using power series

33
Series POWER SERIES Graham S McDonald A Tutorial Module for learning the usage of power series representations Table of contents Begin Tutorial c 2004 [email protected]

Transcript of using power series

Page 1: using power series

Series

POWER SERIES

Graham S McDonald

A Tutorial Module for learning the usage ofpower series representations

● Table of contents● Begin Tutorial

c© 2004 [email protected]

Page 2: using power series

Table of contents

1. Theory

2. Exercises

3. Answers

4. Standard series

5. Tips on using solutions

6. Alternative notation

Full worked solutions

Page 3: using power series

Section 1: Theory 3

1. Theory

This tutorial deals with the approximation of functions of x, f(x),using power series expansions:

f(x) =∞∑

i=0

cixi = c0 + c1x + c2x

2 + c3x3 + ... ,

where ci are constant coefficients.

Power series open the door to the rapid calculation, manipulation andinterpretation of analytical expressions that are, otherwise, difficult todeal with.

Toc JJ II J I Back

Page 4: using power series

Section 1: Theory 4

In each exercise, an appropriate power series can be derived by usingthe Standard series (accessed from the “toolbar” at the bottom ofeach of the Exercises pages).

It will greatly simplify each calculation if, at an early stage, you man-age to deduce how many terms are required from each standard seriesto give the final result to the specified accuracy (e.g. to x3).

Note also that writing the given function in terms of partial fractions,where appropriate, can result in a simpler derivation.

Toc JJ II J I Back

Page 5: using power series

Section 2: Exercises 5

2. Exercises

Use Standard series, to expand the following functions in powerseries, as far as the terms shown. Also state the range of values of xfor which the power series converges:

Click on Exercise links for full worked solutions (there are 10 exer-cises in total).

Exercise 1.

e−3x cos 2x, up to x3

Exercise 2.

(sinx) ln(1− 2x), up to x4

Exercise 3.√

1 + x · e−2x, up to x3

● Theory ● Answers ● Standard series ● Tips ● Notation

Toc JJ II J I Back

Page 6: using power series

Section 2: Exercises 6

Exercise 4.

sinx√1 + 2x

, up to x4

Exercise 5.

(cos 4x) ln(1 + 2x), up to x4

Exercise 6.

5 + 4x

(1 + 2x)(1− x), up to x3

Exercise 7.

3 + x

(2 + x)(1 + x), up to x3

● Theory ● Answers ● Standard series ● Tips ● Notation

Toc JJ II J I Back

Page 7: using power series

Section 2: Exercises 7

Exercise 8.

4 + 5x

(2 + x)(1− x), up to x3

Exercise 9.√

1 + 2x

1− 3x, up to x3

Exercise 10.√1 + x

1− 2x, up to x3

● Theory ● Answers ● Standard series ● Tips ● Notation

Toc JJ II J I Back

Page 8: using power series

Section 3: Answers 8

3. Answers

1. 1− 3x + 52x2 + 3

2x3 + ... (converges for all x) ,

2. −2x2 − 2x3 − 73x4 + ... (converges for − 1

2 ≤ x < 12 ) ,

3. 1− 32x + 7

8x2 − 148x3 + ... (converges for −1 < x < 1) ,

4. x− x2 + 43x3 − 7

3x4 + ... (converges for − 12 < x < 1

2 ) ,

5. 2x− 2x2 − 403 x3 + 12x4 + ... (converges for − 1

2 < x ≤ 12 ) ,

6. 5− x + 11x2 − 13x3 + ... (converges for − 12 < x < 1

2 ) ,

7. 32 −

74x + 15

8 x2 − 3116x3 + ... (converges for −1 < x < 1) ,

8. 2 + 72x + 11

4 x2 + 258 x3 + ... (converges for −1 < x < 1) ,

9. 1 + 4x + 232 x2 + 35x3 + ... (converges for − 1

3 < x < 13 ) ,

10. 1 + 32x + 15

8 x2 + 5116x3 + ... (converges for − 1

2 < x < 12 ) .

Toc JJ II J I Back

Page 9: using power series

Section 4: Standard series 9

4. Standard seriesf(x) Power Series Convergence

11−x 1 + x + x2 + x3 + x4 + ... (−1 < x < 1)

(1 + x)n 1 + nx + n(n−1)2! x2 + n(n−1)(n−2)

3! x3 + ... (−1 < x < 1,

n 6= 1, 2, 3, . . .)

ex 1 + x + x2

2! + x3

3! + x4

4! + ... (for all x)ln(1 + x) x− x2

2 + x3

3 − x4

4 + ... (−1 < x ≤ 1)

sinx x− x3

3! + x5

5! −x7

7! + ... (for all x)

cos x 1− x2

2! + x4

4! −x6

6! + ... (for all x)

tanx x + x3

3 + 2x5

15 + 17x7

315 + ... (−π2 < x < π

2 )

sinhx x + x3

3! + x5

5! + x7

7! + ... (for all x)

coshx 1 + x2

2! + x4

4! + x6

6! + ... (for all x)

Note: 2! = 2 · 1 = 2 , 3! = 3 · 2 · 1 = 6 , 4! = 4 · 3 · 2 · 1 = 24, etc.

Toc JJ II J I Back

Page 10: using power series

Section 5: Tips on using solutions 10

5. Tips on using solutions

● When looking at the THEORY, ANSWERS, STANDARD SERIES,TIPS or NOTATION pages, use the Back button (at the bottom ofthe page) to return to the exercises

● Use the solutions intelligently. For example, they can help you getstarted on an exercise, or they can allow you to check whether yourintermediate results are correct

● Try to make less use of the full solutions as you work your waythrough the Tutorial

Toc JJ II J I Back

Page 11: using power series

Section 6: Alternative notation 11

6. Alternative notation

The power series for (1 + x)n is an example of a binomial series.

When n is not a whole number (i.e. n 6= 0, 1, 2, 3, ...) then the seriesis an infinite series and it is only true for −1 < x < 1.

On the other hand, when n is a whole number (i.e. n = 0, 1, 2, 3, ...)then the series no longer has an infinite number of terms and it isvalid for all values of x.

Some books use notation to distinguish the above two cases, where:

(1 + x)n is written when the power is a whole number, and(1 + x)r is written otherwise.

In this Tutorial, we use the symbol n to denote the power in eithercase.

Toc JJ II J I Back

Page 12: using power series

Solutions to exercises 12

Full worked solutions

Exercise 1.

e−3x cos 2x, up to x3

• ex = 1 + x + x2

2! + x3

3! + ... true for all x

∴ e−3x = 1 + (−3x) + (−3x)2

2! + (−3x)3

3! + ...

i.e. e−3x = 1− 3x + 9x2

2 − 92x3 + ...

• cos x = 1− x2

2! + x4

4! − ... true for all x

∴ cos 2x = 1− (2x)2

2 + ... (we only need up to x3)

i.e. cos 2x = 1− 2x2 + ...

Toc JJ II J I Back

Page 13: using power series

Solutions to exercises 13

∴ e−3x cos 2x =(1− 3x + 9

2x2 − 92x3

)(1− 2x2) + ...

= 1− 3x + 92x2 − 9

2x3

−2x2(1−3x)+ ... (again, we only need up to x3)

= 1− 3x + 92x2 − 9

2x3 − 2x2 + 6x3 + ...

= 1− 3x +(

9−42

)x2 +

(12−9

2

)x3 + ...

∴ e−3x cos 2x = 1− 3x + 52x2 + 3

2x3 + ...

(true for all x , ∴ converges for all x values).

Return to Exercise 1

Toc JJ II J I Back

Page 14: using power series

Solutions to exercises 14

Exercise 2.

(sinx) ln(1− 2x), up to x4

• sinx = x− x3

3! + ... = x− x3

6 + ... true for all x

• ln(1 + x) = x− x2

2 + x3

3 − x4

4 + ... true for −1 < x ≤ 1

∴ ln(1− 2x) = (−2x)− (−2x)2

2 + (−2x)3

3 − (−2x)4

4 + ...

true for −1 < (−2x) ≤ 1

= −2x− 4x2

2 − 8x3

3 − 16x4

4 − ... true for − 12 ≤ x < 1

2

(note the switching of “<” and “≤”

because of the minus sign of −2x)

i.e. ln(1− 2x) = −2x− 2x2 − 83x3 − 4x4 − ...

Toc JJ II J I Back

Page 15: using power series

Solutions to exercises 15

∴ (sinx) ln(1− 2x) =(x− x3

6

)(−2x− 2x2 − 8

3x3 − 4x4) + ...

= x(−2x− 2x2− 8

3x3−4x4)− x3

6 (−2x− ...) + ...

= −2x2 − 2x3 − 83x4 + x4

3 + ...

∴ (sinx) ln(1− 2x) = −2x2 − 2x3 − 73x4 + ...

(converges for − 12 ≤ x < 1

2 ).

Note: We will assume convergence for the values of x that boththe sin x and the ln(1− 2x) power series are true.

Return to Exercise 2

Toc JJ II J I Back

Page 16: using power series

Solutions to exercises 16

Exercise 3.√

1 + x · e−2x, up to x3

• ex = 1 + x + x2

2! + x3

3! + ... true for all x

∴ e−2x = 1 + (−2x) + (−2x)2

2 + (−2x)3

6 + ...

i.e. e−2x = 1− 2x + 2x2 − 43x3 + ...

•√

1 + x = (1 + x)12

≡ (1 + x)n = 1 + nx + n(n−1)2! x2 + n(n−1)(n−2)

3! x3 + ... ,

where n = 12

∴√

1 + x = 1 + 12x + 1

2 ·(− 1

2

)x2

2 +(

12

)·(− 1

2

)·(− 3

2

)x3

6 + ...

true for −1 < x < 1

Toc JJ II J I Back

Page 17: using power series

Solutions to exercises 17

i.e.√

1 + x = 1 + 12x− 1

8x2 + 116x3 + ...

∴√

1 + x e−2x =(1+ 1

2x− 18x2+ 1

16x3) (

1− 2x+2x2− 43x3

)+ ...

= 1 ·(1− 2x + 2x2 − 4

3x3)

+ 12x(1− 2x + 2x2)

− 18x2(1− 2x)

+ 116x3(1) + ...

= 1− 2x + 2x2 − 43x3

+ 12x− x2 + x3

− 18x2 + 1

4x3

+ 116x3 + ...

∴√

1 + x e−2x = 1− 32x+ 7

8x2 − 148x3 + ... (converges for −1<x<1).

Return to Exercise 3

Toc JJ II J I Back

Page 18: using power series

Solutions to exercises 18

Exercise 4.

sinx√1 + 2x

, up to x4

• sinx = x− x3

3! + ... = x− x3

6 + ... true for all x

• (1 + X)−12 = 1+

(−1

2

)X+

(−1

2

)·(−3

2

)X2

2 +(−1

2

)·(−3

2

)·(−5

2

)X3

6 + ...

(true for −1<X <1)

= 1− 12X + 3

22X2

2 − 1523

X3

6 + ...

∴ (1 + 2x)−12 = 1− 1

2 (2x)+ 322

(2x)2

2 − 1523

(2x)3

6 + ... (true for −1<2x<1)

= 1− x + 3x2

2 − 156 x3 + ... true for − 1

2 < x < 12

Note: In the above, it has been recognised that, to find sin(x)(1+2x)−12

one only needs (1 + 2x)−12 up to x3 since sinx = x− x3

6 willmultiply this by at least x.

Toc JJ II J I Back

Page 19: using power series

Solutions to exercises 19

∴ sin x√1+2x

=(x− x3

6

) (1− x + 3

2x2 − 156 x3

)+ ...

= x(1− x + 3

2x2 − 52x3

)− x3

6 (1− x) + ...

= x− x2 + 32x3 − 5

2x4 − 16x3 + 1

6x4 + ...

= x− x2 +(

9−16

)x3 +

(1−15

6

)x4 + ...

∴ sin x√1+2x

= x− x2 + 43x3 − 7

3x4 + ...

(converges for − 12 < x < 1

2 ).

Return to Exercise 4

Toc JJ II J I Back

Page 20: using power series

Solutions to exercises 20

Exercise 5.

(cos 4x) ln(1 + 2x), up to x4

• cos X = 1− X2

2! + X4

4! − ... true for all X

= 1− X2

2 + X4

24 − ...

∴ cos 4x = 1− (4x)2

2 + (4x)4

24 − ...

= 1− 8x2 + 646 x4 − ... = 1− 8x2 + 32

3 x4 − ...

• ln(1 + X) = X − X2

2 + X3

3 − X4

4 + ... (true for −1 < X ≤ 1)

∴ ln(1 + 2x) = (2x)− (2x)2

2 + (2x)3

3 − (2x)4

4 + ... (true for −1<2x≤1)

i.e. ln(1 + 2x) = 2x− 2x2 + 83x3 − 4x4 + ... true for − 1

2 < x ≤ 12

Toc JJ II J I Back

Page 21: using power series

Solutions to exercises 21

∴ (cos 4x) ln(1 + 2x) = (1− 8x2)(2x− 2x2 + 8

3x3 − 4x4)

+ ...

= 2x−2x2+ 83x3−4x4−8x2(2x−2x2) + ...

= 2x− 2x2 − 403 x3 + 12x4 + ...

(converges for − 12 < x ≤ 1

2 ).

Return to Exercise 5

Toc JJ II J I Back

Page 22: using power series

Solutions to exercises 22

Exercise 6.

5 + 4x

(1 + 2x)(1− x), up to x3

Firstly, express in terms of partial fractions:

5 + 4x

(1 + 2x)(1− x)=

A

1 + 2x+

B

1− x=

A(1− x) + B(1 + 2x)(1 + 2x)(1− x)

∴ 5 + 4x = A(1− x) + B(1 + 2x) [identity, true for all x ]

True for x = 1: 5 + 4 = 0 + B(3) i.e. B = 3

True for x = − 12 : 5− 2 = A

(32

)+ 0 i.e. A = 2

So,5 + 4x

(1 + 2x)(1− x)=

21 + 2x

+3

1− x

[This form allows addition of series rather than multiplication, i.e. itmakes the calculation easier]

Toc JJ II J I Back

Page 23: using power series

Solutions to exercises 23

• 11−X = 1 + X + X2 + X3 + ... true for −1 < X < 1

∴ 11+2x = 1 + (−2x) + (−2x)2 + (−2x)3 + ...

(true for −1 < (−2x) < 1)

i.e. 11+2x = 1− 2x + 4x2 − 8x3 + ... true for − 1

2 < x < 12

∴ 21+2x + 3

1−x = 2(1− 2x + 4x2 − 8x3) + ...

+3(1 + x + x2+x3) = 5− x+11x2−13x3+ ...

(converges for − 12 < x < 1

2 ).

Return to Exercise 6

Toc JJ II J I Back

Page 24: using power series

Solutions to exercises 24

Exercise 7.

3 + x

(2 + x)(1 + x), up to x3

Express as partial fractions:

3 + x

(2 + x)(1 + x)=

A

2 + x+

B

1 + x=

A(1 + x) + B(2 + x)(2 + x)(1 + x)

∴ 3 + x = A(1 + x) + B(2 + x) [identity, true for all x]

True for x = −1: 3− 1 = 0 + B(2− 1) i.e. B = 2

True for x = −2: 3− 2 = A(1− 2) + 0 i.e. A = −1

So,3 + x

(2 + x)(1 + x)=

−12 + x

+2

1 + x

Toc JJ II J I Back

Page 25: using power series

Solutions to exercises 25

• 11−X = 1 + X + X2 + X3 + ... true for −1 < X < 1

∴ 11+x = 1 + (−x) + (−x)2 + (−x)3 + ...

= 1− x + x2 − x3 + ... true for −1 < x < 1

• 12+x =

(12

)1

1+( x2 ) =

(12

) [1−

(x2

)+

(x2

)2 −(

x2

)3 + ...]

(true for −1 < x2 < 1)

i.e. − 12+x = − 1

2 + x4 −

x2

8 + x3

16 + ... true for −2 < x < 2

∴ 3+x(2+x)(1+x) = − 1

2+x + 21+x =−1

2 + x4−

x2

8 + x3

16 +2(1−x+x2−x3)+ ...

= 32 −

74x + 15

8 x2 − 3116x3 + ...

(converges for −1 < x < 1).

Return to Exercise 7

Toc JJ II J I Back

Page 26: using power series

Solutions to exercises 26

Exercise 8.

4 + 5x

(2 + x)(1− x), up to x3

Partial fractions:

4 + 5x

(2 + x)(1− x)=

A

2 + x+

B

1− x=

A(1− x) + B(2 + x)(2 + x)(1− x)

∴ 4 + 5x = A(1− x) + B(2 + x) [identity, true for all x]

True for x = +1: 4 + 5 = 0 + B · (3) i.e. B = 3

True for x = −2: 4− 10 = A · (3) + 0 i.e. A = −2

So,4 + 5x

(2 + x)(1− x)= − 2

2 + x+

31− x

Toc JJ II J I Back

Page 27: using power series

Solutions to exercises 27

• 11−x = 1 + x + x2 + x3 + ... true for −1 < x < 1

• 12+x =

(12

)1

(1+ x2 ) = 1

2

[1−

(x2

)+

(x2

)2 −(

x2

)3 + ...]

(true for −1 < x2 < 1)

= 12 −

x4 + x2

8 − x3

16 + ... true for −2 < x < 2

∴ 4+5x(2+x)(1−x) = −2

(12−

x4 + x2

8 −x3

16

)+ 3(1 + x + x2 + x3) + ...

= 2 + 72x + 11

4 x2 + 258 x3 + ...

(converges for −1 < x < 1).

Return to Exercise 8

Toc JJ II J I Back

Page 28: using power series

Solutions to exercises 28

Exercise 9.√

1 + 2x

1− 3x, up to x3

• (1 + X)n = 1 + nX + n(n−1)2! X2 + n(n−1)(n−2)

3! X3 + ...

(true for −1 < X < 1)√

1 + X = 1+ 12X+

(12

)·(− 1

2

)X2

2! +(

12

)·(− 1

2

)·(− 3

2

)X3

3! + ...

∴√

1 + 2x = 1+ 12 (2x)−

(12

)·(

12

) (2x)2

2! +(

12

)·(

12

)·(

32

) (2x)3

3! + ...

(true for −1 < 2x < 1)

= 1 + x− x2

2 + x3

2 − ... true for − 12 < x < 1

2

Toc JJ II J I Back

Page 29: using power series

Solutions to exercises 29

• 11−X = 1 + X + X2 + X3 + ... (true for −1 < X < 1)

∴ 11−3x = 1 + (3x) + (3x)2 + (3x)3 + ... (true for −1 < 3x < 1)

= 1 + 3x + 9x2 + 27x3 + ... true for − 13 < x < 1

3

∴√

1+2x1−3x =

(1 + x− x2

2 + x3

2

)(1 + 3x + 9x2 + 27x3) + ...

= 1 + 3x + 9x2 + 27x3

+x(1 + 3x + 9x2)

−x2

2 (1 + 3x)

+x3

2 (1) + ...

Toc JJ II J I Back

Page 30: using power series

Solutions to exercises 30

= 1 + 3x + 9x2 + 27x3

+x + 3x2 + 9x3

− 12x2 − 3

2x3

+ 12x3+ ...

= 1 + 4x + 232 x2 + 35x3 + ...

(converges for − 13 < x < 1

3 ).

Return to Exercise 9

Toc JJ II J I Back

Page 31: using power series

Solutions to exercises 31

Exercise 10.√1 + x

1− 2x, up to x3

•√

1 + x = (1 + x)12 = 1 +

(12

)x+

(12

)·(− 1

2

)x2

2!

+(

12

)·(− 1

2

)·(− 3

2

)x3

3! + ...

= 1+ 12x− 1

8x2+ 116x3+ ...

true for −1<x<1

• 1√1+X

= (1 + X)−12 = 1 +

(− 1

2

)X +

(− 1

2

)·(− 3

2

)X2

2!

+(− 1

2

)·(− 3

2

)·(− 5

2

)X3

3! + ...

(true for −1 < X < 1)

Toc JJ II J I Back

Page 32: using power series

Solutions to exercises 32

∴ (1− 2x)12 = 1− 1

2 (−2x) +(

12

)·(

32

) (−2x)2

2!

−(

12

)·(

32

)·(

52

) (−2x)3

3! + ...

(true for −1 < (−2x) < 1)

= 1 + x + 32x2 + 5

2x3 + ... true for − 12 < x < 1

2

Toc JJ II J I Back

Page 33: using power series

Solutions to exercises 33

∴ (1 + x)12 (1− 2x)−

12 =

(1+ 1

2x− 18x2+ 1

16x3) (

1+x+ 32x2+ 5

2x3)+ ...

= 1 + x + 32x2 + 5

2x3

+ 12x(1 + x + 3

2x2)

− 18x2(1 + x)

+ 116x3(1) + ...

= 1 + x + 32x2 + 5

2x3

+ 12x + 1

2x2 + 34x3

− 18x2 − 1

8x3

+ 116x3 + ...

= 1 + 32x + 15

8 x2 + 5116x3 + ...

(converges for − 12 < x < 1

2 ).Return to Exercise 10

Toc JJ II J I Back