem water fluidity in cold, hot, or dry regions due to

less photosynthetic activities (Lambers et al., 2008).

-18-

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

Page 19: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

We spatially compared the adjusted parameters derived from Forest Inventory and Analysis

(FIA) and Geoscience Laser Altimeter System (GLAS) case studies (Fig. S4). Comparison pairs

are valid when (i) 10 or more pixels are available for each group and (ii) absolute relative

difference of predicted heights from two case studies, |(hcase_fia – hcase glas)|/hcase fia, is less than 20%.

The adjusted sleaf (R2 = 0.82) and γ (R2 = 0.95) displayed statistically significant agreement. The

adjusted β1 explained 96% of variation in the comparison pairs (p < 0.001). Those sleaf and γ pairs

are mainly related to the ASRL water-limited environment (see Fig. 2a in the main text) where

the maximum forest growth is determined by the water resource availability (~87% of US

forests). Rocky and Northeastern Appalachian forests (23% of pixels) were associated with the

energy-limited maximum growth and with β1 (Fig. S4d). Deviations between FIA- and GLAS-

derived ASRL parameters were mainly obtained from Pacific Northwest and California forest

(symbol ○) where spatial mismatches between FIA and GLAs data might introduce significant

deviations.

We believe that the physical meanings of the parameters are sufficiently addressed in (i) their

spatial distribution, (ii) relationships to forest functional type, growing season precipitation and

temperature, and (iii) inter-comparisons of the ASRL parameters between FIA and GLAS case

studies.

-19-

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

Page 20: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S2. REFERENCESAllen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998) Crop evapotranspiration: Guidelines for

computing crop water requirements. In: FAO Irrigation and Drainage Paper 56. pp. 1–15, Rome, Italy, Food and Agriculture Organization (FAO) of the United Nations.

Chapman, D.G. (1961) Statistical problems in dynamics of exploited fisheries populations. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Contributions to Biology and Problems of Medicine. pp. 153–168, Berkeley, CA, USA, University of California Press.

Enquist, B.J., Brown, J.H. & West, G.B. (1998) Allometric scaling of plant energetics and population density. Nature, 395, 163-165.

Enquist, B.J., West, G.B. & Brown, J.H. (2009) Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106, 7046–7051.

Garcia, O. (1983) A stochastic differential equation model for the height growth of forest stands. Biometrics, 39, 1059–1072.

Gerosa, G.A., Mereu, S., Finco, A. & Marzuoli, R. (2012) Stomatal conductance modeling to estimate the evapotranspiration of natural and agricultural ecosystems. In: Evapotranspiration - Remote Sensing and Modeling, (ed Irmak, A.), pp. 403–420, InTech, Rijeka, Croatia.

Kempes, C.P., West, G.B., Crowell, K. & Girvan, M. (2011) Predicting maximum tree heights and other traits from allometric scaling and resource limitations. Plos One, 6, DOI:10.1371/journal.pone.0020551.

Mäkinen, H. & Colin, F. (1999) Predicting the number, death, and self-pruning of branches in Scots pine. Canadian Journal of Forest Research, 29, 1225–1236.

Mathworks (2014) Statistics and Machine Learning Toolbox User’s Guide. pp. 9:1–9:187, Natick, MA, USA, The Mathworks Inc.

Medvigy, D., Wofsy, S.C., Munger, J.W., Hollinger, D.Y. & Moorcroft, P.R. (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. Journal of Geophysical Research-Biogeosciences, 114, DOI:10.1029/2008jg000812.

Monteith, J. & Unsworth, M. (2013) Principles of Environmental Physics: Plants, Animals, and the Atmosphere, Fourth Edition, pp. 217–247, Academic Press, Oxford, UK.

Niklas, K.J. (2007) Maximum plant height and the biophysical factors that limit it. Tree Physiology, 27, 433–440.

Niklas, K.J. & Spatz, H.C. (2004) Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences of the United States of America, 101, 15661–15663.

Obrien, S.T., Hubbell, S.P., Spiro, P., Condit, R. & Foster, R.B. (1995) Diameter, height, crown, and age relationships in 8 Neotropical tree species. Ecology, 76, 1926–1939.

-20-

528

529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566

Page 21: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Purves, D.W., Lichstein, J.W. & Pacala, S.W. (2007) Crown plasticity and competition for canopy space: A new spatially implicit model parameterized for 250 North American tree species. Plos One, 2, DOI:10.1371/journal.pone.0000870.

Richards, F.J. (1959) A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–301.

Shi, Y., Choi, S., Ni, X., Ganguly, S., Zhang, G., Duong, H., Lefsky, M., Simard, M., Saatchi, S., Lee, S., Ni-Meister, W., Piao, S., Cao, C., Nemani, R. & Myneni, R. (2013) Allometric scaling and resource limitations model of tree heights: Part 1. Model optimization and testing over continental USA. Remote Sensing, 5, 284–306.

Shugart, H.H., Saatchi, S. & Hall, F.G. (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. Journal of Geophysical Research-Biogeosciences, 115, DOI:10.1029/2009jg000993.

Simard, M., Pinto, N., Fisher, J.B. & Baccini, A. (2011) Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research-Biogeosciences, 116, DOI:10.1029/2011jg001708.

Weng, E.S., Malyshev, S., Lichstein, J.W., Farrior, C.E., Dybzinski, R., Zhang, T., Shevliakova, E. & Pacala, S.W. (2015) Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences, 12, 2655-2694.

West, G.B., Brown, J.H. & Enquist, B.J. (1997) A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.

West, G.B., Brown, J.H. & Enquist, B.J. (1999) A general model for the structure and allometry of plant vascular systems. Nature, 400, 664–667

WWW1: TRY Database - Quantifying and scaling global plant trait diversity, Available on-line [http://www.try-db.org], Data accessed: 2015/05/15.

-21-

567568569570571572573574575576577578579580581582583584585586587588589590591

Page 22: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S3. SUPPORTING TABLES (S1–S2)

Table S1. Ecoregions over the contiguous United States. The US Forest Service (USFS)’s 36 eco-province codes and full names are provided. Information on the FIA tree samples and ASRL forest pixels (1-km2 grids) for each ecoregion is also given.

a)Groupb)USFS code

Full namec)FIA samples:

n (%)

d)MODIS pixels: km2 (%)

A

242 Pacific Lowland Mixed Forest 5551 (0.3) 20985 (0.6)M242 Cascade Mixed Forest, Coniferous Forest & e)AM 72525 (3.6) 210581 (6.0)M261 Sierran Steppe, Mixed Forest, Coniferous Forest & AM 69518 (3.4) 158896 (4.6)261 California Coastal Chaparral Forest & Shrub 2219 (0.1) 3564 (0.1)262 California Dry Steppe 145 (0.0) - (0.0)263 California Coastal Steppe, Mixed Forest & Redwood Forest 7210 (0.4) 15167 (0.4)

M262 California Coastal Range f)OW, Shrub, Coniferous Forest & AM 2813 (0.1) 4435 (0.1)M331 Southern Rocky Mountain Steppe, OW, Coniferous Forest & AM 59398 (2.9) 223242 (6.4)M332 Middle Rocky Mountain Steppe, Coniferous Forest & AM 54635 (2.7) 188134 (5.4)M333 Northern Rocky Mountain Forest, Steppe, Coniferous Forest & AM 41121 (2.0) 146596 (4.2)

B

313 Colorado Plateau g)SD 18657 (0.9) 74199 (2.1)M313 Arizona-New Mexico Mountains SD, OW, Coniferous Forest & AM 9376 (0.5) 62189 (1.8)315 Southwest Plateau, Plains Dry Steppe & Shrub 19545 (1.0) 24297 (0.7)321 Chihuahuan SD 4996 (0.2) - (0.0)322 American SD & Desert 2072 (0.1) - (0.0)331 Great Plains & Palouse Dry Steppe 8600 (0.4) 12733 (0.4)332 Great Plains Steppe 4384 (0.2) 1688 (0.0)341 Intermountain SD & Desert 16208 (0.8) 18001 (0.5)

M341 Nevada-Utah Mountains SD, Coniferous Forest & AM 17832 (0.9) 63354 (1.8)342 Intermountain SD 5096 (0.3) 12018 (0.3)

M334 Black Hills Coniferous Forest 4549 (0.2) 11797 (0.3)

C

M223 Ozark Broadleaf Forest & Meadow 9416 (0.5) 19795 (0.6)231 Southeastern Mixed Forest 259947 (12.9) 456561 (13.1)

M231 Ouachita Mixed Forest & Meadow 12242 (0.6) 32693 (0.9)232 Outer Coastal Plain Mixed Forest 290380 (14.4) 408829 (11.7)234 Lower Mississippi Riverine Forest 13920 (0.7) 21685 (0.6)255 Prairie Parkland (Subtropical) 15553 (0.8) 45407 (1.3)411 Everglades 2773 (0.1) 2933 (0.1)

D

211 Northeastern Mixed Forest 92760 (4.6) 168704 (4.8)M211 Adirondack-New England Mixed Forest, Coniferous Forest & AM 85737 (4.3) 152217 (4.4)212 Laurentian Mixed Forest 391946 (19.4) 291336 (8.4)221 Eastern Broadleaf Forest 102251 (5.1) 220796 (6.3)

M221 Central Appalachian Broadleaf Forest, Coniferous Forest & Meadow 88314 (4.4) 195357 (5.6)222 Midwest Broadleaf Forest 89806 (4.5) 37809 (1.1)223 Central Interior Broadleaf Forest 108496 (5.4) 167110 (4.8)251 Prairie Parkland (Temperate) 26071 (1.3) 12474 (0.4)

Total 2016062 (100) 3485582 (100)a)Group A–D: Ecoregions aggregated into four groups in this present study (Spatial distribution is depicted in Fig. 3e);b)USFS code: Eco-province class codes assigned by the USFS (code “M” refers to mountainous ecoregions);c)FIA tree samples: FIA data spanning years from 2003 to 2007 (live and (co-)dominant trees only);d)MODIS pixels: MODIS Landcover for the year 2005 (1 km2 grids; forest only);e)AM: Alpine Meadow; f)OW: Open Woodland and g)SD: Semi-Desert.

-22-

592

593

594595596

597598599600601

Page 23: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

Table S2. FLUXNET data used for the evaluation of the ASRL model framework in this study. Spatial distribution is depicted in Fig. 3e.

a)GRP b)FLUX-ID Latitude Longitude PI name GRP FLUX-ID Latitude Longitude PI name

A

US-Blo 38.90 –120.63 Goldstein, A

C

US-Los 46.08 –89.98 Desai, AUS-CPk 41.07 –106.12 Ewers, B & Pendall, E US-MMS 39.32 –86.41 Novick, K & Phillips, RUS-GLE 41.36 –106.24 Massman, B US-MOz 38.74 –92.20 Gu, LUS-MRf 44.65 –123.55 Law, B US-NMj 46.65 –88.52 Chen, JUS-Me1 44.58 –121.50 Law, B US-Oho 41.55 –83.84 Chen, JUS-Me2 44.45 –121.56 Law, B US-PFa 45.95 –90.27 Desai, A & Davis, KJUS-Me3 44.32 –121.61 Law, B US-Syv 46.24 –89.35 Desai, A & Davis, KJUS-Me5 44.44 –121.57 Law, B US-UMB 45.56 –84.71 Gough, C & Curtis, PUS-Me6 44.32 –121.60 Law, B US-UMd 45.56 –84.70 Gough, C & Curtis, PUS-NR1 40.03 –105.55 Blanken, P US-WBW 35.96 –84.29 Meyers, TUS-Vcm 35.89 –106.53 Litvak, M US-WCr 45.81 –90.08 Desai, A & Davis, KJUS-Vcp 35.86 –106.60 Litvak, M US-Wi0 46.62 –91.08 Chen, JUS-Wrc 45.82 –121.95 Bible, K & Wharton, S US-Wi1 46.73 –91.23 Chen, J

US-Wi2 46.69 –91.15 Chen, JUs-Wi3 46.63 –91.10 Chen, JUS-Wi4 46.74 –91.17 Chen, JUS-Wi5 46.65 –91.09 Chen, J

B

US-Blk 44.16 –103.65 Meyers, T US-Wi6 46.62 –91.30 Chen, JUS-Fmf 35.14 –111.73 Dore, S & Kolb, T US-Wi7 46.65 –91.07 Chen, JUS-Fuf 35.09 –111.76 Dore, S & Kolb, T US-Wi8 46.72 –91.25 Chen, JUS-Fwf 35.45 –111.77 Dore, S & Kolb, T US-Wi9 46.62 –91.08 Chen, JUS-FR2 29.95 –98.00 Litvak, M

D

US-Ced 39.84 –74.38 Clark, KUS-Mpj 34.44 –106.24 Litvak, M US-Dix 39.97 –74.43 Clark, KUS-Wjs 34.43 –105.86 Litvak, M US-Slt 39.91 –74.60 Clark, KUS-FR3 29.94 –97.99 Heilman, J US-Dk1 35.97 –79.09 Oishi, C et al.

C

US-Bar 44.06 –71.29 Richardson, A US-Dk2 35.97 –79.10 Oishi, C et al.US-CaV 39.06 –79.42 Meyers, T US-Dk3 35.98 –79.09 Oishi, C et al.US-ChR 35.93 –84.33 Meyers, T US-Goo 34.25 –89.87 Meyers, TUS-GMF 41.97 –73.23 Lee, X US-KS1 28.46 –80.67 Drake, BUS-Ha1 42.54 –72.17 Munger, W US-KS2 28.61 –80.67 Drake, BUS-Ha2 42.54 –72.18 Hadley, J & Munger, W US-NC1 35.81 –76.71 Noormets, AUS-Ho1 45.20 –68.74 Hollinger, D US-NC2 35.80 –76.67 Noormets, AUS-Ho2 45.21 –68.75 Hollinger, D US-Skr 25.36 –81.08 Barr, JG & Fuentes, JUS-Ho3 45.21 –68.73 Hollinger, D US-SP1 29.74 –82.22 Martin, TUS-KFS 39.06 –95.19 Brunsell, N US-SP2 29.76 –82.24 Martin, TUS-Kon 39.08 –96.56 Brunsell, N US-SP3 29.75 –82.16 Martin, T

a)GRP: Four regional Groups A–D;b)FLUX-ID: FLUXNET site IDs;Shaded rows represent where the ASRL model framework could not explain the calculated FLUXNET evaporative flow rate Qe.

-23-

602603

604605606

Page 24: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S4. SUPPORTING FIGURE

Figure S1. Spatial distribution of independent reference datasets. The Forest Inventory and Analysis (FIA; black symbol ×) and the North American Carbon Program (NACP; black symbols ○ and △) are field measurements. The Laser Vegetation Imaging Sensor (LVIS; blue scatters) and the Geoscience Laser Altimeter System (GLAS; red scatters) are airborne and spaceborne lidar altimetry data, respectively. An existing global forest height product (Simard et al., 2011) based on a machine learning algorithm (Random Forest) covers all the forest pixels (green) in this study. All reference data are spatially independent from each other (no overlaps within 10 km radius).

-24-

607

608

609

610611612613614615616617

Page 25: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

(a) (b)

Figure S2. Inter-comparisons between reference (FIA) and model predicted heights. (a) Data from Kempes et al. (2011). (b) Data from the improved ASRL model. The updated model outperformed the original work at individual pixel level. Mean absolute errors (MAE) decreased from 16.8 m to 7.1 m while R2 increased from 0.10 to 0.56. Underestimations in the original work were associated with needleleaf forests in Pacific Northwest and California where the initial sleaf

generated excessive water demand (symbol ○). Overestimations in the original work were related to Northeastern Appalachian (symbol △) where forests are not mature yet. The errors in the original work have been significantly reduced after incorporating disturbance histories and parametric adjustments into the new ASRL model framework.

-25-

618619620621622623624625626

Page 26: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure S3. Area of single leaf (sleaf), water absorption efficiency (γ), and normalization constant for basal metabolism (β1) used in the model after parametric adjustments using GLAS data. (a) Five forest functional types (EN: evergreen needleleaf, EB: evergreen broadleaf, DN: deciduous needleleaf, DB: deciduous broadleaf, and MX: mixed forests) were implemented to group the sleaf. Upper, middle (red line), and lower box edges show the 75%, 50%, and 25% percentile of data. (b) Spatial distribution of sleaf over the US Mainland. (c) Relationship of γ to growing season monthly precipitation. (d) Relationships of γ to growing season monthly mean temperature. Symbol represents mean γ for each group with one standard deviation (e) Spatial distribution of γ. (f) Relationships of β1 to growing season precipitation. (g) Relationships of β1 to growing season temperature. Symbol represents mean β1 for each group with one standard deviation. (h) Spatial distribution of β1.

-26-

627628629630631632633634635636637

Page 27: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

(a) (b)

(c) (d)

Figure S4. Comparisons between FIA- and GLAS-derived parameters. (a) adjusted sleaf, (b) adjusted γ, (c) adjusted β1. Valid pairs should include 10 or more 1-km2 pixels. The absolute relative difference between two case studies, |(hcase_fia – hcase glas)|/hcase fia, should be less than 20%. Symbols correspond to four regional Groups A–D. Groups A: ○ (Pacific Northwest, California and Rocky Mountain), B: □ (Intermountain, Southwest semi-desert and Great Plain Steppe), C: △ (North Wood and Northeastern Appalachian), D: (Southeast and Outer Coastal Plain). Color of▽ each scatter presents number of pixels associated with the segments. (d) Distribution of ASRL environments related to water or energy-driven maximum growth given bulk quantities of sleaf, γ, and β1. In the US Mainland, water resource availability determines maximum tree growths in 87% of US forests while Rocky and Northeastern Appalachian (23% of pixels) were predicted as the ASRL energy-limited environment. See fig. 2 in main text for the definition of water- and energy-driven maximum forest growths.

-27-

638639640641642643644645646647648649

Page 28: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

S5. SAMPLE CODE FOR ASRL MODEL (MATLAB)

A matlab code for ASRL model is provided in a separated file (“asrl_height_unopt_sample.m”).ASRL INPUT DATA COMPOSITIONA. [Raster Data: 0.008333 Deg. (~1 km) Spatial Resolution]./input/~ dem.nc: altitude (in meter)~ lc.nc: IGBP landcover (1=EN;2=EB;3=DN;4=DB;5=MX)~prcp.nc: long-term mean (1981-2005: DAYMET) monthly total precipitation (in mm)~srad.nc: long‐term mean monthly shortwave solar radiation (in w/m2 with a scale factorof 0.1 [real data=value*0.1])~tmax.nc: long‐term mean monthly maximum air temperature (in deg. C with a scalefactor of 0.01)~ tmin.nc: long‐term mean monthly minimum air temperature (in deg. C with a scalefactor of 0.01)~ vp.nc: long‐term mean monthly vapor pressure (in Pa)~ wnd.nc: long‐term mean (1981-2010 NCEP/NCAR) monthly wind speed (in m/s with ascale factor of 0.01)./input/ecoregion/~ ecor_prov.nc: USFS eco‐region at the province level./input/forest_age/~ fage.nc: Forest stand ages from Pan et al. 2011./input/fia/~ fia_hmax_training.nc: FIA 90th percentile field‐measured tree heights for each pixel

B. [Vector or Parameter Data]./input/param/~ prmt.mat: initial ASRL parameters (beta = 3; gamma = 0.5; s_leaf = 0.0010)~ init_fit_tree.mat: initial tree allometries (US Mainland) for stem radius (r)-to-treeheight (h), h-to-crown height (hcro), h-to-crown radius (rcro).~ ecor_fit_tree.mat: ecoregional tree allometries./input/ecoregion/~ prov_code.mat: USFS province identification code./input/fia/~ fia_ageh.mat: FIA tree height and stand age data

ASRL MODEL CODE (MATLAB) AND RUNA. [ASRL Model Source Code]./~ asrl_height_unopt_sample.m

-28-

650

651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689

Page 29: authors.library.caltech.eduauthors.library.caltech.edu/72657/1/geb12503-sup-0002... · Web viewSupplementary Information for “Application of the metabolic scaling theory and water-energy

B. [ASRL Model Run]>> asrl_height_unopt_sample;

C. [ASRL Model Results]./results/ASRL_hmax_unopt.nc: ASRL predicted maximum potential heights./results/ASRL_height_unopt.nc: ASRL predicted contemporary forest heights./results/prmt_unopt.mat: ASRL parameters used in the model run./results/Qflows_unopt.mat: ASRL Q0, Qp, Qe flows for each pixel./results/WE_unopt.mat: ASRL water(value=2)/energy(value=3) limited environmentcode for each pixel. [1] = model failed.

-29-

690691692693694695696697698699