VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results...

30
Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in μQ jets/ISM interactions Pol Bordas V. Bosch-Ramon, M. Perucho, J. M. Paredes Heidelberg, December 2 nd 2010 1 / 30

Transcript of VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results...

Page 1: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

VHE emission in µQ jets/ISM interactions

Pol Bordas

V. Bosch-Ramon, M. Perucho, J. M. Paredes

Heidelberg, December 2nd 2010

1 / 30

Page 2: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Outline

2 / 30

Page 3: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Outline

• extragalactic → galactic ?

3 / 30

Page 4: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Outline

• extragalactic → galactic ?

• Interaction model

4 / 30

Page 5: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Outline

• extragalactic → galactic ?

• Interaction model

• Hydrodynamical simulations

5 / 30

Page 6: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Outline

• extragalactic → galactic ?

• Interaction model

• Hydrodynamical simulations

• Application to SS433/W50

6 / 30

Page 7: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Outline

• extragalactic → galactic ?

• Interaction model

• Hydrodynamical simulations

• Application to SS433/W50

• Conclusions

7 / 30

Page 8: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Jet-medium interactions

Quasar/IGM interactions ⇐⇒ µ-quasar/ISM interactions?

Cygnus A(Perley et al. 1984)

1E 1740(Mirabel et al. 1992)

8 / 30

Page 9: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

FR galaxies and microquasars

similar jet physics...

• Relativistic jets (ljet ∼ light-years in µ-quasars, ljet ∼ mega-light-years in quasars)

• Accretion → jet ejection (magnetohydrodynamical?) origin

• Non-thermal radio to γ-ray emission mechanisms

• ”Fundamental Plane” Lradio ∝ L0.6X M0.8

bh (phenomenological)

...but some (relative) differences

• Heinz (2002): jet-medium interaction dynamics depend on η =Ljet

R21

ρc3s

• η being Mbh-independent ⇒ ρ ∝ M−1bh

8

>

>

<

>

>

:

ρ & 104cm−3 and/orLjet much larger and/orLjet more powerful and/or

Fνmuch fainter

9 / 30

Page 10: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

• High-mass systems

SS 433Cyg X-1Cyg X-3LSI 61+303LS 5039V4641 Sgr

• Low-mass systems

Cir X-1XTE J1550-5641E 1740.7-2942GRS 1758-258H 1743-32Scorpius X-1GRS 1915+105GRO J1655-40GX 339-4XTE J1748-288

10 / 30

Page 11: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

• High-mass systems

SS 433 (Zealey et al. 1980, Dubner et al. 1998)

Cyg X-1 (Martı et al. 1996, Gallo et al. 2005)

Cyg X-3 ? (Heindl et al. 2003, Sanchez-Sutil 2008)

LSI 61+303 ? (Paredes et al. 2007, Rea et al. 2010)

LS 5039V4641 Sgr

• Low-mass systems

Cir X-1 (Tudose et al. 2006, Heinz et al. 2007)

XTE J1550-564 (Corbel et al. 2002, Kaaret et al. 2003)

1E 1740.7-2942 (Mirabel et al. 1993)

GRS 1758-258 (Martı et al. 2002)

H 1743-32 (Corbel et al. 2005)

Scorpius X-1 (Fomalont et al. 2001)

GRS 1915+105 ? (Kaiser et al. 2004, Zdziarski et al. 2005)

GRO J1655-40GX 339-4XTE J1748-288

11 / 30

Page 12: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Jet-medium interactions

Extragalacticsources

• Relativistic (Γ & 10), conical + reconfined jets, ljet & 1022 cm

• Non-thermal “hot spots” and knots (at the reverse shock/recollimation shock?)

• Double radio synchrotron emission lobes

• Stratified environment, ρ ∝ R−α(α ∼ 2) ∼ 10−2− 10−4 mp cm−3;

galacticsources

• Mildly relativistic (Γ ∼ 1 − 2) jets, ljet & 1019 cm

• Jet’s θinit = 0.1 rad + reconfinement at lrec ∼ 1018 cm

• Interaction zones: reconfinement region, cocoon & shell

• ρISM ∼ 0.1 − 1.0 mp cm−3 + companion winds, SNR shell...

12 / 30

Page 13: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Jet-medium interaction model

Self-similar growing

• Self-similar parameter: R ≡ ljet/ rjet

• Source basic parameters:

• Source age tµQ ∼ 104− 105 yr

• Energy injection rate Qjet ∼ 1036− 1037 erg s−1

• Medium density nISM = 0.1 − 1.0 cm−3

• Characteristic length: l0 =Q2jet

ρ2ISM

c6(Γjet−1)3]1/4

given ljet ≫ l0, then

8

>

>

>

>

>

<

>

>

>

>

>

:

lbow = 1.5

Qjet

ρISM

!1/5

t3/5MQ

vbow =d

dt(lb) =

3lb

5tMQ

rbow = lb/R

13 / 30

Page 14: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Jet-medium interaction model

shock conditions

• Forward shock: M = vbow · (ρISM

ΓISMPISM)1/2, ρsh = (

ΓISM+1ΓISM−1

) ρISM, Psh =3−(3/5M2)

4· ρISMvbow

• Reverse shock: ρshocked = (γadΓjet+1

γad−1) ρrec.jet , Pshocked = (γad − 1)(Γjet − 1) · ρshockedc2

• Reconfinement shock: ρshocked =Γjet+1

Γjet−1ρjet(z), Pshocked = Pcocoon ∼

QjettµQVb

; Vb ∼ (4/3) π r2b × lb

non-thermal emitters

• Shell and cocoon: one zone model (B, Uph taken homogeneous); recollimation:Uph(z)

•R

N0(E ) E dE = χ Qjet ; N0(E ) ∝ E−p ; p = 2.1

• uB = B2/8π = 10% ram/thermal pressure

• Magnetic field equipartition fraction: B = η ue in each interaction zone

• Uphot =

8

>

<

>

:

L⋆4 π c l2

bow

;uCMB cocoon & shell

u(zreconf ) × (zjet

zreconf)2; reconfinement region

• spectral aging of the non-thermal particle populations: N0(E ) −→ N(E , t)

14 / 30

Page 15: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Hydrodyamical simulations

Numerical setup

• two-dimensional finite code to solve the equations of reltivistic hydrodynamics (Perucho et al. 2005,2007)

• axial symmetry, two-dimensional cylindrical coordinates (R, z)

• low resolution → macroscopic features only (not mixing nor turbulence studies allowed)

• tevol ≈ 5 × 104 yr

parameter input value

ambient density n ext = cte = 0.3 cm−3

initial jet density njet = 1.4 × 10−5 cm−3

jet power Ljet = 3 × 1036 erg s−1

source age tsrc = 3 × 104 yrinitial jet radius rjet = 2 × 1016 cminitial jet velocity vjet = 0.6 cinitial jet Mach number M = 6.5

15 / 30

Page 16: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Hydrodyamical simulations

ρ(z, r) and P(z, r) Γ(z, r) and M(z, r)

(Bordas et al. 2009)

16 / 30

Page 17: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Hydrodyamical simulations

Pressure and mass densities (shell and cocoon)

17 / 30

Page 18: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

hydrodyamical simulations

Checking the analytical model

• lbow ∼ 3.3 × 1019 cm; vbow ∼ 3 × 107 cm s−1; R = 2.7

• Pcoc/shell ∼ 10−10 erg cm−3≫ PISM

• ρshell ∼ 2 × 10−25 g cm−3, ρcoc ∼ 4 × 10−29 g cm−3

• strong reconfinement shock at zreconf ∼ 2 × 1018 cm

Checking the analytical model

• multiple reconfinement conical shocks after zreconf until z . lbow

• coupling to a Kevin-Helmoltz instability?

18 / 30

Page 19: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Broadband non-thermal emission

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log ν

Lν (e

rg s

-1)

shellrecollimationcocoon

104 yr, 1036 erg s−1, 0.1 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log ν

Lν (e

rg s

-1)

shellrecollimationcocoon

104 yr, 1036 erg s−1, 1.0 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν (er

g s-1

)

shellrecollimationcocoon

105 yr, 1036 erg s−1, 0.1 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν (er

g s-1

)

shellrecollimationcocoon

105 yr, 1036 erg s−1, 1.0 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν (er

g s-1

)

shellrecollimationcocoon

104 yr, 1037 erg s−1, 0.1 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν (er

g s-1

)

shellrecollimationcocoon

104 yr, 1037 erg s−1, 1.0 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν (er

g s-1

)

shellrecollimationcocoon

105 yr, 1037 erg s−1, 0.1 cm−3

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log ν

Lν (e

rg s

-1)

shellrecollimationcocoon

105 yr, 1037 erg s−1, 1.0 cm−3

19 / 30

Page 20: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Broadband non-thermal emission

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν

(erg

s-1

)

shellrecollimationcocoon

1036 erg s−1, 0.1 cm−3, 104 yr, d = 3 kpc

• F5GHz ∼ 4 mJy

• F0.1−10 keV ∼ 7.3 × 10−15 erg cm−2 s−1

• F10−100 keV ∼ 2.1 × 10−15 erg cm−2 s−1

• F100 MeV≤E≤100 GeV ∼ 1.7×10−16 erg cm−2 s−1

• F>100 GeV ∼ 2.8 × 10−17 erg cm−2 s−1

10 15 20 25 30log ν (Hz)

26

27

28

29

30

31

32

33

34

log

ν L

ν

(erg

s-1

)

shellrecollimationcocoon

1037 erg s−1 , 1.0 cm−3, 105 y, d = 3 kpc

• F5 GHz ∼ 580 mJy

• F0.1−10 keV ∼ 1.4 × 10−13 erg cm−2 s−1

• F10−100 keV ∼ 1.0 × 10−13 erg cm−2 s−1

• F100 MeV≤E≤100 GeV ∼ 2.7×10−14 erg cm−2 s−1

• F>100 GeV ∼ 1.5 × 10−15 erg cm−2 s−1

20 / 30

Page 21: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Application to SS433/W50

(Dubner et al. 1998)

21 / 30

Page 22: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Application to SS433/W50

Source description

• First stellar compact object where relativistic jets were found (Spencer 1979)

• Binary system: ∼ 9 M⊙ black-hole and a ∼ 30 ± 10 M⊙ A3–7 supergiant companion

• Distance ≈ 5.5 kpc

• P of 13.1 d in a ∼ circular orbit, i ≈ 78◦

• Precessing jets (vjet = 0.26 c, Ppr ∼ 162 d, θpr ∼ 21◦)

• Doppler shifted iron lines observed up to 1017 cm ⇒ in-situ reheating?

• Super-Eddington accretion disk, Maccr = 10−4 M⊙/y

• Interaction with the surrounding W50 nebula (⇒ Ljet,kin ∼ 1039 erg s−1)

• Non-thermal radio-to-X-ray hot-spot emission both in the East and West “ears”

22 / 30

Page 23: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Non-thermal emission from east and west interaction regions

| | | |

--

--

--

--

05D 15’

05’

04D 55’

45’

R. A. ( J2000 )

09m 00s 30s10m 00s 30s19h

DE

C (

J2000)

21

3.4

4.4

0.51.0

w2w1

1.3

0.3

3.5

0.6

3.3

3.02.41.5

2.5

| | | |

--

--

--

14m 30s 14m 00s 13m 30s 19h

04D 45’

55’

05D 05’D

EC

(J2

000)

R. A. ( J2000 )

13m 00s

e2

1.5

2.2

2.7

e1

1.5

6.7

5.4

>5

5.14.6

1.2

1.6

12

4.5

0.7

SS 433SS 433

23 / 30

Page 24: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Observations of SS433 at VHE gamma-rays

Previous observations

• HEGRA observations in 1998–2001, for tobs ≥ 100 h (Aharonian et al. 2005)

• CANGAROO-II observations in 2001–2002 of the western interaction region fortobs ∼ 85 h (Hayashi et al. 2009, astro-ph 0909.0133)

24 / 30

Page 25: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Jet-medium interaction model

Interaction model applied

Parameter Value

Jet kinetic power Qjet (erg s −1) 1039

ISM density nISM (cm−3) 1

Source age tMQ (yr) 5 × 104

Jet Lorentz factor Γjet 1.04

Jet opening angle Ψ (◦) 1.2

Star Luminosity L⋆ (erg s −1) 1039

Self-Similar parameter R 3

Non-thermal fraction χ 0.01

shockrecon nement

~1018cmZ rec

forward shock

reverse shock

~1020cml b

e1, e2, e3

w1, w2, p1, p2, p3

25 / 30

Page 26: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

SS433/W50 interaction

• Bow shock at ∼ 6 × 1020 cm

• Reverse shock at ∼ 4.5 × 1020 cm

• Cocoon’s width ∼ 5 × 1019 cm

Physical properties Inferred values

SHELL

Magnetic field B (G) 6 ×10−5

Shock velocity vb (cm s−1) 4.4 × 107

Emitter size r (cm) 2.3 ×1020

Rad. energy dens. u⋆ (erg cm−3) 5.0 ×10−14

Maximum energy Emax (TeV) 54.2

Target density nt (cm−3) 4.0

Physical properties Inferred values

COCOON

Magnetic field B (G) 3.8 ×10−5

Shock velocity vs (cm s−1) 1.6 × 1010

Emitter size r (cm) 5.5 ×1019

Rad. energy dens. u⋆ (erg cm−3) 6.4 ×10−14

Maximum energy Emax (TeV) 280.5

RECONFINEMENT

Magnetic field B (G) 5.2 ×10−5

Shock velocity vconf (cm s−1) 1.9 ×109

Emitter size r (cm) 1.9 ×1017

Rad. energy dens. u⋆ (erg cm−3) 2.5 ×10−10

Maximum energy Emax (TeV) 5.2

26 / 30

Page 27: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

SS433/W50 interaction

10 15 20 25 30

28

30

32

34

21 cm (Dubner et al. 1998)

Effelsberg (Downes et al. 1986)

ISOCAM 15 microns (Fuchs et al. 2002)

ASCA (Safi-Harb & Ogelman 1997)

CANGAROO-II (Hayashi et al 2009)

HEGRA (Aharonian et al. 2005)

Cocoon region

10 15 20 25 30

28

30

32

34

21 cm (Dubner et al. 1998)

Effelsberg (Downes et al. 1986)

ISOCAM 15 microns (Fuchs et al. 2002)

ASCA (Safi-Harb & Ogelman 1997)

CANGAROO-II (Hayashi et al 2009)

HEGRA (Aharonian et al. 2005)

Bow shock region

10 15 20 25 30

28

30

32

34

21 cm (Dubner et al. 1998)

Effelsberg (Downes et al. 1986)

ISOCAM 15 microns (Fuchs et al. 2002)

ASCA (Safi-Harb & Ogelman 1997)

CANGAROO-II (Hayashi et al 2009)

HEGRA (Aharonian et al. 2005)

Bow shock + Cocoon regions

Log ( ν [ Hz ] ) Log ( ν [ Hz ] ) Log ( ν [ Hz ] )

log

( ν

Lν [

erg

/s]

)

• Radio: 1465 MHz eastern wing flux ∼ 15 Jy → (Downes et al. 1981; Dubner et al.1998) ⇒ ∼ 1033 erg s−1 (d = 5.5 kpc) ≈ predicted by the model.

• X-rays: L0.4−4.5 keV ∼ 1034 erg s−1 (Safi-Harb & Petre 1999) ∼ X-ray flux fromboth the bow shock and cocoon (although it extends to higher energies in this case)

27 / 30

Page 28: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

SS433/W50 interaction

20 25 30

32

34 Fermi MAGIC

CTA

H.E.S.S. &

VERITAS

10 15 20 25 30

28

30

32

34

21 cm (Dubner et al. 1998)

Effelsberg (Downes et al. 1986)

ISOCAM 15 microns (Fuchs et al. 2002)

ASCA (Safi-Harb & Ogelman 1997)

CANGAROO-II (Hayashi et al 2009)

HEGRA (Aharonian et al. 2005)

Bow shock + Cocoon regions

Log ( ν [ Hz ] )

Fermi MAGIC

CTA

H.E.S.S. &

VERITAS

Log ( ν [ Hz ] )

log

( ν

Lν [

erg

/s]

)

• γ-rays: E ≥ 100 GeV = 2.27 × 10−14 ph cm−2 s−1≪ current Cherenkov

sensitivities < next CTA sensitivities ?

28 / 30

Page 29: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Conclusions

• Extragalactic interaction model easily applied to µ-quasars

• hydrodynamical simulations → pressures, mass densities and source geometry: goodagreement with analytical model

• Multiple conical shocks present in hydrodynamical simulations, vs one only shock in theanalytical model

• Radio to X-ray fluxes could be detected, gamma-ray fluxes too faint (see however Zhang &Feng 2010)

• Dependence on the ambient density profile not accounted for

• pp interactions not studied (e.g., Heinz & Sunyaev 2002)

• SS 433/W50: strong candidate (high Ljet, high nISM in the W50 nebula)

• interactions remain undetected at VHE γ-rays (HEGRA & CANGAROO-II): target for nextgeneration IACTs? )

29 / 30

Page 30: VHE emission in µQ jets/ISM interactions · Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions VHE emission in µQ jets/ISM interactions Pol Bordas

Outline Overview Hydrodyamical simulations results SS433/W50 interaction conclusions

Table 2. Parameters adopted to calculate SEDs.

Paramete1 Fig. 2 Fig. 3 Fig. 4

Ratio of Ljet to Lnon 0.01 0.1 0.1

Source age t4 (104 yr) 3 3 3

L39 (1039 erg s− 1)a 1 1 1

Power-law index 1.8 2 1.8

Temperature T4 (104 K)b 3 3 3

Diffusion radius R(pc) 3.5 3 3

Magnetic field B (µG) 12 6 5.5

Ratio of Le to Lp (Kep) 0.01 1 1

Shell width rsh (pc) 0.8 0.6 0.7

Shell density nH (cm− 3) 250 1000 900

Shell length lsh (pc) 10 9 11

aIndicates the luminosity of stellar companion.bThe stellar effective surface temperature.

Figure 2.

Figure 3. Figure 4.

Zhang & Feng (2010):

“Non-thermal emission from the termination of microquasar jets”

Ap

plic

ati

on

to

Cyg

X-1

30 / 30