v22 Osprey

17
V-22 OSPREY Central Polytechnic College, Thiruvananthapuram PAGE NO - 1 1. INTRODUCTION The world has had a large number of long runways in almost every corner since the Second World War, but today military experts are trying to get away from the use of them, in fear of the havoc that might be caused by their destruction in wartime. As a result, Helicopters where invented to eliminate the long runways and were used vastly in military. They were of vertical take-off and landing (VTOL) type aircraft. But the limitations were very significant. Short range, less capacity, slow speed etc. Thus the challenge has been to device a vehicle that is faster, has more range and is more cost effective than conventional Helicopters. As a result, In 1989, two big aircrafts builders Bell and Boeing jointly build an aircraft for the U.S Military and named it as ‘V-22 Osprey’. (The word ‘Osprey’ is the name of a fish eating bird found in South America, which is 60cm long with a 162cm wingspan) The V-22 tilt rotor is a revolutionary, vertical and short take-off and land (V/STOL), multi-purpose aircraft with excellent high-speed cruise performance. This advanced technology rotorcraft performs a wide range of V/STOL missions as effectively as a conventional helicopter, while equally capable of achieving the long-range cruise efficiencies of a twin turboprop aircraft. It brings capabilities not found in any helicopter – twice the speed, three times the payload and five times the range of the legacy helicopters that it replaces. Add the ability to fly two and a half times higher than those helicopters and you have an aircraft that is truly a leap ahead.

description

Seminar Report on v22 Osprey...

Transcript of v22 Osprey

Page 1: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 1

1. INTRODUCTION

The world has had a large number of long runways in almost every corner since the Second World War, but today military experts are trying to get away from the use of them, in fear of the havoc that might be caused by their destruction in wartime. As a result, Helicopters where invented to eliminate the long runways and were used vastly in military. They were of vertical take-off and landing (VTOL) type aircraft. But the limitations were very significant. Short range, less capacity, slow speed etc. Thus the challenge has been to device a vehicle that is faster, has more range and is more cost effective than conventional Helicopters. As a result, In 1989, two big aircrafts builders Bell and Boeing jointly build an aircraft for the U.S Military and named it as ‘V-22 Osprey’. (The word ‘Osprey’ is the name of a fish eating bird found in South America, which is 60cm long with a 162cm wingspan)

The V-22 tilt rotor is a revolutionary, vertical and short take-off and land (V/STOL), multi-purpose aircraft with excellent high-speed cruise performance. This advanced technology rotorcraft performs a wide range of V/STOL missions as effectively as a conventional helicopter, while equally capable of achieving the long-range cruise efficiencies of a twin turboprop aircraft. It brings capabilities not found in any helicopter – twice the speed, three times the payload and five times the range of the legacy helicopters that it replaces. Add the ability to fly two and a half times higher than those helicopters and you have an aircraft that is truly a leap ahead.

Page 2: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 2

2. History and Development

The need of an aircraft, which is much better than Helicopters, was aroused in 1950's. The ‘Tilt Rotor” concept comes into play at that time and on 18 December 1958, the first tilt rotor vehicle named Bell XV-3 constructed by Bell Helicopters, made the history by converting Helicopter to Aeroplane by the use of tilt rotor. The flights and testing continued till 1966,

Bell XV-3 when the program proved that the idea was practical there were many problems to overcome. Experienced aerodynamits have pointed out that the propeller or rotor does not provide much motive force, but only stirs the around it, unless there is wind flow into it. A conventional airplane develops sufficient speed on the runway to quarantee good airflow into the propeller (or jet engine) by take-off time. A conventional helicopter sets into motion a large airmass that is drawn downwards into the rotor, before rising. An aircraft that attempts to pivot its engines while aloft is subjected to thrust failure because of the paucity of airstream arriving at the rotors from the newly selected aspect.

Page 3: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 3

To overcome all the difficalties, a lot of years had taken up for calculations, repeated designs, imaginary testings etc. At that time U.S Military invitted Boeing Aircraft Company to joint with Bell Helicopters to construct a new tiltrotor aircraft. On March 1989, the tilt rotor aircraft code named V-22 Osprey built by Bell-Boeing aircraft made its first flight. Since then however there have been four significant failures during testing -a crash in 1991, killed seven men in 1992, killed nineteen on April 2000 and four on December 2000. The testing continued till March 2005 and the company claimed that the aircraft is ready for final production. The first order for production was from the U.S Military for 458 Ospreys for $37.3 Billion.

V-22 OSPREY

Page 4: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 4

3.WORKING SYSTEMS

Like any aircraft, the Osprey has the following systems:

1. Propulsion 2. Fuel 3. Cockpit Controls 4. Communications 5. Payload 6. Stowage

Osprey's External Features

3.1 Propulsion- The Osprey has two rotors with three-bladed propellers.

An Allison AE 1107C turbo shaft engine that is capable of producing over

6,000 horsepower drives each propeller. Each engine drives its own rotor and

transfers some power to a mid-wing gearbox. This gearbox drives the tilting

mechanism. In the event of an engine failure, the Osprey is capable of running

on only one engine. In this case, power from the remaining engine is

distributed to the two rotors through an interconnecting drive shaft. A

transmission interconnect shaft provides single-engine operation.

Page 5: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 5

Osprey’s Propulsion

3.2 Fuel- The Osprey has 16 fuel tanks, 10 integrated into the wings and six in

the fuselage. The feed tanks directly supply the engines with fuel from the

other tanks, and fuel transfer is automatic. As the fuel flows from the tanks,

pressurized nitrogen gas fills the tanks to reduce the possibility of fire.

Depending upon the configuration of the Osprey, it can hold from 1,450 to

3,640 gallons (5,489 to 13,779 liters) of fuel.

Osprey’s Fuel Tanks

Page 6: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 6

3.2 Cockpit Controls- The cockpit of the Osprey holds a pilot and co-pilot. In

addition, there is a fold-down seat in the center behind the pilots for a flight

engineer. The instrument panels have multi-functional displays, similar to the

new glass cockpit of the space shuttle. The displays hold information about

the engines (such as oil pressure, temperatures and hydraulic pressures) and

flight (such as fuel data, attitude and engine performance). There are also

keypads used to interact with the flight computer and sticks used to control

the flight maneuvers.

Osprey’s Control Panels

3.4 Communications- The Osprey is equipped with multi-band radios (AM,

FM, UHF, VHF) for voice transmission and radio reception. It also has

navigational beacons and radios, radar altimeters and an internal

intercom /radio system for communications among the crew and troops

onboard.

Page 7: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 7

Osprey’s Control Panels

3.5 Payload- The Osprey can hold up to 24 troops and carry up to 20,000 lb

(9,072 kg) in its cargo bay, which is 5.7 ft wide by 5.5 ft high by 20.8 ft long

(1.72 x 1.68 x 6.35 m). The cargo bay has fold-down seats along the walls and a

ramp that is used to load or deploy cargo and troops. Deployment can also

take place in the air by parachute. In addition to the 20,000-lb load in the

cargo bay, the Osprey has an external hook-and-winch system that allows it to

carry up to 15,000 lbs (6,803 kg) of cargo in tow.

3.6 Stowage -When the Osprey lands on the deck of a ship, it can be folded up

for down-time. The blades and the wings are both foldable. The figures

below, shows the four stages of Stowage of Osprey. The top left and right

figures shows the blades are folded inward, the bottom left shows the wings

turn up and the bottom right shows the wings fold back.

Page 8: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 8

Four Stages of folding of Osprey for Stowage

4. Flying of Osprey

To understand how the Osprey flies, the basic thing to understand is

that airplane wings create lift by deflecting air downward, benefiting from the

equal and opposite reaction that results. Helicopters do the same thing with

blades, which are rotating wing shapes like the airfoils of an airplane wing.

Helicopter blades are thinner and narrower than airplane wings because they

have to rotate so fast. These rotating wings are mounted on a central shaft.

When the shaft is spun, lift is created.

There are two modes during the flying of Osprey. Helicopter mode and

Airplane mode. Tilting the two rotors of the Osprey does the change of mode.

When the Osprey is ready to take off, the aircraft will be in Helicopter mode, i.e. the two rotors are in a vertical position. With the rotors mounted on

Page 9: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 9

the wings, it looks like a two-bladed helicopter. The two rotors rotates on opposite directions to stabilize the aircraft and creates the lift.

Osprey on Helicopter mode

While in flight, the Osprey converts into the airplane mode by moving

(tilting) the rotors down to a horizontal position. The conversion will takes approximately 5 to 12 seconds. In this position, it is the wings that generate lift, like on a traditional airplane, and the rotors function as they on a traditional airplane, and the rotors function as they do in a propeller aircraft.

Osprey on Airplane mode

Page 10: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 10

The Osprey lands like a helicopter by reversing the process, raising the rotors from a horizontal to a vertical position. That means the osprey uses its Helicopter mode during take-off, landing and when hovering and Airplane mode during the flight.

V22 OSPREY transforming from Helicopter mode to Airplane mode

Page 11: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 11

5. Advantages over Aeroplane and Helicopter The major advantages of Osprey over a Helicopter are: Longer Range - The Osprey can fly from 270 to 580 miles (453 to 933 km), i.e. Five times more than Helicopters. Higher Speed - The Osprey’s top speed is 315 mph (507 kph), which is twice as fast Helicopter’s top speed. Increased Cargo Capacity - The Osprey can carry 10,000 pounds (4536 kg)

of cargo or 24 troops.

The advantage of the Osprey over an airplane is that it can take off, hover and

land like a helicopter. This makes is more versatile than an airplane for such

missions as moving troops to remote areas, especially those without landing

strips, or conducting long-range rescue operations at sea.

V-22 OSPREY

Page 12: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 12

6. Specifications

Primary function Amphibious assault transport of troops, equipment and supplies from assault ships and land bases.

Prime Contractor(s) Boeing Defense and Space Group, Philadelphia, PA. Bell Helicopter Textron, Ft Worth, TX. Allison Engine Company, Indianapolis, IN.

Description

The V-22 Osprey is a multi-engine, dual-piloted, self-deployable, medium lift, vertical takeoff and landing (VTOL) tiltrotor aircraft designed for combat, combat support, combat service support, and Special Operations missions worldwide. It will replace the Corps' aged fleet of CH-46E and CH-53D medium lift helicopters.

Variants

CV-22 will be utilized by the Air Force for their Special Operations missions maintaining maximum commonality with the MV-22. Aircraft avionics peculiar to the Air Force unique mission requirements constitute aircraft differences.

HV-22 will be used Navy the for Combat Search and Rescue and fleet logistics support.

Length 57' 4" - Spread 63' 0" - Folded

Width 84' 7" - Spread 18' 5" - Folded

Height 22' 1" - Spread 18' 1" – Folded

Takeoff Weights 47,500 lb Vertical Takeoff/Landing (VTOL) 55,000 lb Short Takeoff/Landing (STOL) 60,500 lb Self Deploy STO

Range

200nm Pre-Assault Raid with 18 troops 200nm Land Assault with 24 troops 50 nm (x2) Amphibious Assault 500 nm Long Range SOF Missions (USAF/CV-22) 2100 nm Self Deploy (with one refueling) 50 nm External Lift Operations with 10,000 lb load

Cruise Airspeed 240 kts (MV-22) 230 kts (CV-22)

Crew Cockpit - Crew seats - 2 Cabin - Troop seats- 24

Page 13: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 13

V-22 OSPREY

7. Aerodynamic Force

Page 14: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 14

There are 4 basic Aerodynamic forces: Lift, Thrust, Weight and Drag.

In order for an airplane to fly straight and level, the following relationships

must be true:

Thrust = Drag Lift = Weight

If, for any reason, the amount of drag becomes larger than the amount of thrust, the plane will slow down. If the thrust is increased so that it is greater than the drag, the plane will speed up.

Similarly, if the amount of lift drops below the weight of the airplane, the

plane will descend. By increasing the lift, the pilot can make the airplane

climb.

7.1 Thrust - Thrust is an aerodynamic force that must be created by an

airplane in order to overcome the drag (notice that thrust and drag act in

opposite directions in the figure above). Airplanes create thrust using

propellers, jet engines or rockets.

7.2 Drag - Drag is an aerodynamic force that resists the motion of an object

moving through a fluid (air and water are both fluids). In this case the fluid is

Page 15: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 15

the atmosphere and the object is the airplane. This is opposite to Thrust.

7.3 Weight -This one is the easiest. This is due to the gravitational force of

earth on the plane.

7.4 Lift - Lift is the aerodynamic force that helps the airplane to raise from

the base and to hold the airplane in the air. It is the trickiest of the four

aerodynamic forces to explain without using a lot of math. On airplanes, most

of the lift required to keep the plane aloft is created by the wings (although

some is created by other parts of the structure). Lift is a force on a wing (or

any other solid object) immersed in a moving fluid and it acts perpendicular

to the flow of the fluid. Drag is the same thing, but acts parallel to the

direction of the fluid flow.

Page 16: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 16

8. Conclusion

The V-22 is a joint service, multi-mission aircraft with vertical take-off and landing (VTOL) capability. It performs VTOL missions as effectively as a conventional helicopter while also having the long-range cruise abilities of a twin turboprop aircraft. It has been used primarily in military applications due to its high load carrying capacity. It has been widely used by the navy, army, marine and the customs. The Marine Corps version, the MV-22A, is an assault transport for troops, equipment and supplies, and is capable of operating from ships or from expeditionary airfields ashore. The Navy's HV-22A provides combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. The Air Force CV-22A conducts long-range special operations missions. Now in the future it will be used for civil transport also. All round of developments is going on to public transport. Maybe one day it will replace the present day Helicopters and aircrafts. Let us wait and see.

Page 17: v22 Osprey

V-22 OSPREY

Central Polytechnic College, Thiruvananthapuram PAGE NO - 17

9. Reference

“UPAHAAR”, the CD Presented by ‘Voice of CET’. www.howstuffworks.com www.answers.com www.defencejournals.com www.helicopters.com www.vtols.com Journal of THE AMERICAN HELICOPTER SOCIETY TILT ROTOR TECHNOLOGY - Paper by Jim Garamone Newsletter of THE PRATT WHITNEY COMPANY Journal of MILITARY TRANSPORT Fact File of the V-22 OSPREY