Variations in aerologically derived Arctic precipitation › annals › 21 ›...

6
Allnals oJ Glaciology 21 1995 o Int e rn a ti ona l Glac iolog ica l Society Variations in aerologically derived Arctic precipitation and snowfall MARK C. SERREZE, MARK C. REHD ER , R OGER G. BARRY , Cooperati ve i nstitut e J or Resear ch in En v ironmental Scien ces , Cll il 'ersil)' of Colo rado. Boulde r, CO 80309 , C.S . ..1. J OHN E. WAL SH, D e/Jar/men/ I!!' Almospheric Sciences, Cnlz'ersil)' (if f/lillois L'rbana-ChamjJaign , Urbana. lL 61801, C.S ,: 1. D A\ ' LD A. ROBI NS ON De jJartm e nt oJGe ograjJhjl , R lItgers Cni v ersit ), ,\ 'nc Bnlmu' ick .. \J 08903, c.s .. /. ABSTRACT , D ata from a r aw inso nd e netw ork are used to pro\ 'ide ae rolog ica l estimates of mo nthl y prec ipit a ti o n minu s e\'apor at ion (P - E) ave r aged ove r the r eg io n n ort h of 70° N. Using publi shed c1imatolog ica l es timat es of E, area - a\ 'er age d P is ob tained for eac h mo nth a nd yea r as a res idu a l. Us ing s urf ace te mp er atures from th e r aw inso nd e network , the frac ti on of precipita ti on fa lling as snow is th en es tim a ted, O\ 'er the 1 974 91 stu dy period, pr ec ipit a ti on a nd snO\\'Ia ll ( wa t er e qui\ 'ale nt ) h an' a nnua l m ea ns of 26,6 a nd 19,0 cm, resp ect i\'ely, Assu min g a re prese nt ati\'e aged sno\\'p ack density of 330 kg m 3 yields a tota l sno\\' d ep th of57 .5c m. The mean a nnu al cyc les or both va riabl es dis pla y a n a utumn m ax imum , hut b eca usc of' th e tc mp era tur e d epe nd en cy , n ea rl y a ll prec ipit at io n fa ll s as rain durin g Juh' a nd Augu s l. Composite analyses re\' ea l th at incr ease d pr ec ipit a tion for a ll seasons a nd in crease d sno\\'f a ll for winter a nd a utumn a rc favored by a "\I ' int e r-t ype " c irc ul at io n p atter n, ch aracte ri zed by s tr onger trough s ove r the Atlantic a nd Eurasian sectors of the Ar ct ic , associa ted with incr eased cy cl o ni c activity ove r th e Ar cric periphera l seas. 1. INTRODUCTION "* * w b o .. * ', * I ncreasing r ecog niti on of th e im portance of th e Arctic in th e gl oba l c li m ate syste m po int s to th e n ee d fo r imprO\ 'ed as.'essments or Arct ic pr ec ipit at io n and sn ow - fa ll. Th e exist ence of th e ice cO\'er s trong ly d epe nd s on the l1l a illl ena nce of a relatively fr esh low -density s urfa cc laye r, dri ve n pr im a ril y by precipitation 0\'1"1' la nd a nd s ub se qu e nt fres h- water inOow by ri\ 'ers, but a lso by pr ecipi tation o\'e r sea -i ce and open - water ar eas , a nd s umm er m e l t ( Aagaard and Carmack, 1989 ). A sign ifi can t co ntribu tory f actor is th e high s urf ace a lb edo of th e ice cove r which, when fu ll y sn ow - cove r ed in m ay exceed 80 % ( Robin son a nd o th ers, 1 992 ), Nevel'- thcl ess, the cha ra ct eristics of Arctic pr ec ipit at io n a nd sn owfa ll are p oo rl y known , O\' er th e Arctic O cea n (Fi g. I) dir ect inf o rmati on is lar ge ly limi ted to ficldl1l eas ur e- me nt s of sn ow d ept h (e,g, RO l1l an O\ ', 1993 ), A lth ough records are a\'a ilabl e [a I' coas ta l, isla nd a nd inl a nd sta ti ons ( Vose a nd ot hers, 1 992 ), the tendency fa r co ll ec ti on ga uges to " catc h " o nl y a fraction of s now in areas wh ere w ind-d ri\ 'en sn ow is co mm on results in a bi as t owa rd s low precipitation amo unt s (W oo a nd ot h ers , 1983). As most Arctic stat ions are at low a ltitud e, the tendency [o r pr ec ipit at ion to incr ease wi th eleva tion probab ly a lso res ult s in a n und eres tim a te of ' SVALBARD,* - .::· x' - Fig. 1. Lo cation majJ s ho wing the ra winsollde slntion s ll sed ill f/i e ana()lsis (s la rs) , Res uiLs ]rOIl/ ,m 'e ral a/J/;ro\imale [J' co- locat ed slalio ll s Iw /'e bee ll co mbilled 10 /Jro vide colII/J/eLe re cords (see In I ), Th e 70". \' circle is showll ill bold. 77

Transcript of Variations in aerologically derived Arctic precipitation › annals › 21 ›...

Page 1: Variations in aerologically derived Arctic precipitation › annals › 21 › igs_annals_vol21_year1995_pg7… · areas where wind-dri\'en snow is common results in a bias towards

Allnals oJ Glaciology 21 1995 o Inte rn a tional Glac io logical Society

Variations in aerologically derived Arctic precipitation and snowfall

MARK C. SERREZE, MARK C. R EHD ER , R OGER G. BARRY ,

Cooperative institute Jor Research in Environmental Sciences , Cll il'ersil)' of Colorado. Boulder, CO 80309, C.S . ..1.

J OHN E. WALSH,

D e/Jar/men/ I!!' Almospheric Sciences, Cnlz'ersil)' (if f/l illois L'rbana-ChamjJaign , Urbana. lL 61801, C.S,: 1.

D A \ ' LD A. ROBI NSON

DejJartment oJGeograjJhjl, RlItgers Cniversit), ,\ 'nc Bnlmu'ick . . \J 08903, c.s .. /.

ABSTRACT, D ata from a rawinsonde ne twork a re used to pro\'id e ae ro logica l estimates of monthl y precipita ti on minus e\'a porat ion (P - E ) averaged ove r the regio n north of 70° N. Using published c1imatological es timates of E , area -a\ 'eraged P is ob ta ined fo r each month a nd yea r as a residu a l. Using surface temperatures from th e rawinsonde network , th e fra c ti on of prec ipit a ti on fa lling as snow is th en estim a ted, O\'er the 1974 9 1 stud y period, prec ipita ti on a nd snO\\'Ia ll (wa ter equi\'a lent ) han' a nnual means of 26 ,6 a nd 19 ,0 cm , res pect i\'ely, Assu ming a represent a ti\ 'e aged sno\\'p ack d ensity of 330 kg m 3 yields a tota l sno\\' d ep th of57 .5cm . The mean a nnu a l cycles or both va riabl es di splay a n a utumn maximum , hut becausc of' th e tcmpera ture d epend ency, nearl y a ll precipitat io n fa ll s as ra in during Juh' a nd Augusl. Composite a na lyses re\'ea l th a t increased precipita tion for a ll seasons a nd in creased sno\\'fa ll for winter a nd a utumn a rc favored by a "\I'inte r-type" circul at io n pattern, characte rized by stronger troughs over the Atlantic a nd Eurasian sec tors of the Arctic , associa ted with inc reased cyclo ni c activity ove r th e Arcr ic periphera l seas .

1. INTRODUCTION

"* *

w b o

.. *

,~~

', * I ncreasing recogniti o n of th e im portance of th e Arctic in th e g loba l c li m ate syste m po ints to th e need fo r

imprO\'ed as.'essments o r Arctic prec ipitat ion and snow­

fa ll. The existence of th e ice cO\'er strongly d epends on the l1l a illlena nce of a rela tively fresh low-density surfacc laye r, dri ve n prim a ril y by precipitation 0\'1"1' la nd a nd subsequent fres h-water inOow b y ri\'e rs, but a lso by

prec ipi tation o\'e r sea-ice and open-water a reas , a nd

summ e r m e l t (Aagaard and Carmack, 1989 ) . A sign ifican t contribu tor y factor is th e hig h surface a lbedo of th e ice cove r which, w hen fu ll y snow-cove red in ~ l ay,

may exceed 80 % (Robinson a nd o th ers, 1992 ) , Nevel'­thcless , the cha racte rist ics of Arctic prec ipitat io n a nd snowfa ll a re poo rl y known , O\'e r th e Arctic O cean (Fig .

I) direc t informatio n is la rgely limi ted to ficldl1l easure­

ments of snow d epth (e ,g , R Ol1l a n O\', 1993 ) , A ltho ug h records a re a\'ailabl e [a I' coas ta l, isla nd a nd inl a nd sta ti ons (Vose a nd ot hers, 1992 ), the tendency fa r co ll ec ti on ga uges to " catch" o nl y a fraction of snow in

areas wh ere w ind-d ri\'en snow is commo n res u lts in a

bi as towa rds low precipitation a mounts (W oo a nd

others, 1983 ) . As most Arctic statio ns a re a t low a ltitud e, the tendency [o r prec ipitat ion to inc rease wi th eleva tio n probably a lso results in a n und eres tima te of

' SVALBARD,* ~""

- .::·x'-

Fig. 1. Location majJ showing the rawinsollde slntions llsed ill f/i e ana()lsis (s lars) , ResuiLs ]rOIl/ ,m 'eral a/J/;ro\imale[J' co-located slaliolls Iw /'e beell combilled 10 /Jro vide colII/J/eLe records (see In I ) , The 70". \ ' circle is showll ill bold.

77

Page 2: Variations in aerologically derived Arctic precipitation › annals › 21 › igs_annals_vol21_year1995_pg7… · areas where wind-dri\'en snow is common results in a bias towards

Sl'rre;.e alld others: , lerologic(f16' deril'ed ,"Irclit /Jrecij)i/a/ioll alld snowfall

reg iona l a \ 'C rages, These problems a re rev iewed by G ro isman and others ( 199 1) ,

R ece ntl y, \\'e h<1\'e begun to address some of th ese

concerns through prO\'iding a rea l estimates of precipita­ti on minus e\'a poration (P - E ) \·ia the water-\'a por nux cO Il\T rge nce approach (Alesta lo, 1983 ), using a n exten­sive ra win so nd c a rchi ve, P - E represe nts th e net fiTshening or sa lina ti on of th e ocean throug h surface

exchanges with th e a tmosphere, a nd th e net ga in or loss of

\\'ater by the land surface throug h exc hanges \\'jth the atmosphere. Serre~e and ot hers (in press ) used raw­insond e data for 1974 91 to determine climaLOlogical P - E fo r the region no rth of 70" N, P - E is positi\ 'C in a ll months. peaking in Septem ber . The an nu a l \'alue o[

16 .3 cm is 36% hi g her tha n the es timate o f' Peixoto a nd

Oon ( 1992 ) based on earli er d a ta . In a subsequent srud )" \\' a lsh a nd oth ers ( 1994,) examined inter-a nnu a l \'a ri a­ti o ns in P - E fo r a sma ll er centra l Arctic Ocean domain a nd th e rvl ac kenzie Ri ve r bas in.

H ere, \\T extend th esc studi cs and use published c1imatologica l est im a tes o f' E to ob tain P as a residu a l O\'C r the regio n no rth o f 700 N for eac h month a nd yea r fr o m 19 74 to 199 1. Us in g a lin ea r temperature adjustment (R oss a nd \\'alsh , 1987 ), wc then es tima te th e [raetion or P represented by snow (S ), with in te r­a nnu a l \'ari at ions in P and S diagnosed in terms of

circul a ti on, Com pa risons a re m ad e with prec ipita ti on

\'a lu es redi g iti zed fo r th e sa m e d o m a in from the G orshk O\' ( 1983 ) a tlas, based o n SO\·ie t data up to

1980; the i\l aykut a nd U n te rstein er ( 197 1) snowfa ll climat ology; and th e April snow-d epth maps prO\'id ed Iw R omano\' ( 1993 ), based on Russ ia n expedi li ons a nd

field programs in the 1970s a nd 1980s . The choice of the

70" l\ circle for the P - E computatio ns reflects th e rel a ti vely dense slation net\\ 'o rk nea r thi s la titud e (Fig . I ) , as well as the desire [or consistenc y with previous \I'ork, Objecti\ 'e a na lyses produced by Ilumel-ical weath­er ce nters may e \'Cntual ly be a ble to provide accurate

Arctic preci pi ta tion data se ts (Chahine, 1992 ), a nd

planned "reanalys is" p roj ec ts will a ll ow the fi e lds to be used more effec tively in \'a po r-flu x co mputa ti o ns. :'-I c\'e rth cless , at present. anal ysis of rawinso nd e d a ta is s till th e bes t app roac h [or assess in g a tm osp her ic hyd rolog ica l \'a ri a ti ons,

2. DATA AND TECHNIQUES

a. Rawinsonde archive

Our primary data base is the hi stori ca l Arctic rawinsond e

arc hi\'e (HARA ) (K a hl and o th ers, 1992 ), which contain s a ll <1\'a il ab le soundings for fixed sta ti ons north o[ 65° 1'\ th rough 199 1. Sou nd i ngs typi call y ex tend to at leas t 300 lllbar and conta in reports at fi xed m a nd a tory pressu re le\'e ls (e ,g , su rrace, 850 a nd 500 m bar ) a nd

sig nifi cant le\'Cl s (irreg ul a r pressure 1C\'els report ed on the basis of conventi ona l vert ica l- cha nge criteri a ), Unfortu ­nately, the number or sign ifi cant le\'e ls reported [or Eurasia n sta ti ons is redu ced prior to 1974, As th e la ck of sig nifi ca nt le\'e!s ma y degrade th e acc uracy o f th e

moisture calc ul a ti ons, we use d a ta fo r th e 1974 9 1

peri od on ly, al both 0000 a nd 1200 U T G.

78

h. Estimation of P - E

Qu a lit y control and d a ta reducti on foll ow Serreze and

others (in pre s), In th a t stud y, fo r eac h sta ti on a nd year rep resented in the HARA, monthl y mea ns were compil ed o[ the \'eniea ll y integra ted specifi c humidity (Q , usuall y termed precipitable water ) a nd meridi ona l vapo r nu x (F ) from the surface to 300 mba r, a bove which we ass um e water va por to be negligibl e, The mean sta ti on flux es

\\'e re then pas cd into a C ressma n ( 1959) a na lys is to interpol a te th e data to 70° N at eve ry 100 o[ longi tude, Th e \ 'ap or-flu x con\'e rge nee [or eac h month was determin ed as

(1)

whcre FL is th e interpo lated flu x a t a give n longitud e, de is the leng th a long th e 70° N lati tude ci rel e (totaling 1, 37 x 10"' km ), and A is the a rea enclosed ( 15.4 x 106

2 km ). Following Ales ta lo (1983 ), th e flu x conve rgence \\'as then used to estimate monthl y P - E [or th e regio n no rth of 70° N as

P - E = - \7' FL - aQ/at (2)

where 8Q/ 8t is the mo nthl y rate of cha nge ofprecipitablc

wa ter in the domain, This ap proach ignores the con­tributi on of cond ensed wa ter (as eith er ice crysta ls or drop lets), wh ich, es pecia lly for the Arctic , sho uld bc negligible .

Serreze a nd others ( 1994) ignored cha nges in th e

di stribution of sta tions; a ny individu a l stati on mean was

passed in to the interpolation procedure, provid ed that it was represen ted by a required minimum number of cases, R esults for the 18 yea rs ( 1974-9 1) we re th en ave raged, \\' a lsh and o th ers (1994) find th a t minor cha nges in th e stati on network have littl e impac t on ana lysis of inter­

annua l varia ti o ns in P - E. Ne\'erthel ess, to prov ide a

homogeneous data base, we first examined th e monthl y mea ns for each station a nd yea r. rf th ese fa il ed to pass the thres hold requirement for the number o[ cases, th ey were treated as miss ing, with new monthl y means then found by Cressman interpolation from surrounding station

means, This re ulted in complete time seri es for a ll

stations. P - E was then d etermined using mon thl y means on ly from those stat ions requiring interpolation from surro unding sta ti ons for less tha n 30 o r the possible 2 16 mon ths in th e 18 yea r d a ta reco rd (13.8 % ) . Followi ng Serreze a nd othe rs (in press), 8Q/ 8t for each month (m ) \I'as fo und from the difference in Q a\'eraged o\,e r month

(m ) a nd (m + 1), m i n us the average ove r mon th (m ) a nd (m - 1), using o nl v those statio ns no rth of 70o N, Th e fin a l network of 47 selec ted sta ti ons is shown in Fig ure I. Pa rti a l reco rds for se\'eral nearl y co-loca ted sta ti ons ha\'e been combined.

c. Estimation of precipitation and snowfall

The Kor~ un ( 1977 ) a tl as contains clim ato logieal month ly es tim a tes of E [or different regions of the Arcti c, based on

coas ta l and drifting sta ti ons. Using these data, c limato­

logica l monthl y E was obta in ed for th e region north of

Page 3: Variations in aerologically derived Arctic precipitation › annals › 21 › igs_annals_vol21_year1995_pg7… · areas where wind-dri\'en snow is common results in a bias towards

SelTe;:.e alld others : Aerological£l' deril 'ed ""irctie jJrecipitatiol/ and sl/o1(:/all

70° ;\. Th e mo nthl y tota ls, which ra nge from 0.30 cm in Janu a ry to 2.05 cm in O ctober (w ith a n annual total of

10. 3 cm ), were th en 'ubstituted into the P - E es tima tes

to obta in P for each month and year. P is hence onl y

so h-ed in terms ora climato log ica l seasona l cycle in E; o ur res ulting P \ 'alues will still conta in some unresoh'ed co mpo nent of E re la ted to its iI1le r- an nu a l \·a ri ab ility. I f' d irect measuremen ts of P a nd E re\'ea led th at the two

va ri a bles a re negati\ 'e ly (positively) co rrela ted, substitu­

tion of c1 im a tologica l E into our P - E \ 'a lu es \I'o uld ac t

to o\'e res tim a te (underestimate ) th e true inte r-annu a l \'ariabilit ), in P . Although a n ilwerse relationship see ms more like ly (i. e ., with hi g h P one migh t ex pec t a smaller vapor g radi ent , lead ing to a reduc ti on in E ). the strong

addit iona l dep end ence orE on th e g rad ient in wind speed

ma kes thi s diffi cult to assess . Altho ug h it m ay hm'e been poss ibl e to use th e rawinsond e network to prO\' id e time se ri es of E. we made no a ttempt to d o so here.

Following R oss a nd Walsh ( 1987 ), th e fraction of prec ipitat ion fall ing as snow was ass umed to \'a ry li nearly from 100% fo r a n a ir temperature <-5 ue to 0% fo r 3"e.

The temperature (T ) d a ta consisted of the aggregate

monthl y means for eac h yea r of the lowes t reported tempera ture leve l in th e soundings, using a ll stat ions north o f 70° N. Clea rl y, thi s approac h a lso has limiwl.i ons. Alth o ug h during th e cold season it is reasona bl e to expect

nea r ly a ll precipitation O\'er th e Arcti c basin lo fall as

snow, the inland a nd coastal di str ibution of th e sta ti o ns

may res ult in bas in-\\'ide temperatures be ing somewhat ove res tim a ted , potentially leadin g to underes tim a tes o f snowfa ll during summer a nd th e tra nsition months. Furth erm o re, as th e tempera ture o n "precipitat io n

da ys" during summer is likely to be lower th a n th e

m ean mon thl y temperature. this \I·ill a lso ac t to und er­

es tim ate snowfall. It should be clea r that we a r e prO\' iding first-order est imates of P an d S.

3. RESULTS

a. Long-terltl Itleans

Averaged O\'er th e 18 years, a nnu a l P - E . P a nd S, a ll exp ressed in term s of water eq ui va lent (w.e. ). a\'e raged

O\'e r th e 70 90° N region, a re 16 .3, 26 .6 a nd 19.0 cm .

respec ti ve ly. Th e P - E e ·tim a te is id enti ca l to tha t of' Serreze and o th ers (in press ) . By compar ison. a nnual P from th e Gorshkov ( 1983 ) atlas is sli g htl ), hi g her at 29 .3 cm. Using th e same mean sno\\'pack d ensity of 330 kg m 3 e mpl oyed by i\ I ay kut a nd lintel'ste in e r

( 197 1), which acco ulHs fo r se tt li ng a nd aging of th e

acc umula ted snowpack (typica l fresh sno\lfa ll dens iti es a re 70- l 65 kg m- 3

; see G ood iso n a nd ?\le tca lfe, 198 1). th e w.e. sno wfa ll equ ates to a n acc umula ted snow depth of 57.9cm. Th e .\Iaykut a nd U nte rsteinc r ( 197 1) c lim ato l­ogy, wh ich is used as th e basis for snow-cove r input in

most current sea-ice modcls, has a n acc umul a ted a nnua l

snow d epth of 40 .0 cm . As that es tim a te is representative of' th e sea-ice-cove red regio ns of the Arctic, and ours includes oceani c regions O\'er th e Atla nti c sid e of the Arctic where precipitatio n a ppears to be compa ra tively high (Gorshkov, 1983 ), thi s diffe rence is not surprising .

Fig ure 2 prO\'ides th e seasona l cycles in P. Sand T.

____ Temoeroture

Prec itction

Snowfa ll! .... · . e. \: 1 C

'-' '0 .. o C

III I

I

I

\ ~-'O ~ ',~ ~

'C C o ... .. " .. -.. -c 2

.9 I \-0 -20 S

:§ "- --- - -_._---- .. ; . .-,

:~ 1 " ~

.t

A Mont h

A

I

I

o

3

N

Fig. 2. Sea.lOl/al (}fIe oJ 1II1'{1I1 aerulogical!)' deril'ed /JlecijJitatioll (Clll ) . snol(j'all (1' 111 lI' .e.) al/d tellljJeratllre (" c,).

From October th ro ugh .\l ay, P and S a rc id ent ica l. re ll ect ing the mean tcmperalUrcs < .1 C. By eontras!. essenti a ll y a ll prec ipita ti on 1 ~t1l s as ra in dlll'ing Jul y and . \ ugust. Both \'a ri ab les sho\l' a Septem bel' :\ o\'('m bel'

max imum . .\ Ion thl ), precipitation f'rom th e GOl'shko\'

( 1983 ) at las is 2.2 cm in J anuan·. 1. 6 Clll in .\ priJ. 3.8 cm in .-\ug ust and 2.0 cm in D ecember. GOl'shkOl'\ \'a lu es are hence somewhat hi g hcr during \I-inte r months \I'ith a

some\I'ha t lower maximum occ urring ea rli er in th e yea r.

J\l a\'ku t and Lntersteiner ( 197 1) shc)\\- a la te Augus t

October s no\\l ~lll maximum. Th eir maximu m mont hl \'

sno\l-[all \I-.e . 0 1'-1-. 3 cm is reasonably close to o ur October max imum of' 3.8 cm. Rom<l nOl"s (1993 1 a\'(' rage ccntra l Arcti c snO\l- d epth of 20 CI11 for .\pril is o lll y one-third of' th e den sity- a dju sted accumu lat ed September .\ p ril

snowfa ll (i'om Fig ure 2. Aga in , g i\ 'en ou r large r domaill,

thi s is not surprising.

h. Inter-annual variations

Fig ures 3 a nd 4 di spl av th e tim e se ri es or P a nd Sas ha r

plots. For eac h ~ '('a r. th e tota l length of the bar represents

the a nnua l total. \I 'hil e li'om bottom to top th e indi\ 'idu a l ba r segments represe nt th e contributions li'om Wll1t('l' J anuarv .\I arc h . spnng April Junc ). summer Jul y

30 f- - - -r- --r- r-_-_-

r-r- r--

r- -25 r-

I---

E r-r-~ 20 - I-- I-- r- ~

I-- I-- - - - - r- r-c g .3 '5 :§. I--u ;-

" - I-- I-- f-- f-- r- r- r- r-r- r- I--a: 10

5

o

I-- I--I-- r- r-

-f-- I-- f-- f-- I-- f-- r- r- I-- f-- I--

f--f-- I-- r- I-- i--

74 75 76 77 7B 79 80 B1 82 B3 B4 B5 B6 B7 BB B9 90 91 Year

Fig . 3 . . "ll1l1l1al alld seasonal tilllP serie.) of aerological[J' deril'ed /)),eCljJitatioll (1'111 ) . Frolll bottolll to to/). the indil'idual bar .)egllll'llt.) Jor each )'ear re/J/"fJ mt It'illter . sprillg, .)Ullllller alld alltllmll. res/Jeclil'e~) ' . The long-teoll .I er/sonal means are: willter ( -1.1 cm): sjJrillg (5.-IclII ) : .llIl1lmer (8.8 Cl 11 ) : alltllmn (8.3 CI/I) .

79

Page 4: Variations in aerologically derived Arctic precipitation › annals › 21 › igs_annals_vol21_year1995_pg7… · areas where wind-dri\'en snow is common results in a bias towards

Serre<.e and oLhers: Aerologicall), derived Arctic tHeeil)itatioll and snow/aIL

30 c- l ., ., 1 ...., ., e 25

u

-.; 20

15 o

=---- --r-r-,--r-- j r-r-- - r-nr- i-r- ' -- - -'i

o - -r- f--r- r- r- c- '- r- r-r- r- - - - r- r-.;i 10

5

o

- -- r- r- f--- - r- - - r--

-c- r- f-- - - - e- r- - ~ r- r-

r- r- - - f--

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 Yeor

Fig. 4. Annual and seasonal time series 0/ aerologicaLl), derived snow/all ( cm w.e.) . From bollom to tal), Lhe individual bar segments for each )'ear rejJresent winter, sllring, slimmer and autumn , respectivea,. The long-term seasonal mealls are: will/er (4.1 cm ) ; spring (3.9 cm) ; summer (2.6cm ) : autumn (8.3cm ) .

September) a nd a utumn (O cto ber- Dece mber). These d efiniti o ns fac ilita te e,·a lu a ti on o f seasona l contributions

of P a nd S lo tota ls for sta nd a rd calenda r yea rs. Fo r

a nnu a l to ta ls, P ra nges by 7.8cm from 22 .8cm in 19 78 to 30. 6cm in 198 1, with a nea rl y equ a ll y hig h value in 1989 (30. 3 cm ). Th e co rres ponding extremes ofP - E a re 12.5 ( 1978 ) a nd 20 .3cm ( 198 / ) . H ence, inter-a nnu a l , ·a ri a ­

bility in P, while substa nti a l, is no t o utsta ndingly la rge, as

is e, ·iden t fro m th e fa i rI y small coe fTi cien t of de\' ia ti on (th e

sta nda rd d ev ia ti on di,·id ed by th e mean ) o f 0 .11 . There is some sugges ti on of a multi- year cycle in P , with hi g her valu es in th e mid-1 970s a nd th e ea rl y a nd la te 1980s, whi ch need s to be tes ted with Cl longer reco rd.

P fo r winte r, spring a nd summer is more , ·a ri a ble,

w·ith coeffi cien ts of d eviat ion of 0 .1 4, 0 .1 7 a nd 0.16,

respec ti ve ly, as com pared to 0 .08 fo r autumn. \lVhil e we re itera te th a t o ur reconstruc ted P , ·a lues will conta in som e error due to th e use o f clim a tologica l E , ra nking th e res ults fo r each season reveals th a t th e fa irl y m od es t

va ri a bility in a nnu a l P results from a tendency in ma ny

yea rs fo r a rela ti ve ly la rge P in one season to be o ffse t by

rela ti, ·ely sm a ll P in a no th er. For example, whil e th e hi g h P in spring 19 77 (6 .9 cm , second hi ghes t ) ac ted to o ffse t low P in winter (2 .9 cm., lowes t ), th e la rge va lu e in th e a utumn of 199 1 (9 .2 cm , second hi ghest) was simila rl y

offse t by a sma ll P in winte r (3.5 cm , third lowest) . On

this basis, 1981 a nd 1989 a re un usua l in th a t each yea r

was represented b y P wh.ich fo r three seasons ra nked a m ong th e fiv e hi ghes t. By contras t, 1978 is unusua l in showin g sm a ll P fo r three seasons. Tu rn ing to snowfa ll w .e., 1986 has th e hi ghes t a nnu a l tota l (2 1.0 cm ) a nd

1990 the lowest (17.4cm ). The , ·a ria bility in a nnu a l

snowfa ll is less th a n fo r prec ipita ti on , as is e, ·ident by th e

sma ll e r coeffi cient of d evia ti on (0.09) , but is aga in large r for indi,·idu a l seasons, especia ll y fo r summer (0. 25 ) .

c. Circulation controls

T o p lace prec ipita ti o n vari a ti o ns in th e co ntext of a tmos pheri c c ircul a ti on , we identifi ed fo r each season the three years with th e hig hes t a nd lowes t P . Composite

80

means of 500 mba r height were th en construc ted fo r eac h

three-seaso n sub-se t, using twi ce-d a ily U.S . Na ti ona l ~re teo ro logi ca l Cen te r (NM C ) data in th e octagona l g rid form a t. Fig ure 5 shows fi elds of th e hig h-precipita ­ti on com posi te a nd th e hig h- min us low-precipi ta ti on composite difference fo r winter. Th e m os t no ta ble fea ture

is th e large nega ti ve composite differences extending from

south of I celand into th e central Arc ti c O cean (i. e. lower

heig hts fo r th e high composite), maximized near the North P ole a nd I cela nd . R es ults for th e o th e r seasons (no t shown ) a rc qua li ta ti ve ly simil a r, but with th e nega ti ve differen ces fo r spring no t ex tending to I cela nd. As th e

high a ncl low compos ite fi e lds for a ll seasons ex hibit

essenti a ll y o pposing a noma ly pa tte rn s, th e diffe rence fi eld s a re no t d omina ted by a nomali es in one composite o r th e o th er. R esults using 850 mba r height a nd sea-level pressure (SLP) a re simil a r.

Fig. 5. vVillter mean 500 mbor geoj)olential height field ( m) JOI the high-precipitation composite (solid contours) and the high minus low comjJosite height difJerence (dashed-doL and dol/ed contollrs Ja r negative and posiLive difJerences, respectively) . Positive differences mean higher 500 mbar heights /or Ihe high-I)recij)it{l tio ll com/Josile.

The long-te rm (1974- 91 ) m ea n winter 500 mba r

pa ttern is d omin a ted b y a pronounced trou gh ex tending from south of G ree nl a nd into Ba flin Bay (th e north ern extension of th e eas tern Nonh Ameri can tro ugh ), a n inte rvenin g weak rid ge over north ern Europe, a stro ng

trough over Eurasia (th e northern ex tension of th e E as t

Asia n trou gh ), a nd a strong ridge ove r weste rn C a nad a

a nd Alas ka (th e northe rn ex tension of th e wes tern North Ameri can rid ge ). The summer mean a lso con ta ins th ese fea tures, but with a weaker a nd more zona l circula ti on. In showing stro nger tro ughs ove r th e Atl a nti c a nd

Eurasian sec to rs for th e hi g h composites, Fig ure 5

suggests th a t hi g h winte r P is fa vored by amp li fi ca ti on of th e c1ima tologica l circula ti on patte rn a nd , from the si m i lari ty of th e com pos i te d i fTe rences, a m ore "win te r-

Page 5: Variations in aerologically derived Arctic precipitation › annals › 21 › igs_annals_vol21_year1995_pg7… · areas where wind-dri\'en snow is common results in a bias towards

Serrn:e and others: Aer%gical(y derived .,Iretic precipitation and sllolLfall

type" circul a tion in th e o th er seasons, a nd \'ice ve rsa fo r

low p, Sn owfa ll ex trem es for winter and autumn occ ur

fo r th e sam e yea rs as th e prec ipita ti on extrem es, but thi s is

no t true o f spring a nd summer, refl ec tin g th e tempera ture eITec L For exa mple , whi le SLImm er prec ipita tion in 1986 was th e 10 \l'es t o f th e 18 yea rs (6 ,5 cm ), th e season ac ru a ll y

had th e fo urth hig hes t snowfa ll tota l (3 , I cm w, e ,) du e to

low summ er tempera tures ,

In terms of associated sy nopti c acti\'ity, Serreze a nd othe rs (1993 ) show th a t winter cyc loni c ac ti\it y exhibits a broad frequency m ax imum ex tending from Icela nd into th e K a ra Sea , This is a refl ecti on of th e prim a ry N orth

Atl a nti c cyclone track, which represents th e combined

popu la ti on of sys tems mig ra ting pole wa rd from lower

la titud es, as well as those ge nera ted or reju\'Cn a ted within th e Arc ti c itself C lim a to logicall y, th e ex istence of th e trac k is in acco rd II'ith th e positio n of th e eas tern N o rth Ame ri ca n troug h, Cyclones a lso frequ entl y trac k in to

Ba fTin Bay a nd D a \'is Stra it , res ulting in a nother c),clone­

frequ ency m aximum in thi s region, Fig ure 6 shows th e

winte r high-prec ipita tion minus low-prec ipita ti on compo­site d ifTe ren ce fi eld o f counts of sea -l evel cyclone ce nters a t ::-.Jl\ l C g rid points, obtain ed by a pp lying a n a utom a ted c\'clone-de tec ti on a lgo rithm (Serreze a nd o th ers, 1993 ) to

twi ce-d a il y .\iMC SLP fi elds, The raw g rid counts ha l'e

bee n weig hted to emphas ize th e cyclo nes with lower

centra l SLP, whi ch (as a ge nera l rule) a re more in tense , Th e we ig htin g fac tor is 1, 50 fa r ce ntra l press ures < 980 mba L 1, 25 fa r th ose from 980 to 990 m ba r , 1, 12 for th ose from 990 to 1000 mba r, and 1,00 fo r th ose

> 1000 mba L As th e a rca represented by a n Nl\lC g rid

increases \I'ith la titude, th e counts have bee n norm a li zed

with resp ec t to th e 38 1 km x 381 km g rid a rea a t 60° N, Anom a ly pa tterns ofll'e ig hted cyclone di stributions fo r

' I ., , I

" "',5:,'" ,;.. '-:""

"

I. "

~.·- ·~\:~·5~. ? .. , \

..... " -­, -.-

0°. • .. ..

I

... ~/'/ .' ".,­

.· ·A~:::: _

Fig, 6, f I 'in ter Izigh -/Jlwipitatioll minus low-jJrecijJitatioll comjJosite difference Jie/d cif tlte numbers of sea-level qc/olle cen ters weighted b)1 centra! jJl'essllre ( dOlled contours, positive differences; dashed cOlllours, Ilega tive dijJerences; contollr inlerval = 5). Posilive dijJerences mean more C)lclones fo r the high-/JrecijJ itation comjJosite,

th e hig h a nd lOll' seasona l p rec ipita ti on composites with

res pec t to th e 18 yea r m eans tend to be in opposi ti on, The

res ults in Fig ure 6 co nsequentl y indicate th a t, fo r II'int er ,

hig h P a nd S a rc assoc ia ted with mo re frequent cyc lo ni c ac ti\'ity o \' er th e At la nti c sid e of th e Arc ti c. pa nicula rh ' so uth o f' I cela nd. in th e ::-.Jo r\,'Cgia n Sea, no rth o f th e

L a pte\' Sea a nd Davis Stra it. Arguin g fo r a st ro nge r N o rt h

Atla nti c cyclone trac k, this aga in represents a mplifi ca ti on

of th e no rm a l lI'in ter pa t tern (Serreze a nd o th e rs, 1993 ) , The spring a nd a utumn composite diffe rence pa ttern s a rc qu a lita ti\ 'ely simila r to \I'inter. By contras t, Il'hil e th e su m m er h ig h-prec i pi ta ti o n com p os i te shows m od es t

increases o f cycloni c ac til'ity o\'er th e Arc ti c O cean , it is

a lso cha rac teri zed by a stro ng d ec rease O\'e r Eurasia a nd

C a nad a , T ypica llv, la rge increases in summer cyclone ac ti,'it y a re fo und O\T r th ese reg ions,

Th e conclusion th a t increased P (a nd hence P - E ) is assoc ia ted with in creased storm ac ti\'ity is no t surpri sing ,

R ecall , hOIl'e \'e r , th a t \ 'a ri a ti ons in P as exa mincd herc

res ult from \'a riati o ns in th e \'apor-flux cO l1\'erge nce

(Equa ti on (1)) , Serrcze a nd o th ers (in press ) sho\l' that th e mean nu x conl'C rge nce, whi ch is pos iti ve in a ll m onth s, is m os t stro ng lv dri\'en by la rge po le \\'a rd tra nsient edd y \'apor tra nsports nea r th e prim e m er­

idi a n , co nsistent \ovith cyc loni c a cti\ 'it y a long th e N orth

A tla nti c trac k, The onl ), region \I'ith m ea n equ ato rwa rd

tra nsp orts a t 70° N is th e Ca nadi a n Arcti c Archipe lago, re la ted lO persislent no rth erl y \\'inds ex tending li'om th e surface to a t leas t 500 mba r, as can be inle rred Crom th e o ri enta ti on of th e heig ht conto urs shO\\'Il in Fig ure .5 ,

T o pl ace o ur res ul ts in thi s contex t, it is hence useful to

cxamine cha nges in th e pa tterns o f th e m eridi o na l \ 'apo r flu x ac ross 70" ~, Fig ure 7 sho\l's, fo r \I'inter a t e \'e ry 10° lo ngi tude, th e hi gh-pree i pi ta ti on minus lo ,\'-preei pi ta ti on compos ite diITe rence o f' th e m eridi o na l flu x as well as th e h ig h a nd lo ll' compos ite Ou xes, expressed as a nom a li es

with res pec t lO th e 18 yea r m ea ns, Hig h winte r P is

associa ted \I'ith positi ve composite diffe rences peaking a t

a bout 10° a nd 180 0 E , W hil e thi s in pa rt re fl ec ts m ean southerl y \I'inds (as infe rred from th e hi gh composite geo po tentia l-h e ight contours a t 500 mba r a nd 10 1\'e r le\'Cls) , impl ying a po lel,'a rd lime-m ea n flu x, a t leas t

30c----------r--------~----------.---------~

High Composite ~ Low Composite 3

20~,

! \ ._ .... , Comoosile Oiff erence i

~ i3

\ ::: ~ 1Ot' E o \

" /' .:

~ o~------·'~'~' ~" _~~?~~:~' --~--~'J~',~ .. ~," ------~~~,~-~------____ ~~ .~ ," - - .; ... :. ..... . . ~~/ \

"':,\

§ _'O~I U x ~

~ -20 L-________ ~ ________ ~ __________ L_ ________ ~

o 90 180 Longitude (0)

90

w

Fig, 7, II 'ill ter Il1gh minlls Iou' comjJosite difference of the rertica/£), integra ted meridiollal water-l'ajJorjlll\ al 70" , \,. wilh Ihe cones/Jonding high and low com/Josiles e\/Jressed as anomalifj with res/Hct to Ihe 18)'ear record, Ullils are kg III t S I ,

o

8 1

Page 6: Variations in aerologically derived Arctic precipitation › annals › 21 › igs_annals_vol21_year1995_pg7… · areas where wind-dri\'en snow is common results in a bias towards

Serreze and olhers: Analogically derived Arclic precipitation and snowfall

nea r the prime meridi an, th e results a re a lso consistent with strong transient edd y tra nsports associated with increased cyclonic activity. Nega tive differences are found from about 300 to 1200 \N, over the Canadian Arcti c Archipelago and BafTin Bay. For both composites, the iluxes over the Canadian Arctic Archipelago a re nega ti\'e, indi ca ting th a t the high composites are ac tuall y asso­cia ted with grea ter outnow from thi s region . Although th e composite differences are nega ti\'e in some a reas, these are outweighed by the positi ve differences, res ulting in a larger nux convergence ror th e high com posi tes. R es ul ts for the remaining seasons (not shown ) display different pa tterns, but share th e common fea ture of above-ave rage pol eward nu xes over th e Atlanti c and Eurasian secto rs of th e Arcti c.

5. CONCLUSIONS

Under the meridional atmospheric circul a tion patterns id entified here, P in creases with respect to the long-term (1974-91 ) mean by 20%,26% , 2 1 % and 12% for winter,

spring, summer a nd a utumn, respectively. These changes a lso hold for winter and a utumn snowfa ll. Of cou rse , these res ults are on ly \'a lid for the stud y domain north of 700

1.

Although our ana lysis prO\'ides on ly basin-wide averages, Gorshkov 's ( 1983 ) maps do show a distin ct precipitation maximum between Greenland and Sca ndinavia, a long th e North Arlanti c cyclone track. I t h ence .. eems reasonable to infer that in creases in P and S associated wit h th e more meridi onal circu lation wo uld be most pronounced in this a rea . Th e g rea ter issue o[ whether these " fa\ 'orable" meridional circulation types will be

more or less rrequent und er altered climatic states such as

en hanced green house warming remains to be addressed. Bromwich a nd others ( 1994) have assessed the ab ili ty of th e NCAR CCM 1 to simul ate present-da y aspects of the Arcti c circulation and hyd rologic budget, and have found some la rge di screpancies from observations. A major problem is that the model under-represents storm ac tivity a long the North Atlanti c track. Improving the simulation of this fea ture would appear to be a prerequisite for assessing the possibl e response of Arctic precipitat ion and snowfall to climate cha nge.

ACKNOWLEDGEMENTS

This stud y was supported by NSF grants DPP-9214838, DPP-91 13673 and ATM-931535 1. \\'e thank the Nat-

82

ional Snow and Ice Data Center staff for computer support.

REFERENCES

Aagaard. K. and E. C . Cannack. 1989 . Thc rol e of sea ice a nd other [i'csh walcrs in the Arctic c irculati on. J. CeojJh)'S . ReL 94 ( Cl 0 ), 14.485 14,498.

AlesLa lo, 1\ l. 1983. The atmosp heric ,,'ater budget O\'er Europe. III Slrecl-Perroll , F. A. , M. Beran a nd R. A. S. R a tcliffe, eds. ['ariatiolls ill the gtobat waleI' budget. Dordrecht, etc. , D. R cidel Publishing C o, 67

79. Bromll'ich, D. H .. R. Y. T zeng a nd T. R . Pa rish. 1994. Simula tion of th e

modern Arcti c cl ima te by the NCAR CCi\ TI. J. Climate, 7(7). 1050 1069. Cha hinc, .'d . T. 1992 . GEWEX: the Global Enc rgy a nd W a le I' C ycle

Experim ent. EOS, 73 (2), 913 9 14. C rcssm a n, G. P. 1959. An operat ional objcclive a nal ysis sys lem . . \1011 .

Wealher Ra ., 87, 367 374.

Coodison , B. E. and J. R. Metca lfe. 1981. An ex periment to measure

fres h snowfa ll water equi\ 'alent a t Canadian climate sta tio ns. Eastern SIIOW COlljerellce. Proceedings ojthe 1981 Allllual Aleetillg, 110 11 2.

GorshkO\', S. C .. ed. 1983. World oceall atlas, / '01 . 3: Arctic Oceall. Oxford , e lC., Pergamon Press.

Croisma n, P. Y. , V. V. K oknae,'u, T. A. Bclokrylova and T. R. Karl. 1991. O"ercoming biascs of prec ipit a tion : a history of the USSR

experi ence. BuLL. Am . .I1eteorol. Sac .. 72. 1725 1733 .

Ka hl , j. D. , :--1. C. Scrrcze, S . Shiotani , S. :--1. Skon y and R. C . Schncll. 1992. I n situ mcteo rologica l sounding archives fo r Arctic studi es. Bull. Alii. Meteorol. Soc. , 73 ( 11 ), 1824- 1830.

K o rzun. \'. I . 1977. Atlm miroroi vodlloi bolalls !It/as ojworLd water balallce Lening rad , Gidro melc iozdat.

1\lay kut, G. A. a nd N. Unterslcincr. 197 1. Some results fi 'om it timc­

d ependent thermodynamic model of sea ice. J. GeojJl~)'s . Res .. 76 (6), 1550 1575 .

Peixo lo, j. P. a nd A. H . O o rt. 1992. Physics of climate. :'>Iew York, American Instilulc of Ph ys ics .

R obinso n, D . .1\ ., :,,1. C. Serreze, R . G. Ba rr)" C. Scha rfc n a nd G. Kukla. 1992. Large-sca le pa ttern s a nd \'a ri abi lit ), of sno\\'l11 c lt and

parametcrizcd surface a lbed o in the Arcli c Basin. J. Climate. , 5( 10) ,

1109- 1119.

R o ma nO\', I. P. 1993. AtLas'. NJor/JllOlIletric characteristics Dj ice alld SIlOW ill the Arctic Basin . S t. Pelcrsburg, pri"ately published .

R oss. B. andJ. E. \\' a lsh. 1987. A compa riso n ofs imulalcd a nd obselTcd flu ctuati o ns in summertime Arclic surface a lbed o . ]. GeojJ/(ys. Re; .. 92 ( 12), 13, 11 5- 13 .1 25.

Serrezc, :--1. C .. J. E. Box, R. G. Ba rr y and J. E. \\Ial sh . 1993.

C ha rac teristics o f Arc ti c sy nop ti c acti"i ty, 1952- 1989 . . Iideorolo!!.), and Atmospheric Physics, 51, 147 164.

Scrreze, 1\1. C. , R. C . Ba rry and J. E. W a lsh. [n prcss . Atmospheri c

waleI' "apor cha racte ristics at 70" N. ]. Climate. \ 'ose, R . S. alld 6 others . 1992. The global historical climatology lIetwork: 101lg­

term mOll/hi), temperature, jHeci/Jilalion , sea level /JreJsure, alld Jtalioll preHure data. Oak Ridge, T:\" Oak Rid gc :'>Ialional La bo ralory. Enviro n­menta l Sciences Di vision. (Publica ti on 39 12. )

\\'a lsh , J. E. , X. Zho u, D. Portis and :--1. C. Scrreze . 1994. Atmospheri c

contributio n to h yd ro logic \'ariations in th e Arctic. Atmosphere-OcellI! . 32(4), 733- 755.

\\'00. J\l. -k , R. H ero n , P. M arsh a nd P. Stcer. 1983. C ompari so n of wea th er station snowf~dl with w inter S Il O\V acc umulatio n in hig h Arc ti c basins. Atmos/Jhere- O[fall, 21 (3). 3 12 325.