V.3 AEROSOL LIDAR THEORY Vincenzo Rizi [email protected] CETEMPS Dipartimento di Fisica...

74
V.3 AEROSOL LIDAR THEORY Vincenzo Rizi [email protected] CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy

Transcript of V.3 AEROSOL LIDAR THEORY Vincenzo Rizi [email protected] CETEMPS Dipartimento di Fisica...

Page 1: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

V.3 AEROSOL LIDAR THEORY

Vincenzo Rizi [email protected]

Dipartimento di FisicaUniversità Degli Studi dell’Aquila

Italy

Page 2: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Outline Notes

LIDAR technique.

Classical overview of the LIDAR technique: monitoring the fate of a bunch of coherent and undistinguishable photons travelling in a non-homogeneous atmosphere.The aerosol signatures in the LIDAR raw products (aerosol optical properties)

The architecture of LIDAR instruments (i.e., UV/Visible/Infrared - Rayleigh/Mie and Raman LIDARs) devoted to aerosol observations.

Lasers, telescopes, detectors.

The LIDAR hardware specifications.

Down- and up- sizing the different components for the best observational strategy of the various atmospheric aerosols (including clouds).

Real systems and real performances.Some examples of real systems

Page 3: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

OUTCOMESUpon the lecturer ability you will be able to:

• understand how LIDAR techniques are used to characterize atmospheric aerosols• perform tradeoffs among the engineering parameters of a LIDAR system to achive a given measurement capability• evaluate the performance of LIDAR systems

Page 4: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Lidar remote sensing

detector

Interaction between radiation and object

radiation source

signal propagation

Data acquisition and analysis

radiation propagation

Page 5: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

lidar history 1

Lidar started in the pre-laser times in 1930s with searchlight beams, and then quickly evolved to modern lidars using nano-second laser pulses.

CW light

receiver

pulsed laser

receiver

searchlight

modern lidar

LIDAR HISTORY

Page 6: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

lidar history 2

Hulburt [1937] aerosol measurements using the searchlight technique

Johnson [1939], Tuve et al. [1935] modulated the searchlight beam with a mechanical shutter.

Elterman [1951, 1954, 1966] searchlight to a high level for atmospheric studies.

CW light

receiver

searchlight

h

hr

ht

d

tr

)tan()tan(

)tan()tan()tan()tan(

rt

trrtrt hhdh

Page 7: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

The first (ruby) laser was invented in 1960 [Schawlow and Townes, 1958 and Maiman, 1960].

Pulse technique (Q-Switch) McClung and Hellwarth [1962].

The first laser studies of the atmosphere were undertaken by Fiocco and Smullin [1963] for upper region and by Ligda [1963] for troposphere.

lidar history 3

pulsed laser

receiver

modern lidar

s

s

2

tcs

2

c

s

duration pulselaser

light of speed

flight of time

c

t

range max. range resolution

Page 8: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

LIDAR ARCHITECTURE

TRANSMITTERRADIATION SOURCE

RECEIVER LIGHT COLLECTION AND DETECTION

SYSTEM CONTROL AND DATA ACQUISITION

Page 9: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

TRANSMITTERIt provides laser pulses that meet certain requirements depending on application needs (e.g., wavelength, pulse duration time, pulse energy, repetition rate, divergence angle, etc).

Transmitter consists of lasers, collimating optics, diagnostic equipment.

Page 10: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

RECEIVER It collects and detects returned photonsIt consists of telescopes, filters, collimating optics, photon detectors, discriminators, etc.

The receiver can spectrally distinguish the returned photons.

Page 11: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SYSTEM CONTROL AND DATA ACQUISITIONIt records returned data and corresponding time of flight, and provides the coordination to transmitter and receiver.It consists of multi-channel scaler which has very precise clock so can record time precisely, discriminator, computer and software.

Page 12: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

retu

rned

ph

oto

ns o

ver

a n

um

ber

of

laser

pu

lses

Time of flight (sec)

Lidar equation 1

LIDAR RETURN

Page 13: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Lidar equation relates the received photon counts with the transmitted laser photons, the light transmission in atmosphere or medium, the physical interaction between light and objects, the photon receiving probability, and the lidar system efficiency and geometry, etc.

The lidar equation is based on the physical picture of lidar remote sensing, and derived under two assumptions: independent and single scattering.

Different lidars may use different forms of the lidar equation, but all come from the same picture.

Lidar equation 2

LIDAR EQUATION

UV-VIS … restrictions!

Page 14: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

detector

Interaction between radiation and object

radiation source

signal propagation

Data acquisition and analysis

radiation propagation

Lidar equation 3

Lidar equation 3

Page 15: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

detector

Interaction between radiation and object

radiation source

signal propagation

Data acquisition and analysis

radiation propagation

sT o , sT ,

so ,,

ooN

4

d

sGo ,

s

s

s

Lidar equation 4

Lidar equation 4

Page 16: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

sT o ,

sT ,

sso ,,

ooN

4

d

sGo , Lidar system efficiency and geometry factor

Emitted laser photon number

Laser photon transmission through mediumProbability of a transmitted photon to be scatteredScattered photon transmission through medium

Probability of a scattered photon to be collected

Lidar equation 5

Page 17: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

In general, the interaction between the light photons and the particles is a scattering process.

The expected photon counts are proportional to the product of the

(1) transmitted laser photon number,

(2) probability that a transmitted photon is scattered,

(3) probability that a scattered photon is collected,

(4) light transmission through medium, and

(5) overall system efficiency.

Background photon counts and detector noise also contribute to the expected photon counts.

sN oS ,,

Lidar equation 6

Page 18: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

oo hc

shotlaser single ofenergy

oN

Lidar equation 7

lsephotons/pu 107.6 12o oN

J UV laser

Page 19: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

(s)T(s)T(s)T,s)T(λ ooo λabs

λaer

λmolo

sion transmisabsorption gas )(

sion transmisscattering aerosol )(

@ sion transmisscattering molecular )(

sT

sT

sT

abs

aer

mol

(s)T(s)T(s)Ts)T(λ λabs

λaer

λmol ,

The transmission, T(,s), is the relative fraction of propagating photons () that travels a distance s without interacting with the medium.

Lidar equation 8

Page 20: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

section cross gas absorbing th-i )(

th waveleng @ , refraction ofindex , radius of

particle aerosol an of efficiency extinction Mie),,(

@ section cross total Rayleigh

densitynumber gas absorbing th-i

ondistributi size aerosol

density number molecular catmospheri

)()(σexp)(

),(),,(exp)(

)(exp)(

0

i

0 0

2

0

i

ext

mol

i

aer

mol

i

siabsabsabs

s

aerextaer

s

molmolmol

abs

abs

mr

mrQ

n

n

n

dssnsT

dsrsnmrQrdrsT

dssnsT

Lidar equation 9

Page 21: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

snd

ds i

i

oio

,

,,

The volume backscatter coefficient is the probability per unit distance travel that a photon (o) is (back-) scattered into wavelength , in unit solid angle.

Lidar equation 10

2

cs 1m

th waveleng @ , refraction ofindex , radius of

particle aerosolan of efficiency ringbackscatte Mie ),,(

ondistributi size aerosol

),(),,(4

1)(

0

2

mr

mrQ

(s,r)n

rsnmrQrdrs

bck

aer

aerbckaer

Page 22: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

24 s

Ad

receiver

s

s

A

The probability that a scattered photon is collected by the receiving telescope, i.e., the solid angle subtended by the receiver aperture to the scatterer.

Lidar equation 11

Modern Mechanix, 3, 1933

Page 23: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

o ,

)(sG

It is the optical efficiency of mirrors, lenses, filters, detectors, etc.

is the geometrical form factor, mainly concerning the overlap of the area of laser irradiation with the field of view of the receiver optics

receiver

laser

Lidar equation 12

s

Page 24: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

BooooooS NsGd

sTsssTNRN

)(,4

,,,,,,

BN

retu

rned

ph

oto

ns a

lon

g a

nu

mb

er

of

laser

pu

lses

Time of flight (sec)

It is the the expected photon counts due to background noise (i.e., solar light) and detector/electronic noise.

Lidar equation 13

Page 25: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Different Forms of Lidar Equation

Lidar equation 14

physical processMie, Rayleigh, Raman, etc.

Lidar equation may change form to best fit for each particular physical process and lidar application.

Page 26: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

A PARTIAL REPRESENTATION(a physics-ological drama)

Page 27: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

LASER EMITTEDPHOTON

ELASTICALLYBACK-SCATTERED

PHOTON

FEATURING:LIGHT CHARACTERS 1/3

Page 28: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

NON-ELASTICALLYBACK-SCATTERED

PHOTONS

LIGHT CHARACTERS 2/3FEATURING:

Page 29: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

EXTINCTED PHOTONS

LIGHT CHARACTERS 3/3FEATURING:

Page 30: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

aerosol particle

H H

O

H2O N

N

N2O

O

O2

ATMOSPHERE

O

O

O2

N

N

N2

N

N

N2

LOCATION:

Page 31: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SCENE ITHE LASER EMISSION

ooN

“leaving together …”

Page 32: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

laser

LIDAR LASER EMISSION

Page 33: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SCENE IITHE UPWARD TRAVEL

(s)T(s)T,s)T(λ oo λaer

λmolo

“experiencing …”

Page 34: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

aerosol particle

H H

O

H2O

N

N

N2

O

O

O2

H H

O

H2O

N

N

N2

O

O

O2

aerosol particle

N

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

MIE EXTINCTION

… lost …

Page 35: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

H H

O

H2O

N

N

N2

O

O

O2

H H

O

H2O

N

N

N2O

O

O2

aerosol particle

N

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

MOLECULAR EXTINCTION

… lost …

Page 36: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SCENE IIILOCAL BACK-SCATTERING

ssnd

dss i

i

oio

,

,,

“mission accomplished! but …”

Page 37: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

N

N

N2aerosol particle

H H

O

H2O

N

N

N2

O

O

O2

H H

O

H2ON

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

MIE BACK-SCATTERING

… immutable identity …

Page 38: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

N

N

N2

aerosol particle

H H

O

H2ON

N

N2

O

O

O2

H H

O

H2ON

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

MOLECULAR BACK-SCATTERING

… preserving the identity … apparently …

Page 39: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

aerosol particle

N

N

N2

H H

O

H2O

N

N

N2

O

O

O2

H H

O

H2O

N

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

RAMAN N2 BACK-SCATTERING

… deep changes …

Page 40: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

aerosol particle

H H

O

H2O

N

N

N2

O

O

O2

H H

O

H2O

N

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

RAMAN O2 BACK-SCATTERING

… added values …

Page 41: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

aerosol particle

H H

O

H2O

N

N

N2

O

O

O2

H H

O

H2O

N

N

N2

N

N

N2

N

N

N2

N

N

N2

O

O

O2

RAMAN H2O BACK-SCATTERING

… apparently new?…

Page 42: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SCENE IVTHE DOWNWARD TRAVEL

(s)T(s)Ts)T(λ λaer

λmol ,

“on the way back …”

Page 43: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

… again M.I.A. …

Page 44: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SCENE VDETECTION

“several … at home with different stories …”

Page 45: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

TELESCOPE

LIDAR RECEIVER

24 s

Ad

… carrying back … a vanishing footprint. …

Page 46: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SCENE VIFINAL FATE

“figuring out the intimate experiences … a new vision”

Page 47: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

INTO THELIDAR

RECEIVER

range

sign

al

range

sign

al

range

sign

al

Rayleig

h-M

ie

N2 R

aman

H2 O Raman

sGo ,

… something … useful … remains …

… wrong way for me! …

Page 48: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

LIDAR PHYSICAL PROCESSInteraction between light and objects

• Scattering (elastic & inelastic): Mie, Rayleigh, Raman• Absorption and differential absorption• Resonant fluorescence• Doppler shift and Doppler broadening• …

Light propagation in atmosphere or medium: transmission/extinctionExtinction = Scattering + Absorption

Lidar physical processes 1

Page 49: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Lidar physical processes 2

Scattering (elastic & inelastic)

N2

Scattering 1

Page 50: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Rayleigh scattering is referred to the elastic scattering from atmospheric molecules (particle size is much smaller than the wavelength), i.e., scattering with no apparent change of wavelength, although still undergoing Doppler broadening and Doppler shift. However, depending on the resolution of detection, Rayleigh scattering can consist of the Cabannes scattering (really elastic scattering from molecules) and pure rotational Raman scattering.Cabannes line

Pure rotational Raman

Rayleigh

Rayleigh scatteringwavelength () particle size (r) [gas molecules]inversely proportional to 1/4. Blue sky, red sunset/sunrise

Lidar physical processes 3

Scattering 2

Page 51: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Raman Raman

Raman scatteringelastic collision of photons with molecules: molecular rotations, vibrations, electronic transitions change of of incoming radiation ( R <104 cm-1)

Lidar physical processes 4

Scattering 3

Raman scattering is the inelastic scattering with rotational quantum state or vibration-rotational quantum state change as the result of scattering. The Raman scattered photons are shifted in wavelength, this shift is the signature of the stationary energy levels of the irradiated molecule. The Raman spectroscopy in a gas mixture identifies and measures the different components. Example: the nitrogen and oxygen molecules show Raman shifts (roto-vibrational transitions) of 2327cm-1 and 1556cm-1, respectively.

Page 52: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Mie scattering is the elastic scattering from spherical particles [Mie, 1908], which includes the solution of Rayleigh scattering. However, in lidar field, first, Mie scattering is referred to the elastic scattering from spherical particles whose size is comparable to or larger than the wavelength. Furthermore, Mie scattering is generalized to elastic scattering from overall aerosol particles and cloud droplets, i.e., including non-spherical particles.

Mie scatteringr small cloud droplets, aerosols1/. Affect long visible wavelengths

Lidar physical processes 5

Scattering 4

Wavelength : 633 nm Dielectric : 78 nm diam. Fused Silica Incident Amplitude : 1.0 V/m Cell Size : 3 nm Workspace : 100x100x100 cells

Credits: http://bernstein.harvard.edu/research/nearfield/fdtd/FDTD%20SERS.html

Page 53: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

back-scattering

extinction

scattering

Lidar physical processes 6

LIDAR

aerosolback-scattering

aerosol extinction

Page 54: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Back-scattering cross sections

Physical process Back-scattering cross section

Mie (aerosol) scattering

10-8 10-10 cm2 sr-1

Rayleigh scattering

10-27 cm2 sr-1

Raman scattering 10-30 cm2 sr-1

laser

receiver

Lidar physical processes 7

Page 55: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

3 7 0 3 7 5 3 8 0 3 8 5 3 9 0 39 5 40 0 40 5 41 0 41 5 42 0w a v e le n g th (n m )

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

inte

nsit

y (a

.u.)

s o u rc e N d -Y A G la s e r 3 5 5 n mH 2O v a p o u r

N 2

O 2

Example ...o=355nm

~21nm

~32nm ~53nm

Lidar physical processes 8

Page 56: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

LIDAR … aerosol devoted

Aerosol lidar

Page 57: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Aerosol lidar i.e., stratospheric aerosols

backscattering increase

z

A

zexp

12

Aerosol lidar

Page 58: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0

d ay s s in ce 1 s t o f Jan u a ry 1 9 9 1

1 6

1 8

2 0

2 2

2 4

2 6

2 8

3 0

altit

ude

(km

)

1 9 9 1 -1 9 9 9 sca tte rin g ra tio @ 3 5 1 n m

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0

4 .5

5 .0

5 .5

6 .0

Pinatubo eruptionstarting

June 1991

163 profiles

Aerosol lidar – CETEMPS - Università Degli Studi dell’Aquila o=351nm; 1991-1999

Aerosol lidar

Page 59: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Raman aerosol lidar

Rayleigh/Mie signal

N2 Raman/anelastic signal

i.e., tropospheric aerosol

more backscattering

more attenuationno backscattering

o

o+N2

Aerosol lidar

Page 60: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Lidar setup ( =24)

LAS

ER

XeF

Parabolic

mirror

20cm

The optical layout of the receiver’s beam separator. L is a 1inch plano- convex lens, BS indicates dichroic beamsplitters, I F, ND, NO and PMT labels the 2 inchesinterference filters, the interchangeable neutral densityfi lters, the notch filters and the photomultipliers,respectively. The spectral f eatures of each channel can belabelled by a representative wavelength: 351nm-Rayleigh/ Mie channel, 382nm-Nitrogen Raman channel,393nm-liquid water Raman channel, 403nm-water vaporRaman channel.

UV Raman lidar L’Aquila

Aerosol lidar

Page 61: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

The wavelength dependent relative

transmissions of the beam separator. These

curves have been estimated using the

manufacturer’s data sheet and the

specifi cations of the various components

(fi lters, mirror, lenses, optical fi ber, etc.).

Schematic draw of the Rayleigh/ Mie and Raman

components of the return light spectrum. The

Rayleigh/ Mie part is a reply of the laser

spectrum that has been measured, the

diff erent Raman bands have been plotted on

wavelength scale.

UV Raman lidar L’Aquila

Aerosol lidar

Page 62: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

capability of detecting low light levels

suppression of cross-talking between the different channels (i.e, suppression of the strong elastically backscattered light in Raman channels)

Main characteristics

Aerosol lidar

Page 63: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

Real Raman signal in presence of a cloud

0 1 2 3 4 5 6 7ra n g e (k m )

0 .0 1

0 .1 0

1 .0 0

sign

al *

(ra

nge)

2 (a.

u.)

0 .1 0

1 .0 0

cloud transmission

cloud backscattering

Nitrogen Raman

Air/aerosol Rayleigh

1/2 hour measurementsnighttimeSept. 2001

Aerosol lidar

Page 64: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

UV Raman lidar – CETEMPS - Università Degli Studi dell’Aquila o=351nm; N2=382nm (N2)

0 1 2 3 4 5 6 7 8 9 1 0a ltitu d e (k m )

0 .1

1

1 E + 1

1 E + 2

1 E + 3

1 E + 4

1 E + 5

1 E + 6

Phot

onco

unts

(a.

u.)

E la s tic

R am an

Rayleigh/Mie

Raman

Aerosol lidar

Page 65: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

0 4E-6 8E-6

bcks coeff. (m-1sr-1 )

1.0

1.5

2.0

2.5

3.0

alti

tud

e (

km

)

0 4E-4 8E-4

ext. coeff. (m-1)

1.0

1.5

2.0

2.5

3.0

0 25 50 75 100lr (sr)

1.0

1.5

2.0

2.5

3.0

... from Raman N2

… from Rayleigh/Mie (Bcks coeff.)/(ext. Coeff.)

HOW? Lecture V.4Aerosol lidar

Page 66: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

th waveleng @ , refraction ofindex , radius of

particle aerosolan of efficiency extinction Mie ),,(

ondistributi size aerosol

),(),,()(0

2

mr

mrQ

(s,r)n

rsnmrQrdrs

ext

aer

aerextaer

th waveleng @ , refraction ofindex , radius of

particle aerosolan of efficiency eringbackscattt Mie ),,(

ondistributi size aerosol

),(),,(4

1)(

0

2

mr

mrQ

(s,r)n

rsnmrQrdrs

bck

aer

aerbckaer

Page 67: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

EXAMPLES: UV LIDAR (=355nm)SULFATE AEROSOLS, CLOUD DROPLETS, …

Aerosol signature in the LIDAR measurements

),(),,()(0

2 rsnmrQrdrs aerextaer

),(),,(4

1)(

0

2 rsnmrQrdrs aerbckaer

Page 68: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

SULFATE AEROSOLS Qext(r,m,) Qbck(r,m,)

Volodymyr Bazhan ScatLab Project

Page 69: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

CLOUD DROPLETS Qext(r,m,) Qbck(r,m,)

Volodymyr Bazhan ScatLab Project

Page 70: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

naer(r)

Page 71: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

naer(r)

seeG. FeingoldCLOUD MODEL

Page 72: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

lognormal naer(r)

drrr

r

Ndrrn md

2

2

log2

log

exp)log(2

)(

2

log5exp

2 meff rr

SULFATE AEROSOLS

CLOUD DROPLETS

3/10 16.0 cmparticlesNmr deff

3/2.136 8.14 cmdropletsNmr deff

Page 73: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

)(saer

)(saer

m

m

aeraer

aer

42/1

023.0 1

CLOUD DROPLETS

110015.0 srmaer

Page 74: V.3 AEROSOL LIDAR THEORY Vincenzo Rizi vincenzo.rizi@aquila.infn.it CETEMPS Dipartimento di Fisica Università Degli Studi dell’Aquila Italy.

LIDAR SIGNAL SIMULATOR