Vessel Detection by Mean Shift Based Ray Propagation

8
Vessel Detection by Mean Shift Based Ray Propagation useyin Tek Dorin Comaniciu James P. Williams Imaging and Visualization Department Siemens Corporate Research, Inc. 755 College Road East, Princeton, NJ 08540 tek, comanici, williams @scr.siemens.com Abstract A robust and efficient method for the segmentation of ves- sel cross-sections in contrast enhanced CT and MR images is presented. The primary innovation of the technique is the boundary propagation by mean shift analysis combined with a smoothness constraint. Consequently, the robustness of the mean shift to noise is enhanced by the use of apriori information on boundary smoothness. This processing is in- tegrated into our computationally efficient framework based on ray propagation. The new algorithm allows real time segmentation of medical structures found in multi-modality images (CT, MR) and various examples are shown to illus- trate its effectiveness. 1 Introduction We focus on images produced by contrast-enhanced magnetic resonance angiography (CE-MRA) and computed tomography angiography (CTA.) In the CE-MRA imaging protocol, a contrast agent, usually based on the rare-earth el- ement Gadolinium (Gd) (a highly paramagnetic substance), is injected into the bloodstream. In such images, blood vessels and organs perfused with the contrast agent appear substantially brighter than surrounding tissues. In CTA, a contrast agent is injected which increases the radio-opacity of the blood making the vessels appear dense. The goal of the majority of CTA/CE-MRA examinations is diagno- sis and qualitative or quantitative assessment of pathology in the circulatory system. The most common pathologies are aneurysm and stenosis caused by arterial plaques. The modern clinical workflow for the reading of these images increasingly involves interactive 3D visualization methods, such as volume rendering for quickly pinpointing the loca- tion of the pathology. Once the location of the pathology is determined, quantitative measurements can be made on the original 2D slice data or, more commonly, on 2D multi pla- nar reformat (MPR) images produced at user-selected po- sitions and orientations in the volume. In the quantifica- tion of stenosis, it is desirable to produce a cross-sectional area/radius profile of a vessel so that one can compare pathological regions to patent (healthy) regions of the same vessel. A basic problem in the segmentation of vessels from background is the accurate edge localization in the pres- ence of noise. Most CT and MR images have significant noise levels. We employ one dimensional mean shift analy- sis along a set of rays projecting radially from a user-placed seed point in the image. Noise along these rays is eliminated while edges are preserved. The envelope of these rays rep- resents an evolving contour which converges to the vessel lumen boundary. The algorithm is parsimonious, examin- ing only pixels along and adjoining these rays and the seed point. It is important that the boundary determined by the al- gorithm be consistent and invariant to medium to large scale linear and non-linear image inhomogeneities. This is needed for the algorithm to be insensitive to MR distortions. The use of constant threshold factors (such as Hounsfield- based thresholds in CT) would limit the ability of the algo- rithm to adapt to varying contrast dosages or varying beam energies in CT. We seek to localize the midpoint of the step- edge as the boundary of the vessel. The choice of rise midpoint as the vessel lumen bound- ary is similar to the choice made by full-width-half- maximum (FWHM) segmentation methods [9]. It was, in fact, the sensitivity of conventional FWHM segmentation methods to noise which motivated the development of this method. Our algorithm requires constant parameters for the evo- lution equations and for the window size used for the mean shift filter. To make the method adapt to varying image qualities and modalities, the evolution parameters are de- termined dynamically from the local statistics of the image computed from a small neighborhood immediately adjacent

Transcript of Vessel Detection by Mean Shift Based Ray Propagation

Page 1: Vessel Detection by Mean Shift Based Ray Propagation

VesselDetectionby Mean Shift BasedRay Propagation

Huseyin Tek Dorin Comaniciu JamesP. Williams

ImagingandVisualizationDepartmentSiemensCorporateResearch,Inc.

755CollegeRoadEast,Princeton,NJ 08540�tek,comanici,williams � @scr.siemens.com

Abstract

Arobustandefficientmethodfor thesegmentationofves-selcross-sectionsin contrastenhancedCT andMR imagesis presented.The primary innovationof the techniqueistheboundarypropagationby meanshift analysiscombinedwith a smoothnessconstraint. Consequently, therobustnessof themeanshift to noiseis enhancedby theuseof aprioriinformationonboundarysmoothness.Thisprocessingis in-tegratedinto ourcomputationallyefficientframeworkbasedon ray propagation. The new algorithm allows real timesegmentationof medicalstructuresfoundin multi-modalityimages(CT, MR) andvariousexamplesare shownto illus-trateits effectiveness.

1 Intr oduction

We focus on imagesproducedby contrast-enhancedmagneticresonanceangiography(CE-MRA) andcomputedtomographyangiography(CTA.) In the CE-MRA imagingprotocol,acontrastagent,usuallybasedontherare-earthel-ementGadolinium(Gd)(ahighly paramagneticsubstance),is injected into the bloodstream. In such images,bloodvesselsandorgansperfusedwith thecontrastagentappearsubstantiallybrighterthansurroundingtissues.In CTA, acontrastagentis injectedwhich increasestheradio-opacityof the blood making the vesselsappeardense. The goalof the majority of CTA/CE-MRA examinationsis diagno-sis andqualitative or quantitative assessmentof pathologyin the circulatorysystem. The mostcommonpathologiesareaneurysmandstenosiscausedby arterialplaques.Themodernclinical workflow for the readingof theseimagesincreasinglyinvolvesinteractive 3D visualizationmethods,suchasvolumerenderingfor quickly pinpointingtheloca-tion of thepathology. Oncethelocationof thepathologyisdetermined,quantitativemeasurementscanbemadeon theoriginal2D slicedataor, morecommonly, on2D multi pla-

nar reformat(MPR) imagesproducedat user-selectedpo-sitions and orientationsin the volume. In the quantifica-tion of stenosis,it is desirableto producea cross-sectionalarea/radiusprofile of a vesselso that one can comparepathologicalregionsto patent(healthy)regionsof thesamevessel.

A basicproblem in the segmentationof vesselsfrombackgroundis the accurateedgelocalization in the pres-enceof noise. Most CT andMR imageshave significantnoiselevels.Weemployonedimensionalmeanshift analy-sisalongasetof raysprojectingradially from auser-placedseedpointin theimage.Noisealongtheseraysis eliminatedwhile edgesarepreserved. Theenvelopeof theseraysrep-resentsan evolving contourwhich convergesto the vessellumenboundary. The algorithmis parsimonious,examin-ing only pixelsalongandadjoiningtheseraysandtheseedpoint.

It is importantthat the boundarydeterminedby the al-gorithm be consistentand invariant to medium to largescalelinearandnon-linearimageinhomogeneities.This isneededfor thealgorithmto beinsensitiveto MR distortions.Theuseof constantthresholdfactors(suchasHounsfield-basedthresholdsin CT) would limit theability of thealgo-rithm to adaptto varyingcontrastdosagesor varyingbeamenergiesin CT. Weseekto localizethemidpointof thestep-edgeastheboundaryof thevessel.

Thechoiceof risemidpointasthevessellumenbound-ary is similar to the choice made by full-width-half-maximum(FWHM) segmentationmethods[9]. It was,infact, the sensitivity of conventionalFWHM segmentationmethodsto noisewhich motivatedthedevelopmentof thismethod.

Our algorithmrequiresconstantparametersfor theevo-lution equationsandfor thewindow sizeusedfor themeanshift filter. To makethe methodadaptto varying imagequalitiesandmodalities,the evolution parametersarede-termineddynamicallyfrom thelocal statisticsof theimagecomputedfrom asmallneighborhoodimmediatelyadjacent

Page 2: Vessel Detection by Mean Shift Based Ray Propagation

to theusersseedpoint. A limitation of our methodaspre-sentedis that the detectionscaleis determinedby userin-teraction.However, a fixedwindow sizefor themean-shiftfilter will serve for detectionover a broadrangeof vesselsizes.

Thereis an extensive body of work on the segmenta-tion of vesselsandothercurvilinearstructures(suchasair-ways)from CTA andMRA images. Ray propagationhasbeenusedin a numberof prior relatedworks. Perhapsthemostcloselyrelatedexampleis thework of Wink etal. [24]who useimagegradientto control ray termination. Theyuseconventionalsmoothingtechniquesto dealwith imagenoise. Thedrawbackof suchsmoothingis that it canshiftor entirelyeliminatelow-contrastboundaries.

Ourapproachis alsorelatedto otherdeformablemodels:snakes[11, 2, 3, 16, 25], balloons[7], levels-sets[14, 20,22, 12, 20], region-competition[26], skeletally-coupledde-formablemodels[18]. Thepositionof this work in thede-formablemodeltaxonomywill beelaboratedin Section2.

In this paperwe presentthe simplestusagecase: Theuserspecifiesthe vesselto besegmentedby placinga sin-gle seedinside it. A boundarycontouris then automati-cally generatedvia the propagationof rays from the seedpoint. The propagationis guidedby imageforcesdefinedthrough meanshift analysisand smoothnessconstraints.The gradient-ascentmeanshift localizesedgesaccuratelyin thepresenceof noiseandprovidesagoodcomputationalperformance,being basedon local operators. The incor-porationof a smoothnessconstraintinto our modelallowsboundaryfindingin thepresenceof eccentricitieslike calci-fications(CT)or smallbranchingvessels.Also, theadditionof smoothnessconstraintsto ouralgorithmfurtherimprovestherobustnessto isolatednoise.Althoughthealgorithmisnot optimizedyet, it is very fastfor detectingvesselsin or-thogonalviews, under ����� secondson a PenthiumIII , 500Mhz PC.

This algorithm is also suitablefor applicationswheremultiple contours are to be segmented along a pre-determinedvesselaxis. In our integratedsystemwe im-plementtheaxisextractionmethoddescribedin [4] to pro-vide orthogonalslicepositions.Validationis vital to makethis or any methodusefulin a clinical setting.In this paperexamplesareshown with phantomsof known groundtruthanddatafrom clinical practice. Completevalidationwillrequirea formal multi-siteclinical testwhich is plannedtobegin within 6 months.

2 Active Contours

In thissectionwebriefly review the“active contour”lit-eratureasis pertinentto thispaper[11, 16, 7, 14,20, 22,4,10, 24]. Seealso [26, 18] for relatedactive contourmeth-odsfor imagesegmentation.

2.1 Snakes

Active contours,or snakes[11, 3, 25], aredeformablemodels based on energy minimization of controlled-continuitysplines.Whenthey areplacedneartheboundaryof objectsthey will lock onto salientimagefeaturesunderthe guidanceof internalandexternal forces. Formally, let��� ������������������� ���

be the coordinatesof a point on thesnake,where

is the lengthparameter. The energy func-

tionalof a snakeis definedas

� ������� �"!#%$ �'&)(+* �,��� ���+- �'&).'/�0�1 ���2����3�4- �65378( ���2����3�:9<;=4�(1)

where�'&)(4*

representsthe internalenergy of thesplinedueto bending,

�'&).'/�0�1representsimageforces,and

�65378(are

theexternalconstraintforces.First, theinternalenergy,�'&)(+* � > !@? �BA8�� � ? C -D> C ? �EA�A��� � ? C � (2)

imposesregularity on the curve, and,> ! and

> C corre-spondsto elasticityandrigidity, respectively. Second,theimageforcesareresponsiblefor pushingthesnaketowardssalientimagefeatures.Thelocalbehavior of asnakecanbestudiedby consideringtheEuler-Lagrangeequation,FHG ��> ! � A � A -I��> C � A�A � A�A �KJL�,�M�N��� � � , � A � � � , ���O � and

� A ��O �given,

(3)

whereJL�����

capturesthe image and external constraintforces.Notethat theenergy surface

�is typically not con-

vex andcanhave several local minima.Therefore,to reachthe solutionclosestto the initialized snake,the associateddynamicproblemis solved insteadof the static problem.When the solution

��QPR�stabilizes,a solution to the static

problemis achieved.FTSNUS * G ��> ! � A � A -K��> C � A�A � A�A �IJL�,�M�V�W�V P V�X+Y -[ZN\^] W ; X=_ �a`N\ W ; V P V \ W (4)

Snakesperformwell whenthey areplacedcloseto thedesiredshapes.However, a numberof fundamentaldiffi-cultiesremain;in particular, snakesheavily rely onaproperinitializationcloseto theboundary, multiple initializations,oneperobjectof interest.

To overcomesomeof the initialization difficultieswithsnakes,Cohen and Cohen [7] introduceda deformablemodel basedon the snakesidea. This modelsresemblesa “balloon” which is inflatedby anadditionalforcewhichpushestheactive contourto objectboundaries,evenwhenit is initialized far from theinitial boundary. However, bal-loonsstill have someproblems:First, like snakes,balloonscannothandletopologicalchanges, i.e., merging andsplit-ting. It shouldbe notedthat McInerney andTerzopoulospresenteda topologicallyadaptablesnakesin [15].

Page 3: Vessel Detection by Mean Shift Based Ray Propagation

2.2 Level SetEvolution

Oneof thetraditionalproblemsof snakesandballoonsisthatthey cannoteasilycapturetopologicalchanges.There-fore, for imageswith multipleobjects,thesnakeor balloonmethodsrequireextensive userinteraction. This problemcanbe resolved by the useof the level setevolution, pro-posedby OsherandSethianfor flamepropagation[17], in-troducedto computervision for shaperepresentation[13],andfirst appliedto active contoursin [6, 14].

The level set approachconsidera curve�

as the zerolevel setof a surface,b �������+�c� � . Caselleset al. [6] pro-posedthat the zerolevel setof the function b , d �"eIf C�gb �)P ���B�2� �ih , evolve in thenormaldirectionaccordingtoj bj P �lkM�������+� ? m b ? ��; V�n � m b? m b ? ��- n ��� (5)

wherekM���o���+�p� !!3q�rtsvuow�x3y�z�{ , n is a positiverealconstant,|~}��'�is theconvolution of theimage

�with theGaussian|~}

, and, b # is the initial datawhich is a smoothedversionof thefunction

O GL���, where

���is thecharacteristicfunc-

tion of aset � containingtheobjectof interestin theimage.The gradientof the surfacem b is the normal to the levelset�, �� , andthe term

; V�n � sv�� sv� � � is its curvature � . Sev-eralinterestingrelevantapproaches,e.g., [12, 21] havebeenproposedafter the original work of Caselleset al. [6], andMalladi et al. [14].

Unlike snakes,thisactivecontourmodelis intrinsic,sta-ble, i.e., thePDEsatisfiesthemaximumprinciple,andcanhandletopologicalchangessuchas merging andsplittingwithoutany computationaldifficulty. A key disadvantageofthelevel setmethodis theirhighcomputationalcomplexity,due to the additionalembeddingdimensional,even whenthe computationis restrictedto a narrow bandaroundthecurve. To overcomethecomputationalcomplexity, narrowbandlevel setevolutionshave proposed[14, 1, 23]. How-ever, thesemethodsarestill not fast enoughfor real-timeimagesegmentation.Thus,in this paper, weproposeto useray propagationfor fast imagesegmentation,which is de-scribednext.

3 Ray Propagation

Let the front be representedby a 2D curve�2��4�8PR���������4�8PR�N�R����4�8PR���

where�

and�

are the Cartesiancoordi-nates,

is thelengthparameter, and

Pis time.Theevolution

is thengovernedby [13]F SNU rt��� * zS * � `^�������+� �����+� � ���l� # ���� (6)

where� # ����'��������4� � ��������+� � ��� is theinitial curve,and ��

is theunit normalvectorand`<�����R�4�

is thespeedof a rayatpoint

�������+�.

Theapproachthatwe considerin this paperis basedonexplicit front propagationvia normalvectors.Specifically,thecontouris sampledandtheevolution of eachsampleisfollowedin time by rewriting the Eikonalequation[19] invectorform, namely,�� � � * ��+��PR��� `^�����R�4� ���� � { � q � { �� * ��4��PR���I`^���o���+� � �� � { � q � {� � (7)

This evolution is the“Lagrangian”solutionsincethephys-ical coordinatesystemmoves with the propagatingwave-front. However, the applicationsof ray propagationforcurve evolution hasbeenlimited. Becausewhen the nor-mals to the wavefront collide (formation of shocks),thisapproachexhibits numericalinstabilitiesdueto anaccumu-lateddensityof samplepoints,thusrequiringspecialcare,suchasreparametrizationof thewavefront. Also, topolog-ical changesarenot handlednaturally, i.e., anexternalpro-cedureis required.

In this paper, we will show that ray propagationcanin-fact beusedfor segmentingcertainobjectsin medicalim-agesefficiently and robustly. Previously, ray propagationhas beenusedto implement full-width at half-maximum(FWHM) techniquefor quantificationof 2D airwaygeom-etry [9]. In FWHM technique,themaximumandminimumintensityvaluesalongthe raysarecomputedto determinethe “half-maximum” intensityvalue,which is the half in-tensityvaluebetweenmaximumandminimum. However,stablecomputationof maximumand minimum along theraysarequitedifficult dueto highsignalvariations.

In addition,raypropagationwasusedby Wink etal. [24]for fastsegmentationof vesselsanddetectionof their cen-terline. In this approach,Wink et. al. usedthe intensitygradientsto stopthepropagationof rays.However, thisap-proachfacesdifficultieswhenthevesselsboundariesarenotsharp,i.e., dueto partialvolumeeffects,andalsowhenves-selscontainisolatednoises,e.g., calcificationsin CT im-ages.

The main shortcomingsof theseapproachesstemfromthe computationof imagegradientswhich are not robustrelative to the imagenoise. In this paper, we proposetousemeanshift analysisfor detectingvesselsboundariesef-ficiently androbustly. ComaniciuandMeer[8] showedthatthe imagediscontinuitiesarerobustly revealedby a meanshift processwhich evolvesin boththeintensityandimagespace.

We will first describethe meanshift analysis;second,illustrateanapproachwherethemeanshift procedureis ap-plied to selectdiscontinuitiesin a onedimensionalsignal;and finally, presentthe meanshift-basedray propagationapproachfor segmentationof medicalstructures,e.g., ves-sels.

Page 4: Vessel Detection by Mean Shift Based Ray Propagation

3.1 Mean Shift Analysis

Given the set d � & h &�� !������ ( of;-dimensionalpoints, the

meanshift vectorcomputedat location � is givenby [8]

��� � � ����� (&�� ! �o  � ��¡E�2¢� �� (&�� !   � �2¡E� ¢� � G � (8)

where   representsa kernelwith a monotonicallydecreas-ing profileand £ is thebandwidthof thekernel.

It can be shown that (8) representsan estimateof thenormalizeddensitygradientcomputedat location � , i.e.,the meanshift vector alwayspoints towardsthe directionof the maximumincreasein the density. As a result, thesuccessive computationof expression(8), followedby thetranslationof thekernel   by

��� � � � will defineapaththatconvergesto a local maximumof the underlyingdensity.This algorithmis calledthemeanshift procedure, a simpleandefficientstatisticaltechniquefor modedetection.

The meanshift procedurecan be appliedfor the datapointsin thejoint spatial-rangedomain[8], wherethespaceof the 2-dimensionallattice representsthe spatial domainandthe spaceof intensityvaluesconstitutesthe rangedo-main. In this approach,a datapoint definedin the jointspatial-rangedomainis assignedwith a point of conver-gencewhichrepresentsthelocalmodeof thedensityin thisspace,e.g., a 3-dimensionalspacefor gray level images.Onecandefinedisplacementvector in the spatialdomainasthespatialdifferencebetweenconvergencepointandtheoriginalpoint.

Wheneachpixel in the imageis associatedwith thethenew range(intensity) information carriedby the point ofconvergence,thealgorithmproducesdiscontinuitypreserv-ing smoothing.Conceptually, this processis similar to theanisotropicdiffusion,nonlinearfiltering, or bilateralfilter-ing [5].

However, whenthespatialinformationcorrespondingtothe convergencepoint is also exploited, one can defineasegmentationprocessbasedon thedisplacementvectorsofeachpixel. Theconvergencepointssufficiently closein thisjoint domainaregatheredtogetherto form uniform regionsfor imagesegmentation[8].

In this paper, we will exploit the meanshift-generateddisplacementvectorsto guideactive contourmodels. Therobustnessof the meanshift is thus combinedwith apri-ori informationregardingthesmoothnessof theobjectcon-tours. This processingis integratedinto our computation-ally efficientframework basedonraypropagation.Thenewalgorithmallows real time segmentationof medicalstruc-tures.

3.2 Mean Shift Filtering Along a Vector

Let us first illustrate the meanshift procedureappliedto a 1-dimensionalintensityprofile which is obtainedfroma 2d graylevel image.Specifically, let d � & ��� & h &�� !���������� ¤ andd � x & �R� x & h &�� !�������� ¤ bethe2-dimensionaloriginalandfilteredN imagepoints in the spatial-rangedomain. In addition,the outputof the mean-shiftfilter includesa displacementvector d ; & h &�� !���������� ¤ which measuresthe spatialmovementof eachspatialpoint. In our algorithm,eachpoint in thisspatial-rangedomainis processedvia themeanshift oper-atoruntil convergence.Specifically, thealgorithmconsistsof 3 steps:

For eachV �¥O4� �)�)� � �

1. Initialize ¦ �§O and��� xN¨& �R� x�¨& ��; & ���©��� & ��� & � � �

2. Compute

� x ¨ q�!& � �Iª«�¬i­ � « 1i®=¯ °�±�² ¢ ®^° «�³ {{ w {° 1 ®=¯ ´�±R² ¢ ®+´ «�³ {{ w {´� ª«�¬i­ 1=®=¯ ° ± ² ¢ ®^° «R³ {{ w {° 1 ®=¯ ´ ± ² ¢ ®<´ «R³ {{ w {´� x ¨ q�!& � �Kª«�¬i­ y « 1 ®=¯ °�±R² ¢ ®^° «�³ {{ w {° 1 ®=¯�´ ²¢ ®+´ «�³ {{ w {´� ª«�¬i­ 1i®=¯ ° ± ² ¢ ®^° «�³ {{ w {° 1 ®=¯ ´ ± ² ¢ ®+´ «�³ {{ w {´(9)

until the displacementof spatialpoints,� &

aresmall,i.e., ? � x ¨ q�!& G � x ¨& ?4µ[¶

3. Assign; & �¥��� x ¨ q�!& G � & �

4. Assign��� x & ��� x & �v�§��� & ��� x& �

where · � and · y determinetheGaussianspatialandrangekernelssize,respectively. Observe that in the last stepoftheproceduretheoriginalspatiallocations,namely

� &’sare

assignedwith the smoothedintensityvalues. Figure1a il-lustratesanexamplewhere1-dimensionalintensitydataisobtainedfrom a sliceof a CT image.Figure1b andc illus-tratetheoriginal intensityprofileandthesmoothedintensityprofile, respectively. Observe thatthemeanshift proceduresmoothstheintensitydatawhile preservingandsharpeningitsdiscontinuities.Similarly, Figure1ddepictsthedisplace-mentvectorsalongthis1-dimensionalsignal.Ourboundarydetectionframework exploits the informationcontainedinthesedisplacementvectors.

3.3 Mean Shift-BasedRay Propagation

Semi-automaticsegmentationproceduresarevery well-acceptedin medical image applicationsbecauseof theirfast executiontimesandtheir stability. Infact, active con-tourshavebeenextensively usedin medicalimagesegmen-tation. In this paper, we advocateray propagationfrom a

Page 5: Vessel Detection by Mean Shift Based Ray Propagation

(a) (b) 0 10 20 30 40 50 60850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

(c) 0 10 20 30 40 50 60850

900

950

1000

1050

1100

1150

1200

1250

1300

(d) 0 10 20 30 40 50 60−6

−4

−2

0

2

4

6

8

(e) 0 10 20 30 40 50 60−2

0

2

4

6

8

10

12

Figure 1. (a)A 1-dimensionalintensityprofile is obtainedalongtheredline from a CT imagecontainingtheaorta.Theleft-endpointof theredline is thebeginningof dataandright-endpoint is theendof data.(b) Original intensityprofile. (c) Intensityprofileaftermeanshift filtering, with ¸4¹�º"» and ¸=¼'º¾½�¿ ¿ . (d) Thedisplacementvectorsof eachspatialpoint andtheir first derivatives(e).

singlepoint for vesselsegmentation. Specifically, we as-sumethat the vesselsareorthogonalto the viewing planeand their boundariesarevery similar to circular/ellipticalobjects. Thus,ray propagationis very well suitedfor thisproblemfor the following reasons.First, ray propagationis very fast. Second,no topologicalchangesarenecessaryandnoshocksform duringthepropagation,sinceraysfroma singlesourcepoint do not collide with eachother. Re-call that level setshave beenthechoiceof curve evolutionproblems[13] due to formation of shocksand topologi-cal changesthat may happenduring the evolution. How-ever, basedon our experiments,level setbasedsegmenta-tion techniques,e.g., [14, 21] arestill slow for real timeimagesegmentation.

Let us now presentthe meanshift basedray propaga-tion: Theapproachis basedonanexplicit front propagationvia normal vectors,rays. Specifically, the evolving con-touris sampledandtheevolutionof eachsampleis followedin time by rewriting theevolution equationin vectorform,namely,

�� � � * ��4��PR���KÀÁ���o���+� � �� � { � q � {�� * ��4�8PR�2� ÀÁ�����R�4� � �� � { � q � {� � (10)

whereÀa���o���+�

is a speedfunctiondefinedasÀa���o���+�Á�  à ���o���+�O ��� - ? m ;E���o���+� ? C -ÅÄ � ���o���+� (11)

where;E�����R�4�

is thedisplacementfunctioncomputedby themeanshift procedure,� ���o���+� is the discretecurvature,

ÂandÄ

areconstants,and à �����R�4� is givenby

à �����R�4�a� FHG V k W ��;B���o���+��� V à ? m ;E�����R�4� ?iÆ[Ç ·EÈO É Y É(12)

Ideally, rays should propagatefreely towards the objectboundarieswhenthey areaway from themandthey shouldslow down in the vicinity of theseobject boundaries. Ifthey crossover theboundariesthey shouldcomebackto theboundary. Observe thatall theserequirementsaresatisfiedby thechoiceof speedfunction. Themeanshift-generateddisplacementvectorshave high gradientmagnitude(Fig-ure1e)anddiverge(Figure1d)at theaortaboundary. Notethatthehigh gradientmagnituderesultsin low propagationspeed,while thedivergencepropertydeterminesthedirec-tion of the propagation,i.e., outwardinside the aortaandinwardoutsidetheaorta.

Often intensity valuesinside vesselsare not smoothlychanging.In fact, it is possiblethat theremay be isolated

Page 6: Vessel Detection by Mean Shift Based Ray Propagation

θ

ri rrrl

P

Figure 2. Thecurvatureof a ray Ê�Ë at P is approximatedby theangleÌ at thatvertex.

noisewhich thencreatessevereproblemsfor the propaga-tion of rays. In addition,theobjectboundariesmaybedis-tortedat isolatedlocationsdue to interactionwith nearbystructures. Becauseof theseirregularities inside vesselsandon its boundaries,we believe that theremustbe somesmoothnessconstrainson the evolving contour via rays.Thus,we add � �����R�4� to thespeedfunctionof rays,whichforcesthe front to be smoothduring the propagation.Wecurrentlyuse � ���o���+���H�3O G �+ÍÎ � C � asthe curvaturevalueof a ray at point

�����R�4�where Ï is the anglebetweentwo

contoursegments,Figure2. TheratioÂ2Ð^Ä

controlsthede-greeof desiredsmoothness.

Our speedfunctioncontainsthe · È parameter. This sta-tistical parameteris the variationof the magnitudeof dis-placementfunctionin aregionandis learnedfrom thedata.Specifically, first raysareinitially propagatedvia constantspeedin a small region (circular region). Second,first or-der statistics,namely, mean, Ñ andstandarddeviation, ·EÈof gradientdisplacementfunction arecomputedfrom thissample.It is assumedthat locationsof thesmall gradientsin adisplacementfunction(lessthan Ç ·EÈ ) shouldnotbepartof any objectboundary.

4 Results

Figure3 illustratesthemeanshift-basedraypropagationfor a CT (top) anda MR image(bottom). Specifically, wedepict the displacementvectorsobtainedfrom meanshiftfiltering in middlecolumnin orderto show thestrengthofthemeanshift filtering. In this figure,blackcolor indicatesavectorpointingtowardsthecenterandsimilarly whitecol-orsarethevectorspointingoutwardfrom thecenterof rays.Observe the divergenceof the displacementvectorsin thevicinity of aortaboundaries.This divergenceof vectorsareintegratedvia rays,which thenleadsto thesegmentationofaorta.

Wehavetestedthestabilityof ouralgorithmonavarietyof CT and MR imagesand as well as on a CT phantomdata,Figure4. Furthervalidationstudieswill be donebytheexperts.

Figure 5 illustrates the need for shapepriors, e.g.,smoothnessconstraintsin segmentationon an MR imageandaCT image.Shapepriorsarenecessaryfor tworeasons:� V �

Figure 5a depictsa casewhere renal arteriesbranchfrom the aorta. Thesegmentationof aortafor quantitativemeasurementsvia ray propagationwithoutany smoothnessconstraintwould resultin largeerrorsdueto renalarteries,Figure 5b. The addition of strongsmoothnessconstraintresultsin bettersegmentationof aortafor quantitativemea-surements,Figure5c.Thisexampleillustratesthatouralgo-rithm is capableof incorporatingsimpleshapepriors.

� V�V �Thesmoothnessconstraintis oftenneededfor the stabilityof a segmentationprocess.Figure5aillustratesa structurein a CT imagewhich hasdiffusedboundariesanda circu-lar darkregion in it. Observe that theray passingover thecirculardarkregionis stoppeddueto thehighdisplacementvector(or high intensitygradient),Figure5b. In addition,oneray did notstopat thecorrectboundarydueto theverylow gradient.Figure5c illustratesthat theseisolatederrorsin thesegmentationprocesscanbecorrectedby theadditionof smoothnessconstraints.

References

[1] D. Adalsteinssonand J. Sethian. A fast level set methodfor propagatinginterfaces.J. Comput.Phys, 118:269–277,1995.

[2] A. Amini, S. Tehrani,and T. Weymouth. Using dynamicprogrammingfor minimizingtheenergy of activecontoursinthepresenceof hardconstraints.In InternationalConferenceon ComputerVision,Tampa,Florida, pages95–99,1988.

[3] A. Amini andT. Weymouth. Usingdynamicprogrammingfor solvingvariationalproblemsin vision. IEEE Trans.Pat.AnalysisandMachineIntellingence, 12(9):855–867,1990.

[4] B. B. Avants and J. P. Williams. An adaptive minimalpath generationtechniquefor vesseltracking in CTA/CE-MRA volume images. In Medical ImageComputingandComputer-AssistedInterventionMICCAI, pages707–716,2000.

[5] D. Barash.Bilateralfiltering andanisotropicdiffusion: To-wardsa unified viewpoint. TechnicalReport HPL-2000-18(R.1),Hewlett-Packard,2000.

[6] V. Caselles,F. Catte,T. Coll, and F. Dibos. A geometricmodel for active contoursin imageprocessing. TechnicalReportNo 9210,CEREMADE,1992.

[7] L. D. Cohen. Note on active contourmodelsandballoons.CVGIP: ImageUnderstanding, 53(2):211–218,1991.

[8] D. ComaniciuandP. Meer. Meanshift analysisandappli-cations.In IEEE InternationalConferenceon ComputerVi-sion, pages1197–1203,1999.

[9] N. D. D’Souza,J.M. Reinhardt,andE. A. Hoffman. ASAP:Interactive quantificationof 2d airwaygeometry. In MeicalImaging1996: Physiologyand function from Multidimen-sionalImages,Proc.SPIE2709, pages180–196,1996.

Page 7: Vessel Detection by Mean Shift Based Ray Propagation

(a) (b) (c)

(a) (b) (c)

Figure 3. This figureillustratesthemeanshift-basedray propagationon a CT (top) andMR imageaorta(bottom).Both imagescontainaorta.(Right)Original image(Middle) Theunit displacementvectorsof meanshift procedurearecomputedvia propagatingunit speedrays,i.e., speedfunctionis unity. Thewhite indicatesavectorpointingoutwardfrom thecenterandblackcolor indicatesavectorpointingtowardsthecenter. Observethatourspeedfunctionin Equation(12)includesthenegativesignof thedisplacementvectors.Thusinitially raysarepushedtowardsto thevesselsboundariesandif they crossover themthey comebackdueto signchangein thespeedfunction.(Right)Thesegmentationof vesselvia meanshift-basedraypropagation.

(a) (b) (c) (d)

Figure 4. Thisexampleillustratesthestability of our resultson a CT phantomdatadepictingcoronoryarteries.Theboundariesaredetectedby asingleclick insidethevessels.

Page 8: Vessel Detection by Mean Shift Based Ray Propagation

(a) (b) (c)

(d) (e) (f)

Figure 5. This figure illustratestheneedfor a smoothnessconstraintin segmentationon anMR imageanda CT image. (Left)Original image. (Middle) Boundarydetectionby meanshift-basedray propagationwithout any shapepriors. (Right) Boundarydetectionby meanshift basedray propagationwith smoothingconstraints.Observe that (e) and(f) depictsa zoomedareaof theoriginal imageshown in (d).

[10] M. Hernandez-Hoyos,A. Anwander, M. Orkisz,J.P. Roux,andI. E. M. P. Doueck.A deformablevesselmodelwith sin-gle point initialization for segmentation,quantificationandvisualizationof bloodvesseslin 3D MRA. In MICCAI’00,pages735–745,2000.

[11] M. Kass,A. Witkin, and D. Terzopoulos. Snakes:activecontourmodels. InternationalJournal of ComputerVision,1(4):321–331,1988.

[12] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum,andA. Yezzi. Gradientflowsandgeometricactivecontourmod-els. In Fifth InternationalConferenceon ComputerVision,pages810–815,1995.

[13] B. B. Kimia, A. R. Tannenbaum,andS.W. Zucker. Shapes,shocks,anddeformations,I: The componentsof shapeandthereaction-diffusionspace.IJCV, 15:189–224,1995.

[14] R. Malladi, J. A. Sethian,andB. C. Vemuri. Shapemod-elling with front propagation:A level setapproach. IEEETransactionson PatternAnalysisandMachineIntelligence,17,1995.

[15] T. McInerney andD. Terzopoulos.Topologicallyadaptiblesnakes.In IEEE InternationalConferenceon ComputerVi-sion, pages840–845,1995.

[16] T. McInerney and D. Terzopoulos. Deformablemodelsinmedicalimagesanalysis:asurvey. MedicalImageAnalysis,1(2):91–108,1996.

[17] S. OsherandJ. A. Sethian.Frontspropagatingwith curva-turedependentspeed:AlgorithmsbasedonHamilton-Jacobi

formulations.Journal of ComputationalPhysics, 79:12–49,1988.

[18] T. B. Sebastian,H. Tek, J.J.Crisco,S.W. Wolfe, andB. B.Kimia. Segmentationof carpalbonesfrom 3d CT imagesusing skeletallycoupleddeformablemodels. In MICCAI,pages1184–1194,1998.

[19] J. A. Sethian. Level SetMethods. CambridgeUniversityPress,New York, 1996.

[20] J. Shah. A commonframework for curve evolution, seg-mentationandanisotropicdiffusion. In IEEEConferenceonComputerVisionandPatternRecognition, 1996.

[21] K. Siddiqi,A. Tannenbaum,andS.Zucker. Areaandlengthminimizing flows for imagesegmentation.IEEE Trans.Im-ageProcessing, 7:433–444,1998.

[22] H. Tek andB. B. Kimia. Imagesegmentationby reaction-diffusion bubbles. In IEEE International ConferenceonComputerVision, pages156–162,1995.

[23] R. Whitaker. Algorithmsfor implicit deformablemodels.InICCV95, pages822–827,1995.

[24] O. Wink, W. Niessen,and M. A. Viergever. Fast delina-tion andvisualizationof vesselsin 3-D angiographicimages.IEEETrans.on MedicalImaging, 19:337–345,2000.

[25] C. Xu and J. Prince. Snakes,shapes,and gradientvectorflow. IEEETrans.ImageProc, pages359–369,1998.

[26] S. C. Zhu andA. L. Yuille. Region competition:UnifyingSnakes,Regiongrowing,andBayes/MDLfor multibandIm-ageSegmentation.PAMI, 18(9):884–900,1996.