VCSEL Vertical Cavity Surface-Emitting Laser

30
VCSEL VCSEL Vertical Cavity Surface- Vertical Cavity Surface- Emitting Laser Emitting Laser Docente: Mauro Mosca Docente: Mauro Mosca (www.dieet.unipa.it/tfl) (www.dieet.unipa.it/tfl) Ricevimento: alla fine della lezione o per appuntamento Università di Palermo – Scuola Politecnica - DEIM A.A. 2015-16 A.A. 2015-16

description

VCSEL Vertical Cavity Surface-Emitting Laser. Docente: Mauro Mosca (www.dieet.unipa.it/tfl). A.A. 2013-14. Ricevimento: alla fine della lezione o per appuntamento. Università di Palermo – Facoltà di Ingegneria (DEIM). Edge-emitting e surface-emitting laser. - PowerPoint PPT Presentation

Transcript of VCSEL Vertical Cavity Surface-Emitting Laser

Page 1: VCSEL Vertical Cavity Surface-Emitting Laser

VCSELVCSELVertical Cavity Surface-Emitting LaserVertical Cavity Surface-Emitting Laser

Docente: Mauro MoscaDocente: Mauro Mosca

(www.dieet.unipa.it/tfl)(www.dieet.unipa.it/tfl)

Ricevimento: alla fine della lezione o per appuntamento

Università di Palermo – Scuola Politecnica - DEIM

A.A. 2015-16A.A. 2015-16

Page 2: VCSEL Vertical Cavity Surface-Emitting Laser

Edge-emittingEdge-emitting e e surface-emittingsurface-emitting laser laser

- Applications: local area networks, color displays, bio-sensing, printing applications (using VCSEL arrays would increase printing throughput) and optical data storage

- Advantage over edge emitting LDs: micrometric size, that allows larger devices density on substrates

- No additional technology steps for the realization of good reflective facets (for edge emitting LDs: chemical assisted ion beam etching, cleaving focused ion beam polishing or wet chemical polishing)

- Circularly shaped, low numerical aperture beam (ideal sources for fiber coupling and free space optics), single longitudinal mode operation (due to a cavity length of the order of one λ), low power dissipation and significantly lower operating currents

Page 3: VCSEL Vertical Cavity Surface-Emitting Laser

Struttura di una cavità VCSEL planareStruttura di una cavità VCSEL planare

/2n

Only a few single longitudinal modes are supported by a VCSEL cavity

The emission wavelength is not determined anymore by the maximum gain of the active material but rather by the geometry of the cavity. Thus, VCSELs can lase only if the QW emission wavelength approximately coincides with the cavity mode

Lasing in a VCSEL critically depends on the reflectivity of both the top and bottom mirrors.

99%

epitaxially grownor dielectric

tipically /n

Page 4: VCSEL Vertical Cavity Surface-Emitting Laser

Condizione di soglia (threshold)Condizione di soglia (threshold)

- The lasing condition in a laser is reached when the amplitude of the optical field is maintained after a round trip in the cavity

- This condition is reached when the optical gain in the cavity is sufficient to compensate all the losses the field experiences in the cavity during a round trip

INTERNAL LOSSES EXTERNAL LOSSES

absorption scattering diffraction mirror reflectivity

threshold modal gain threshold material gain

The confinement factors (Γxy and Γz) accounts for the volume actually occupied by photons in the cavity, that is usually larger than the active region volume

standing wave enhancement factor

= 1 in edge-emitting laser

z is subject to an enhancement dependent on the position of the active region into the cavity

Page 5: VCSEL Vertical Cavity Surface-Emitting Laser

Distribuzione di campo Distribuzione di campo longitudinale dentro la cavitàlongitudinale dentro la cavità

enh = 2EZ

z

= 0 actactQWsactQWsact

ll

dzl

dzE

E

l

222

12

0

2

0

Page 6: VCSEL Vertical Cavity Surface-Emitting Laser

Guadagno e corrente di soglia in Guadagno e corrente di soglia in funzione della riflettivitàfunzione della riflettività

The semiconductor material becomes “transparent” (material transparency) when the rate of absorption just equals the rate of stimulated emission.

One incident photon produces exactly one photon in the output

The transparency current density is defined as the minimal current densityfor which the material becomes transparent for any photon energy largerthan or equal to Eg,qw

gain parameter per quantum-wellsnumber of quantum-wells

transparency current

The gain upon transparency is g = 0 (Jth = Jtr , for NQW = 1)

Page 7: VCSEL Vertical Cavity Surface-Emitting Laser

Guadagno e corrente di soglia in Guadagno e corrente di soglia in funzione della riflettività (InGaAs QW)funzione della riflettività (InGaAs QW)

Page 8: VCSEL Vertical Cavity Surface-Emitting Laser

Guadagno e corrente di soglia in Guadagno e corrente di soglia in funzione della riflettività (InGaAs QW)funzione della riflettività (InGaAs QW)

R

g th1

ln

a large number of QWs decreasesgth, since lact increases

very high R with a single QW we havethe lowest Jth becauseit requires the smallest currentdensity to be pumped to thetransparency

lower R gth is higher and it is still higherfor only one QWJth will be lower with 3 QWsthan one

Page 9: VCSEL Vertical Cavity Surface-Emitting Laser

Guadagno e corrente di soglia in Guadagno e corrente di soglia in funzione della riflettività (GaN QW)funzione della riflettività (GaN QW)

Page 10: VCSEL Vertical Cavity Surface-Emitting Laser

Guadagno e corrente di soglia in Guadagno e corrente di soglia in funzione della riflettività (GaN QW)funzione della riflettività (GaN QW)

Page 11: VCSEL Vertical Cavity Surface-Emitting Laser

DBR (Distributed Bragg Reflectors)DBR (Distributed Bragg Reflectors)normal incidence

++

the two contributions sum in phase at the design wavelength λ0

a mirror with a wide stop-band ensures a higher tolerance with respect to emission wavelength variations

Page 12: VCSEL Vertical Cavity Surface-Emitting Laser

DBR: lunghezza efficace della cavitàDBR: lunghezza efficace della cavità

The penetration of the optical mode into the DBR stack has to be taken into account, as it defines the effective cavity length and, subsequently, the wavelength of the lasing mode

The penetration depth leff of the DBR is defined as the depth into the

mirror, at which the optical field intensity is equal to 1/e of its value at the input of the mirror

Page 13: VCSEL Vertical Cavity Surface-Emitting Laser

DBR: effetti delle perdite per assorbimentoDBR: effetti delle perdite per assorbimento

reflectivity ofan m-pair DBR

absorptioncoefficientof the DBR

high n helps to reduce the absorption losses of the mirrors

low n and high DBR

and 0 for longwavelength VCSEL

Page 14: VCSEL Vertical Cavity Surface-Emitting Laser

Effetto interfacce gradualiEffetto interfacce graduali

- Interfaces not abrupt!

- The material composition islinearly graded over a distanceof some tens of nm in orded toreduce the electrical resistanceacross the interface

Page 15: VCSEL Vertical Cavity Surface-Emitting Laser

Resistenza degli specchiResistenza degli specchi

heating

Page 16: VCSEL Vertical Cavity Surface-Emitting Laser

Resistenza degli specchiResistenza degli specchi

doping

fabricationtechnology

simpler

barrier for holes(high R)p-doped

Page 17: VCSEL Vertical Cavity Surface-Emitting Laser

Specchi gradualiSpecchi graduali

valenceband

Page 18: VCSEL Vertical Cavity Surface-Emitting Laser

Efficienza differenzialeEfficienza differenziale

fattore di normalizzazione1.

2.

mirror losses

total losses

3.

MECHANISMS THAT REDUCE d :

Page 19: VCSEL Vertical Cavity Surface-Emitting Laser

Efficienza differenzialeEfficienza differenziale

depends on cavity design

depends on mirror design

Page 20: VCSEL Vertical Cavity Surface-Emitting Laser

Wall-plug efficiencyWall-plug efficiency

top mirror: 19 periods

thermal roll-over

Page 21: VCSEL Vertical Cavity Surface-Emitting Laser

Wall-plug efficiencyWall-plug efficiency

W

Inoltre… se la riflettività diminuisce troppo,aumenta la corrente di soglia!!!

Page 22: VCSEL Vertical Cavity Surface-Emitting Laser

Confinamento lateraleConfinamento laterale

Injections schemes for GaAs-based VCSELs: - conductive DBRs with and without current confinement layers;- annular intra-cavity contacts in combination with one or two current confinement layers

sacrificial layer

Page 23: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale dell’AlAsOssidazione laterale dell’AlAs

.

Page 24: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale dell’AlAsOssidazione laterale dell’AlAs

W

?

TEnergia libera di Gibbs a 698 K

< 0, vuol dire che la reazione è spontanea nella direzione indicata

With GaAs (instead of AlAs): G > 0!!

Page 25: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale dell’AlAsOssidazione laterale dell’AlAs

Controlled Evaporated and Mixing systemprocesso lineare… ma diventa dipendente dalla radicequadrata

i gas reagenti penetrano difficilmenteattraverso l’ossido(per alti spessori dello stesso ossido)

Page 26: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale dell’AlGaAsOssidazione laterale dell’AlGaAs

Page 27: VCSEL Vertical Cavity Surface-Emitting Laser

Fabbricazione di un VCSEL con Fabbricazione di un VCSEL con ossidazione lateraleossidazione laterale

Page 28: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale in VCSEL a nitruriOssidazione laterale in VCSEL a nitruri

Page 29: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale in VCSEL a nitruriOssidazione laterale in VCSEL a nitruri

Page 30: VCSEL Vertical Cavity Surface-Emitting Laser

Ossidazione laterale in VCSEL a nitruriOssidazione laterale in VCSEL a nitruri