Using the C/ C carbon isotope ratio to characterize …...Using the 13C/12C carbon isotope ratio to...

1
Using the 13 C/ 12 C carbon isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature 1 Juan Aguilera, MD, MPH * ; Leah D. Whigham, PhD, FTOS * * Institute for Healthy Living at The University of Texas at El Paso INTRODUCTION RESULTS Outdoor aerosols negatively affect living organisms even at low concentrations 2,3 . The stable isotope composition of an element (δ) allows the characterization of the naturally occurring isotope ratio ( 13 C/ 12 C) in carbon-containing aerosols 4 . Main urban sources of air pollutants include, motor vehicle traffic, industrial activities, building and housing, as well as smoking 3 . Motor vehicle emissions are a major source of PM and can range from 14 to 50% 5 . METHODOLOGY RESULTS 1. Aguilera J, & Whigham LD. Isot Environ Healt S, 2018;54(6), 573. 2. Kim K-H, et al. Environ Int. 2015;74:136. 3. Calvo A et al. Atmos Res. 2013;120:1. 4. Gröning M. Handbook of Stable Isotope Analytical Techniques. 2004;874 5. Sheesley RJ, et al. J Geophys Res Atmos. 2003;108. 6. O'Leary MH. Bioscience. 1988;38(5):328. 7. Guo Z et al. Atmos Res. 2016;168:105. 8. Dai S et al. Atmos Chem Phys. 2015;15(6):3097. 9. Ancelet T et al. Atmos Environ. 2011;45(26):4463. 10. Ho K et al. Atmos Chem Phys. 2006;6(12):4569. 11. Huang L et al. Atmos Environ. 2006;40(15):2690. 12. Shakya KM et al. AAQR. 2010;10;219. 13. López-Veneroni D et al. Atmos Environ. 2009;43(29):4491. 14. Widory D et al. Atmos Environ. 2004;38(7):953. 15. Andersson A et al. Environ Sci Tech. 2015;49(4):2038. 16. Kawashima H et al. Atmos Environ. 2012;46:568. 17. Guo Z et al. Atmos Res. 2016;168:105. 18. Cao J et al. Atmos Environ. 2011;45(6):1359. 19. Marley NA et al. Atmos Chem Phys. 2009;9(5):1537. 20. Masalaite A et al. Atmos Res. 2015;158. 21. Fisseha R et al. Atmos Environ. 2009;43(2):431. 22. Górka M et al. Isot Environ Healt S. 2012;48(2):327. 23. Wang G et al. Atmos Chem Phys. 2010;10(13):6087. 24. Liu G et al. Atmos Environ. 2014;92:303–308. 25. Martinsson J et al. AAQR. 2017;17(8):2081. REFERENCES Peer-reviewed articles from Jan 2004 - Jan 2018 were searched for terms related to the 13 C/ 12 C carbon isotope ratio (stable carbon isotopes, carbon isotope ratios, isotopic composition, 13 C delta value, δ 13 C) and air pollution (air pollutants, particulate matter, PM 2.5 , PM 10 , fine particles, carbon dioxide, CO 2 , elemental carbon, organic carbon, and black carbon) . CONCLUSION Studies that did not combine measurement approaches, could not distinguish pollution sources using only δ 13 C values. We recommend using combined methods of measurements (radiocarbon, chemical composition) when δ 13 C values from potential sources are likely to overlap. Dust samples Street dust Rural site Japan PM 2.5 EC -18.4‰ to -16.4‰ 11/2009 14 Street dust Urban street Mexico City PM 2.5 TC -21‰ ± 0.2‰ 3/2002 13 Street dust Urban street Wroclaw PM 10 TC -26.9‰ to -25.1‰ 01/2007 12/2007 22 Coal/dust Urban areas Baoji, China PM 10 TC -23.4‰ ±0.4‰ 02/2008 23 Coal/dust Urban areas Baoji, China PM 10 TC -24.4‰ ±0.5‰ 04/2008 23 Biomass/ biogenic emissions C3 plants Wheat smoke Jiangsu/Henan PM EC -29.9‰ to -25.4‰ 2010 – 2012 24 C3 plants Rural site Japan PM 2.5 EC -34.7‰ to -28.0‰ 04/2009 - 11/2009 16 C4 plants Maize smoke Jiangsu/Shananxi PM EC -22.2‰ to -13.0‰ 2010 – 2012 24 C4 plants Rural site Yurihonjo, JPN PM 2.5 EC -19.3‰ to -16.1‰ 04/2009 11/2009 16 C3 and C4 plants Suburban Tecamac, MX PM 1 TC -27.0‰ to -15.0‰ 03/2006 19 Biomass burning Pasture area Sweden PM 10 TC -26.73‰ to -25.64‰ 04/2008 03/2009 25 Emission sources Type of site Sampling site Particle types C δ13C values Sampling period Ref Vehicle emission sources Vehicle emissions Car tunnel Zhujiang PM 2.5 TC -25.5‰ to -24.7‰ 08/2013 8 Vehicle emissions Car tunnel Mount Victoria, NZ PM 2.5 TC -28.3‰ to -24.7‰ 12/2008 – 03/2009 9 Vehicle emissions Urban site Hong Kong, China PM 2.5 OC -28.1‰ to -26.3‰ 11/2000 08/2001 10 Vehicle emissions Urban site Hong Kong, China PM 2.5 EC -25.9‰ to -25.4‰ 11/2000 08/2001 10 Vehicle emissions Car tunnel Cassiar tunnel PM 2.5 EC -26.4708/2001 11 Vehicle emissions Car tunnel Cassiar tunnel PM 2.5 OC -27.3408/2001 11 Vehicle emissions Rooftop/traffic Kathmandu PM TC -26.05‰ to -25.51‰ 12/2007 01/2008 12 Vehicle emissions Urban site Canada PM 2.5 EC -26.908/2001 11 Vehicle emissions Urban site Canada PM 2.5 OC -27.2008/2001 11 Gasoline emissions Car tunnel Mexico City PM 2.5 TC -25.4‰ to -2503/2002 13 Vehicle emissions Urban site Paris PM TC -26.3‰ to -24.505/2002 09/2002 14 Diesel emissions Bus station Mexico City PM 2.5 TC -25.75‰ to -24.703/2002 13 Non-vehicle anthropogenic emissions sources Coal combustion Suburban site Pearl River Delta PM 2.5 EC -24.3‰ to -23.7‰ 01/2013 15 Coal combustion Rural site Yurihonjo, JPN PM 2.5 EC -23.3‰ 11/2009 16 Coal combustion Urban site Paris PM TC -23.9‰ ± 0.5‰ 05/2002 - 09/2002 14 Coal combustion Rural site Yurihonjo, JPN PM 2.5 EC -27.4‰ ± 1.7‰ 11/2009 16 Fireplace emissions Rural chimney Yurihonjo, JPN PM EC -26.5‰ ± 0.1‰ 11/2009 16 Mixed fuel emission sources Vehicle/industrial Urban site North Nanjing PM 1.1 EC -26.33‰ to -22.48‰ 07/2014 17 Vehicle/industrial Rooftop/traffic Mexico City PM 1 TC -30.0‰ to -22.0‰ 05/2003 19 Vehicle/industrial Urban site Paris PM 10 TC -26.7‰ to -25.805/2002 09/2002 14 Vehicle/coal 14 cities China PM 2.5 OC -26.90‰ to -23.08‰ 01/2003 – 07/2003 18 Vehicle/coal 14 cities China PM 2.5 EC -26.63‰ to -23.27‰ 01/2003 – 07/2003 18 Vehicle/coal/industrial Urban site North Nanjing PM 1.1 EC -25.72‰ to -20.48‰ 12/2013 01/2014 17 Fossil fuel emissions Suburban site Vilnius PM 1 TC -30.1‰ to -26.4‰ 10/2012 20 Fossil fuel emissions Urban site Zurich PM 10 TC -27.4‰ to -25.903/2003 21 Fossil fuel emissions Urban site Zurich PM 10 TC -27.6‰ to -2608/2002 09/2002 21 The isotopic compositions of PM carbon fractions can be used to characterize samples by their emission sources and formation process. In rural areas, biomass burning and farming emissions are more common . C 4 plants are isotopically heavier the C 3 plants 6 The 13 C/ 12 C carbon isotope ratio can be used to characterize the emission sources from biomass burning of C 3 and C 4 plants 7 . Table 1. δ 13 C values (‰) of PM samples by source emissions 1 Figure 1. Naturally occurring isotopes of carbon Figure 2. Structure of C 3 and C 4 plants Figure 3. Comparison of δ 13 C (‰) range values of PM samples by emission source 1 TC: Total Carbon, OC: Organic Carbon, EC: Elemental Carbon

Transcript of Using the C/ C carbon isotope ratio to characterize …...Using the 13C/12C carbon isotope ratio to...

Page 1: Using the C/ C carbon isotope ratio to characterize …...Using the 13C/12C carbon isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature1

Using the 13C/12C carbon isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature1

Juan Aguilera, MD, MPH*; Leah D. Whigham, PhD, FTOS*

*Institute for Healthy Living at The University of Texas at El Paso

INTRODUCTION RESULTS

• Outdoor aerosols negatively affect living organisms even at low concentrations2,3.

• The stable isotope composition of an element (δ) allows the characterization of the naturally occurring isotope ratio (13C/12C) in carbon-containing aerosols4.

• Main urban sources of air pollutants include, motor vehicle traffic, industrial activities, building and housing, as well as smoking3.

• Motor vehicle emissions are a major source of PM and can range from 14 to 50%5.

METHODOLOGY

RESULTS

1. Aguilera J, & Whigham LD. Isot Environ Healt S, 2018;54(6), 573.

2. Kim K-H, et al. Environ Int. 2015;74:136.3. Calvo A et al. Atmos Res. 2013;120:1.4. Gröning M. Handbook of Stable Isotope Analytical

Techniques. 2004;8745. Sheesley RJ, et al. J Geophys Res Atmos. 2003;108. 6. O'Leary MH. Bioscience. 1988;38(5):328.7. Guo Z et al. Atmos Res. 2016;168:105.8. Dai S et al. Atmos Chem Phys. 2015;15(6):3097.9. Ancelet T et al. Atmos Environ. 2011;45(26):4463.10. Ho K et al. Atmos Chem Phys. 2006;6(12):4569.11. Huang L et al. Atmos Environ. 2006;40(15):2690.12. Shakya KM et al. AAQR. 2010;10;219. 13. López-Veneroni D et al. Atmos Environ.

2009;43(29):4491.

14. Widory D et al. Atmos Environ. 2004;38(7):953.15. Andersson A et al. Environ Sci Tech.

2015;49(4):2038. 16. Kawashima H et al. Atmos Environ. 2012;46:568. 17. Guo Z et al. Atmos Res. 2016;168:105.18. Cao J et al. Atmos Environ. 2011;45(6):1359.19. Marley NA et al. Atmos Chem Phys.

2009;9(5):1537.20. Masalaite A et al. Atmos Res. 2015;158.21. Fisseha R et al. Atmos Environ. 2009;43(2):431. 22. Górka M et al. Isot Environ Healt S. 2012;48(2):327. 23. Wang G et al. Atmos Chem Phys.

2010;10(13):6087.24. Liu G et al. Atmos Environ. 2014;92:303–308. 25. Martinsson J et al. AAQR. 2017;17(8):2081.

REFERENCES

• Peer-reviewed articles from Jan 2004 - Jan 2018 were searched for terms related to the 13C/12C carbon isotope ratio (stable carbon isotopes, carbon isotope ratios, isotopic composition, 13C delta value, δ13C) and air pollution (air pollutants, particulate matter, PM2.5, PM10, fine particles, carbon dioxide, CO2, elemental carbon, organic carbon, and black carbon) .

CONCLUSION

• Studies that did not combine measurement approaches, could not distinguish pollution sources using only δ13C values.

• We recommend using combined methods of measurements (radiocarbon, chemical composition) when δ13C values from potential sources are likely to overlap.

Dust samplesStreet dust Rural site Japan PM2.5 EC -18.4‰ to -16.4‰11/2009 14

Street dust Urban street Mexico City PM2.5 TC -21‰ ± 0.2‰3/2002 13

Street dust Urban street Wroclaw PM10 TC -26.9‰ to -25.1‰01/2007 – 12/2007 22

Coal/dust Urban areas Baoji, China PM10 TC -23.4‰ ±0.4‰02/2008 23

Coal/dust Urban areas Baoji, China PM10 TC -24.4‰ ±0.5‰04/2008 23

Biomass/ biogenic emissionsC3 plants Wheat smoke Jiangsu/Henan PM EC -29.9‰ to -25.4‰2010 – 2012 24

C3 plants Rural site Japan PM2.5 EC -34.7‰ to -28.0‰04/2009 - 11/2009 16

C4 plants Maize smoke Jiangsu/Shananxi PM EC -22.2‰ to -13.0‰2010 – 2012 24

C4 plants Rural site Yurihonjo, JPN PM2.5 EC -19.3‰ to -16.1‰04/2009 – 11/2009 16

C3 and C4 plants Suburban Tecamac, MX PM1 TC -27.0‰ to -15.0‰03/2006 19

Biomass burning Pasture area Sweden PM10 TC -26.73‰ to -25.64‰04/2008 – 03/2009 25

Emission sources Type of site Sampling siteParticle types

C δ13C values Sampling period Ref

Vehicle emission sourcesVehicle emissions Car tunnel Zhujiang PM2.5 TC -25.5‰ to -24.7‰08/2013 8

Vehicle emissions Car tunnel Mount Victoria, NZ PM2.5 TC -28.3‰ to -24.7‰12/2008 – 03/2009 9

Vehicle emissions Urban site Hong Kong, China PM2.5 OC -28.1‰ to -26.3‰11/2000 – 08/2001 10

Vehicle emissions Urban site Hong Kong, China PM2.5 EC -25.9‰ to -25.4‰11/2000 – 08/2001 10

Vehicle emissions Car tunnel Cassiar tunnel PM2.5 EC -26.47‰08/2001 11

Vehicle emissions Car tunnel Cassiar tunnel PM2.5 OC -27.34‰08/2001 11

Vehicle emissions Rooftop/traffic Kathmandu PM TC -26.05‰ to -25.51‰12/2007 – 01/2008 12

Vehicle emissions Urban site Canada PM2.5 EC -26.9‰08/2001 11

Vehicle emissions Urban site Canada PM2.5 OC -27.20‰08/2001 11

Gasoline emissions Car tunnel Mexico City PM2.5 TC -25.4‰ to -25‰03/2002 13

Vehicle emissions Urban site Paris PM TC -26.3‰ to -24.5‰05/2002 – 09/2002 14

Diesel emissions Bus station Mexico City PM2.5 TC -25.75‰ to -24.7‰03/2002 13

Non-vehicle anthropogenic emissions sourcesCoal combustion Suburban site Pearl River Delta PM2.5 EC -24.3‰ to -23.7‰01/2013 15

Coal combustion Rural site Yurihonjo, JPN PM2.5 EC -23.3‰11/2009 16

Coal combustion Urban site Paris PM TC -23.9‰ ± 0.5‰05/2002 - 09/2002 14

Coal combustion Rural site Yurihonjo, JPN PM2.5 EC -27.4‰ ± 1.7‰11/2009 16

Fireplace emissions Rural chimney Yurihonjo, JPN PM EC -26.5‰ ± 0.1‰11/2009 16

Mixed fuel emission sourcesVehicle/industrial Urban site North Nanjing PM1.1 EC -26.33‰ to -22.48‰07/2014 17

Vehicle/industrial Rooftop/traffic Mexico City PM1 TC -30.0‰ to -22.0‰05/2003 19

Vehicle/industrial Urban site Paris PM10 TC -26.7‰ to -25.8‰05/2002 – 09/2002 14

Vehicle/coal 14 cities China PM2.5 OC -26.90‰ to -23.08‰01/2003 – 07/2003 18

Vehicle/coal 14 cities China PM2.5 EC -26.63‰ to -23.27‰01/2003 – 07/2003 18

Vehicle/coal/industrial Urban site North Nanjing PM1.1 EC -25.72‰ to -20.48‰12/2013 – 01/2014 17

Fossil fuel emissions Suburban site Vilnius PM1 TC -30.1‰ to -26.4‰10/2012 20

Fossil fuel emissions Urban site Zurich PM10 TC -27.4‰ to -25.9‰03/2003 21

Fossil fuel emissions Urban site Zurich PM10 TC -27.6‰ to -26‰08/2002 – 09/2002 21

• The isotopic compositions of PM carbon fractions can be used to characterize samples by their emission sources and formation process.

• In rural areas, biomass burning and farming emissions are more common .

• C4 plants are isotopically heavier the C3 plants6

• The 13C/12C carbon isotope ratio can be used to characterize the emission sources from biomass burning of C3 and C4 plants7.

Table 1. δ13C values (‰) of PM samples by source emissions1

Figure 1. Naturally occurring isotopes of carbon

Figure 2. Structure of C3 and C4 plants

Figure 3. Comparison of δ13C (‰) range values of PM samples by emission source1

TC: Total Carbon, OC: Organic Carbon, EC: Elemental Carbon