Use of essential oils for the control of Varroa jacobsoni ...

21
HAL Id: hal-00891579 https://hal.archives-ouvertes.fr/hal-00891579 Submitted on 1 Jan 1999 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies Anton Imdorf, Stefan Bogdanov, Rubén Ibáñez Ochoa, Nicholas W. Calderone To cite this version: Anton Imdorf, Stefan Bogdanov, Rubén Ibáñez Ochoa, Nicholas W. Calderone. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie, Springer Verlag, 1999, 30 (2-3), pp.209-228. hal-00891579

Transcript of Use of essential oils for the control of Varroa jacobsoni ...

Page 1: Use of essential oils for the control of Varroa jacobsoni ...

HAL Id: hal-00891579https://hal.archives-ouvertes.fr/hal-00891579

Submitted on 1 Jan 1999

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Use of essential oils for the control of Varroa jacobsoniOud. in honey bee colonies

Anton Imdorf, Stefan Bogdanov, Rubén Ibáñez Ochoa, Nicholas W. Calderone

To cite this version:Anton Imdorf, Stefan Bogdanov, Rubén Ibáñez Ochoa, Nicholas W. Calderone. Use of essential oilsfor the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie, Springer Verlag, 1999, 30(2-3), pp.209-228. �hal-00891579�

Page 2: Use of essential oils for the control of Varroa jacobsoni ...

Review article

Use of essential oils for the control of Varroa jacobsoniOud. in honey bee colonies

Anton Imdorf Stefan Bogdanova Rubén Ibáñez Ochoaa

Nicholas W. Calderone

a Forschungsanstalt für Milchwirtschaft, Sektion Bienen, Liebefeld, CH-3003 Bern, Switzerlandb Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA

(Received 3 September 1998; accepted 8 February 1999)

Abstract - Essential oils and essential oil components offer an attractive alternative to syntheticacaricides for the control of Varroa jacobsoni. They are generally inexpensive and most pose few healthrisks. Terpenes (mainly monoterpenes) are the main components of essential oils, comprising about90 % of the total. More than 150 essential oils and components of essential oils have been evaluatedin laboratory screening tests. Very few of them, however, have proven successful when tested infield trials. Thymol and thymol blended with essential oils or essential oil components offer a promis-ing exception. Mite mortality obtained with these formulations typically exceeds 90 % and oftenapproaches 100 %. In addition, residues in honey are low, even after long-term treatments. The exactconditions under which these formulations will yield reliable and effective control, however, have onlybeen determined for certain European regions. Based on the available studies, relying solely on a sin-gle treatment with an essential oil or essential oil component is generally not sufficient to maintainmite populations below the economic injury level. Therefore, efforts are necessary to optimize the useof these substances and to incorporate them, along with other measures for limiting mite popula-tions, into an integrated pest management strategy for control of Varroa jacobsoni. © Inra/DIB/AGIB/

Elsevier, Paris

Apis mellifera / Varroa jacobsoni / essential oil / screening / treatment / residue

1. INTRODUCTION

The association of Varroa jacobsoniOudemans (Acari: Varroidae) with the west-ern honey bee, Apis mellifera L., reportedlyoriginated in the 1950s [23, 45, 70, 87] whenthe mites transferred to A. mellifera colonies

that had been introduced into the home rangeof A. cerana, the mite’s original host.V. jacobsoni has subsequently establisheda nearly world-wide distribution with respectto its new host [36, 70], with Australia beingthe only continent free of infestation.

* Correspondence and reprintsE-mail: [email protected]

Page 3: Use of essential oils for the control of Varroa jacobsoni ...

V. jacobsoni and A. cerana maintain a stablerelationship. However, mortality in coloniesof A. mellifera in temperate regions approa-ches 100 % [24, 25]. Colonies in temperateregions must be treated once or twice a yearto maintain mite populations below eco-nomic injury levels. During the last 10 years,pyrethroids have been the primary sourceof insecticides used to control V. jacobsoni.Recently, mites in parts of Europe havedeveloped resistance to two pyrethroids, flu-valinate and flumethrin [4, 21, 27, 30, 32,63, 66, 74, 75, 89, 92, 96] and to couma-phos, an organophosphate [61]. Fluvalinateresistance has also been documented in theUS [5]. The widespread use of syntheticlipophilic acaricides has lead to the accu-mulation of residues in beeswax, propolisand to a much lesser degree, in honey (see[9] for further references).

The development of acaricide resistancein V. jacobsoni populations and the spectreof the contamination of hive products pro-vide considerable incentive to develop newtreatment strategies that minimize the poten-tial for the rapid development of resistanceand the accumulation of residues. SinceV. jacobsoni was introduced into Europe,intensive efforts have been made to developalternative chemical control measures basedon formic, lactic and oxalic acids, combinedwith biotechnical measures (see [48] for fur-ther references).

It is well known that many essential oilsand their components exhibit acaricidalactivity. Before V. jacobsoni was a world-wide pest, Angelloz [3] and Vecchi andGiordani [93] tested different components ofessential oils for their activity against Acara-pis woodi. Methyl salicylate and mentholproved to be toxic to the tracheal mite. InNorth America, where A. woodi has becomean important bee parasite, menthol is widelyused in control efforts (see [ 16] for furtherreferences). In this publication we reviewthe research on the use of essential oils andseveral individual compounds found inessential oils as control measures for V. jacob-soni.

2. PROPERTIES OF ESSENTIAL OILS

’Essential oils’ is the generic term forliquid, highly volatile plant compounds,characterized by an intensive, characteris-tic odor. They are present in almost all plantspecies, but only plants containing morethan 0.1 % oil can be called essential oils.Essential oils are plant products found inthe flowers, fruits, seed, leaves, roots orwood and they can be present in all parts ofa plant (e.g. Pinaceae) or only in specificparts (e.g. flowers of roses). Essential oilsserve various functions in plants. They mayact as attractants for insect pollinators; or,they can be repellent, providing protectionagainst phytophagous insects. Many alsoexhibit fungicidal and bactericidal activity,protecting plants from microorganisms.

The essential oil composition of eachplant species tends to be unique. However,some species have varieties, the so-calledchemotypes, with variable essential oil com-positions. Thyme (Thymus vulgaris), forexample, has at least seven chemotypes.One group consists of the so-called ’strongchemotypes’ that contain higher concentra-tions of the phenols thymol and carvacrol,while a second group, the ’mild chemo-

types’, includes varieties with higheramounts of alcohols such as geraniol,linalool and thujanol. The chemical com-position of an essential oil often dependsupon cultivation and climatic conditions.The specific extraction process used to pro-duce an essential oil also influences its com-

position. Vapor distillation, cold pressingand chemical extractions produce oils ofvarying composition. The lack of constancyin the chemical composition of essential oilsundoubtedly contributes to the variation inresults obtained by different researchers (seesection 4).

The main chemical groups of essentialoils are the hydrocarbon terpenes and phenyl-propanes. Terpenes, the main components,with about 90 % of the total, are subdividedinto monoterpenes (C10), sesquiterpenes

Page 4: Use of essential oils for the control of Varroa jacobsoni ...

(C15) and diterpenes (C20). Monoterpenes,the main essential oil terpenes, are volatileand often appear with functional groupssuch as alcohols, phenols, aldehydes,ketones, esters and oxide derivatives. Theessential oil components thymol, eucalyptol,camphor and menthol have a FAO GRASstatus (generally recognized as safe) in con-centrations of up to 50 mg·kg-1. In pureform, however, these compounds, as wellas many essential oils, can irritate eyes andmucous membranes and should be handledwith care. Further details about essentialoils can be found in extensive monographson the subject [1, 37, 38, 79, 95].

3. SCREENINGOF ESSENTIAL OILS

In all, more than 150 essential oils andcomponents of essential oils have beentested, but only the ones with a positive effectare mentioned in this section (for a completelist of all oils and chemical substances usedsee the references in tables I-III).

3.1. Mite and bee toxicity

Hoppe [42] examined 55 essential oilsfor mite toxicity by evaporation and topi-

Page 5: Use of essential oils for the control of Varroa jacobsoni ...
Page 6: Use of essential oils for the control of Varroa jacobsoni ...

cal application tests. In the evaporation test,a group of ten mites, fixed dorsally on asmall glass plate and placed in a 37-mL glasswere exposed to 0.5 μL of pure essential oilapplied on a filter paper. For the topicalapplication test, mites were fixed in the sameway, and 0.2 μL of a 5 % solution of essen-tial oil in aqueous acetone was applied tothe ventral side of the mites. Toxicity tobees was evaluated by placing 20 bees in asmall cage held in a closed 3.4-L glassreceptacle containing 10 μL pure essential

oil. The mortality of mites and bees wasevaluated after 24, 48 and 72 h. After 72 h,24 essential oils produced a mite mortality ofmore than 90 % (table I). After topical appli-cation, where the maximal effect wasreached after 48 h, only three oils producedthe same level of mite mortality. This sug-gests that passive evaporation is the mostappropriate form of application for theessential oils and their components. Of the24 oils causing a high mite mortality, onlynine resulted in bee mortality below 10 %. Inanother bee toxicity test in which 1 mL of a

Page 7: Use of essential oils for the control of Varroa jacobsoni ...

0.5-20 % essential oil solution in aqueousacetone was sprayed on caged bees, onlyelevated concentrations of wintergreen oil,which were well tolerated by bees, caused ahigh mite mortality. From 55 essential oilsonly wintergreen oil was chosen for fieldtrials.

Kraus [53] investigated mite and beemortality resulting from exposure to mar-joram, cinnamon, clove, citronella andlavender oils. Ten bees, carrying one miteeach, were kept under a beaker with a pieceof wax foundation containing 0.1, 1 or 10 %of an essential oil. After 3 days, both miteand bee mortality were determined. Cloveoil at 1 % concentration in wax caused mite

mortality of more than 80 % and a bee mor-tality equal to that in the untreated control,while at 10 %, both mite and bee mortalitywere close to 100 %. Application of 10 %marjoram oil resulted in a mite mortality of100 % and bee mortality of 20 %, the lat-ter not being significantly different from thecontrol.

Bunsen [12] tested bee tolerance to laven-der, melissa, wintergreen, fir needle, Pinusmugo ssp. mugo and neem oils and citral.In cages containing 20 bees, 300 μL of 0.1,1 or 10 % oil in acetone were evaporatedfrom a filter paper. Bee behavior wasobserved for 7 h. All concentrations of cit-ral, but only the highest concentrations oflavender and melissa oils, disturbed beebehavior. The other oils showed no effects.

Colin et al. [19] sprayed water emulsionscontaining 1.25, 2.5, 5, 10, 20 or 40 g·L-1of thyme, sage, Chenopodium spp. andAnona spp. oils onto filter paper and placedthem in a plastic petri dish containing tenmites. After 24 h, emulsions containing20 g·L-1 of thyme, sage and chenopodiumoils which caused a mortality of more than90 % compared to less than 5 % for thewater control.

Sammataro et al. [83] exposed four tofive mites to the vapors of 40 μL of a 50 %solution of essential oil dissolved in oliveoil and applied to filter paper discs placed in

a glass petri dish. Mite mortality was 100 %with oregano oil, 87.2 % with clove oil,75.5 % with bay oil and 59.4 % with tea-tree oil.

Marchetti et al. [68] examined the effectsof the application of smoke produced byburning material from ten different plants.Twenty smoke strokes from 4 g plant mate-rial were introduced into test hives. Theentrance of the hives was closed for 60 min.Mentha piperita was the most efficacious,detaching 75 % more mites than obtainedwith control smoke from combusted sack

jute. Eischen and Wilson [28, 29] treatedsmall groups of approximately 250 infestedbees with cool smoke from burning plantmaterials for 60 s and evaluated the mitefall over 24 h. The smoke from Tanacetum

vulgare, Juniperus virginiana, Citrus sp.,Larrea tridentata, Melaleuca quinquenervia,Azadirachta indica, Oxalis rubra and Rhustyphina knocked down 70-90 % of themites.

Imdorf et al. [49] devised an assay inwhich the dose-response relationshipsbetween an airborne acaricide and corre-

sponding mite and bee mortalities wereexamined for several volatile substances.For each test, two cages (Liebefeld type),each containing 100 bees and 20-40 mites,were placed in a desiccator and exposed toair containing the vapor of specific volatilesubstances at specific concentrations. Dif-ferent concentrations were produced by mix-ing fresh air with air containing the activeingredient. The test was performed in anincubator at a temperature of 32 °C and arelative humidity of 50-60 %. The concen-tration of the active ingredient in the desic-cator was measured at 24, 48 and 72 h, andafter 72 h the dead bees and the fallen miteswere counted. Concentrations of 5-15 μgof thymol, 50-150 μg camphor and 20-60 μgmenthol per liter of air killed nearly 100 %of the mites without a noticeable loss ofbees. Eucalyptol at 240 μg·L-1 caused 100 %mite mortality, but also killed 25 % of thebees. Imdorf et al. (unpublished data) testedother monoterpenes using the same assay and

Page 8: Use of essential oils for the control of Varroa jacobsoni ...

found that concentrations of 400-1 000 μgp-cymene, 120-260 μg α-thuyon and30-100 μg isopinocamphon per litre of aircaused mite mortality of nearly 100 %, butwere well tolerated by bees. Isopinocam-phon is the main component of ysop oil(isopinocamphon type). Mortality resultingfrom exposure to α-terpinene was high forboth mites and bees. Limonene and α-pinene,even at high concentrations, produced littlemortality of either mites or bees.

3.2. Repellent, attractantand reproduction effects onV. jacobsoni and brood tolerability

Different screening tests were used forstudying repellent and attractant effects.Hoppe and Schley [44] placed a wax arenadivided into four parts in a petri dish. Onemicroliter of oil was applied at the edge oftwo of the four opposite fields. Ten miteswere released in the middle of the arena andtheir locations were recorded every 2 min.for 30 min. Kraus [53] devised an assay con-sisting of two small wax tubes (length =3 cm, diameter = 1 cm, weight = 5 g). Thetest substances were mixed in the wax ofone of the tubes at concentrations of 0.1,0.5 or 1 %, the other tube being an untreatedcontrol. Five mites were placed in the twoconnecting tubes, their position wasobserved through the thin wax tube wallafter 30 and 90 min. Bunsen [12] developeda test where 10 μL of a 1 % emulsion ofactive ingredient in water were dropped onbrood in cells just before operculation. Acontrol treatment was conducted with 10 μLwater containing 1 % emulsifier. The broodwas frozen 18 days after egg laying, and thefollowing variables were measured: broodmortality, repellent and attractant effectsand effect on mite reproduction. Colin et al.[19] devised a choice test using a petri disharena in which mites had a choice betweena bee larva sprayed with an emulsion of20 g·L-1 of active ingredient or water as acontrol. The distribution of mites betweentreated and control larvae was determined

after 72 h. Tables II and III summarize theresults of those tests in which essential oilsand different natural substances (most ofthem being components of essential oils)exerted an effect in any of the tests. A direct

comparison of the repellent and the attractanteffects in the different studies is not possiblebecause the various tests were quite differ-ent. The effects are, however, mostly cor-roborative, e.g. lavender oil was repellentin all three tests where it was examined. Notall oils and organic substances showedeffects in the different tests.

Kraus [53, 54] developed other tests toevaluate the effects of essential oils on olfac-

tory orientation by V. jacobsoni. Citronella,lavender and marjoram oils exhibited repel-lent effects, while cinnamon and clove oilswere attractants. The capacity of V. jacob-soni to differentiate between drones andworkers was not disturbed. The orientationof V. jacobsoni towards adult bees and itscapacity to differentiate between nurse beesand pollen foragers was impeded. Whenbrood comb wax of a mating hive contained0.1 % of the repellent marjoram oil, thebrood infestation of V. jacobsoni was sig-nificantly diminished. This phenomenonwas explained by a disturbance of V. jacob-soni brood recognition.

Bunsen [12] conducted field trials withoils from fir needles, Pinus mugo spp. mugo,lavender, melissa, wintergreen and with cit-ral, all of which, with the exception of win-tergreen, were repellent in the screening test(table II). One comb from a bee colony wassprayed with 20 mL acetone-oil solution(9:1 vol/vol) and the same variables wereexamined as in the screening test above.Only the attractant effect of wintergreen oilwas confirmed. This effect, however,decreased with increasing mite infestationrate. Unexpectedly, lavender oil, which wasrepellent in the laboratory test, exhibited anattractant effect in the field trial and causeda higher mite infestation rate of brood. Also,both Pinus mugo spp. mugo oil (without aneffect in the screening test) and fir needle

Page 9: Use of essential oils for the control of Varroa jacobsoni ...

oil (repellent in screening test), significantlydecreased mite reproduction. However,when all combs of a small mating hive weresprayed with the same oils, these effectscould not be reproduced. The effectivenessof trapping combs treated with the attrac-tive oils of lavender and wintergreen forreducing mite populations was no greaterthan that of the untreated controls.

Summarizing the results of all differenttests, it can be concluded that the effectsobserved in the different tests are not con-sistent and that it is difficult to predict thevarroacidal activity of essential oils in fieldconditions from their performance in labo-ratory assays. The behavior tests were aimedat developing a method to disturb olfactoryorientation of V. jacobsoni. When the testswere carried out with small colonies, how-ever, most oils and chemical substanceswere not efficient in reducing mite popula-tion. Only marjoram, sage, thyme and win-tergreen oils turned out to have an acceptablelevel of activity against V. jacobsoni in beecolonies (see section 4).

4. APPLICATION IN THE HIVE

4.1. Essential oils

The first trials for the control of V. jacob-soni with essential oils in free flying colonieswere conducted in Russia. Sidorov et al.

[86] tested the effects of mint, pine-needle,aniseed, fennel, wormseed, dragons head,citralinic and Chenopodium oils. All testedoils had an unquantified activity againstV. jacobsoni. Wormseed oil had a relativelylow efficacy, while Chenopodium oil wasvery toxic for bees. Treatment of beecolonies caused excitation of bees.

Shutov [85] made a decoction out of amixture of leafless Anabasis sp. (shoots),Calendula sp. (herbs), Tanacetum vulgare(flowers), Leonurus cardiaca (herbs), Matri-caria recutita (herbs), Ephedra sp. (shoots),Quercus sp. (roots), Artemisia apsithicum(shoots, inflorescences) and Pinus sp. (buds

with shoots). One colony group was fed30-60 mL of a decoction-sugar solution,the other was treated with Folbex. Averagemite drop per colony was 1 682 and 1 489,respectively, in each group. The percentagemortality was not determined.

After extended laboratory screening ofessential oils, Hoppe [42] evaluated theeffect of the passive evaporation of 5, 10and 15 mL of clove and wintergreen oil fromsoft cardboard in normal colonies. Evapo-ration of 5 mL of either oil produced noeffect. Evaporation of 10 mL of clove oilproduced mite and bee mortalities of 47 and27 %, respectively, while evaporation of10 mL of wintergreen oil resulted in mor-talities of 72 and 2 %, respectively. Evapo-ration of 15 mL of clove oil produced miteand bee mortalities of 92 and 50 %, respec-tively, compared to 95 and 7 %, respec-tively, with 15 mL of wintergreen oil. Bothhigher dosages led to behavioral distur-bances of bees. Later, Hoppe and Ritterfound that two combined treatments ofbrood-free colonies consisting of 5 mL ofwintergreen oil (methyl-salycilate) and a15-min thermal treatment of 54 °C [11, 43]resulted in a mite mortality of 93 % andwere well supported by the bees. A similarcombination of treatments, but with a 30-minthermal treatment in colonies with brood,caused 31 % mortality of adult mites after5 days and blocked the reproduction in 69 %of the mites, compared to 23 % infertilemites before treatment [13].

Neem oil from seed-kernel showed a

repellent effect and a high brood mortalityunder laboratory conditions [12]. However,passive evaporation of 10 g of neem oilevery 3 weeks from a petri dish from belowthe brood from the middle of July until thebeginning of winter, had no effect on beeand mite populations [12].

Colin [18] compared an aerosol applica-tion of water emulsions of 1 % thyme oil(main ingredients p-cymene and thymol)and 0.5 % sage oil (main ingredients: cam-phor, α-thujone and eucalyptol) with the

Page 10: Use of essential oils for the control of Varroa jacobsoni ...

application of a 0.25 % Amitraz solution incolonies having a small amount of brood.The aerosol treatment applied with warmair through the flight hole was carried outfor 1 min and was repeated four times atintervals of 3-4 days. The mixture of thymeand sage oils resulted in 95 % mite mortal-

ity compared to 99 % mortality obtainedwith Amitraz. This mixture was commer-cialized under the name of BIOLOGIC V®.

Liebig [57] tested this product in brood-freecolonies in November. Four, 1-min treat-ments at intervals of 3-4 days with 100 mLof BIOLOGIC V® per 1.5 L deionized waterwere carried out, essentially as describedby Colin [18]. Mite mortality was about10 %. The different efficiencies in these twotrials was explained as a possible conse-quence of different compositions of theessential oil used and serves to illustrate the

problems arising from not standardizing theessential oils, as previously mentioned. Thethymol content of thyme oil of different ori-gins and chemotypes varies between 5 and40 % [20]. Under the subtropical conditionsof the coastal plain of Israel, Gal et al. [34] treated colonies in spring with 20 % solutionof oregano oil. Colonies with brood occu-

pying one super were treated for 25 dayswith a piece of cardboard (35 x 50 x 0.2 cm)soaked with a solution of 50 mL of oreganooil (20 and 33 % in a 1:1 vol/vol ethanol-paraffin mixture). The cardboard was placedon the top of the brood chamber. A 2nd

piece of cardboard was placed on the bottomboard in colonies with two hive bodies. The

average mortality was 82 %, while with33 % solutions, mortality was 91 %. Treat-ments at higher temperatures producedharmful effects such as robbing andabsconding. Therefore, this method was rec-ommended as a spring treatment during thecitrus honey flow. Le Tu Long [55] obtained99 % mite mortality with a combined treat-ment of marjoram oil and 15 % formic acidfor 28 days. Seven treatments of 15 %formic acid, the first one being 1.5 L andthe subsequent ones 0.5 L each, were appliedon the bottom board at 4-day intervals (total

of 4.5 L of 15 % formic acid). At the sametime seven treatments of marjoram oil, eachconsisting of 3 mL oil applied on twowooden strips on top of the brood chamber,were made (total of 21 mL of marjoram oil).In Vietnam, the same application with atreatment period of only 24 days and appli-cation intervals of 3 days, showed 98 % effi-ciency. No brood and bee losses wereobserved. However, this method is verymaterial and time-consuming.

Other treatments with essential oils havebeen reported in the apicultural press andtrade-journals, e.g. the use of Japanesemedicinal plant oil [71] and the use of win-tergreen oil, alone or in blends with linseed,pennyroyal, spearmint or tea-tree oil, andblends of patchouli with spearmint oil [2,78]. However, most of these trials were notcarried out under standardized test condi-tions and the efficacy of these treatmentsremains uncertain.

4.2. Components of essential oils

4.2.1. Thymol

Thymol is the only essential oil compo-nent widely used in apiculture that consis-tently exhibits high varroacidal activity andthat is well tolerated by bees. It was firstused against A. woodi [52]. Mikijuk [73]tested the varroacidal activity of thymol inbee colonies. He used 0.25 g per space inbetween combs and obtained mite mortalityof 55 %. Mikijuk [72] found that while thy-mol evaporation increases greatly withincreasing temperature or evaporation area,it was not influenced by air humidity. It wasrecommended that weak colonies shouldnot be treated when temperatures are greaterthan 27-30 °C.

Impressed by the widespread use ofthymol in combination with drone broodremoval in Yugoslavia, Marchetti et al. [69]tested the application of 15 g powdered thy-mol suspended in a small gauze bag betweentwo outer brood combs (table IV). Other

Page 11: Use of essential oils for the control of Varroa jacobsoni ...

studies with powdered thymol employingdifferent quantities and application inter-vals during different seasons of the yearhave been conducted by workers in Italyand Spain ([17, 31, 33, 39, 40, 62], seetable IV). The average mite mortality variedfrom 66 to 98 %. In spite of the differencesin the application methods, high mite mor-tality combined with low colony-to-colonyvariability was observed. Liebig [60] andBollhalder [ 10] melted thymol and pouredthe solution on a viscose sponge, which was

subsequently placed on the brood combs.The efficiency was comparable to that ofthe powder application (table IV). Marchettiet al. [69] and Lodesani et al. [62], how-ever, have reported low mortality with thy-mol.

Knobelspies [51] developed a continu-ous treatment method with thymol. A smallchamber is placed between the brood combs,and thymol evaporates through evaporationslots. Twelve grams of thymol are suppliedin May and again in August. Although thereare no published results on trials carried outunder controlled conditions, anecdotalreports on the long-term use of this methodclaim that V. jacobsoni populations aremaintained below economic injury levels,provided that there is no mite re-invasion.

4.2.2. Api Life VAR®

Api Life VAR® (Chemicals LAIF, Italy)is composed of a porous ceramic carrier(florist block material 5 × 9 × 1 cm) impreg-nated with a mixture of thymol (76 %), euca-lyptol (16.4 %), menthol (3.8 %) and cam-phor (3.8 %). The vermiculite tablet is laidon the upper part of the brood combs. After2-4 weeks of application, a second tablet isplaced in the hive for the same period. In14 of 22 applications ([ 14, 15, 22, 35, 46,50, 59, 65, 76, 77, 80, 84, 88, 91], Mutinelliet al., unpublished data) mite mortality wasgreater than 90 % (table V). At normaldepth, one-story bee hives, a higher effi-cacy was achieved than in larger (oversized)one-story hives and in multiple-story hives

[50, 59, 84]. When evaporation rate, andhence dosage, are increased, the efficacy isalso increased [15, 84]. Efficacy alsoincreases with increased treatment duration

[50]. Treatments applied at the bottom ofhives produced insufficient control [50, 59].

All components do not contribute to thevarroacidal activity of Api Life VAR®. Thepresence of camphor had no influence onthe treatment efficiency [50, 84, 91]. ]. Also,the concentration of menthol and eucalyptolin the hive [50] was much lower than nec-essary for good mite toxicity [49], while thethymol hive concentration measured hascaused 100 % mite toxicity in laboratorytrials (see section 3.1). Thus, we can assumethat thymol is the active ingredient of thisformulation. This conclusion is supportedby other trials [10, 60] where treatmentswith pure thymol, applied under similar con-ditions and with comparable amounts to theones used with Api Life VAR®, resulted ina comparable efficacy.Low mite mortality has been reported

with this product in some studies. This hasbeen explained as a result of either a treat-ment period of insufficient duration or oflow temperatures that do not allow for ade-quate evaporation (table V). Also, consid-erable colony-to-colony variability in effi-cacy, even within the same apiary, has beenobserved. Therefore, due to the limited reli-ability of the product, it has been suggestedthat it be used in combination with othermeasures such as drone brood removal, for-mation of nucleus colonies, and the appli-cation of oxalic acid or other varroacides

during brood-free periods [46-48, 65, 77].The same conclusion applies to the otherthymol treatments. Further research, how-ever, may help define the conditions underwhich thymol treatments can be relied uponfor adequate control of V. jacobsoni.

During treatments with Api Life VAR®,bees remove feed and brood in the vicinityof the applied product. Also, some colonieshave difficulties taking supplementary feedduring the treatment period [46, 59, 76, 80,

Page 12: Use of essential oils for the control of Varroa jacobsoni ...
Page 13: Use of essential oils for the control of Varroa jacobsoni ...
Page 14: Use of essential oils for the control of Varroa jacobsoni ...

84]. Therefore, winter feed, when neces-sary, is best given before the treatment.Moosbeckhofer [76] observed negativeeffects of Api Life VAR® treatments oncolony development, as well as stimulationof robbing and increased aggressiveness.The first two effects mentioned were not

reported in other studies.

4.2.3. Other thymol blends

Calderone et al. [ 16] evaluated the appli-cation of different thymol blends (1:1 wt/wt)on colonies in three different apiaries.Blends included thymol and linalool, thy-mol and eucalyptol, and thymol and cit-ronellal. Two application rates, 25 and 12.5 g/application, were tested. The first applicationwas replaced by a second after 14 days.Total treatment period was 28 days in thelate-summer and autumn of 1994. Theyachieved an average mite mortality in thethymol-eucalyptol treatment groups of 56and 49 % for the higher and lower rates,respectively. Corresponding values were 43and 38 % for thymol and citronellal, and 40and 30 % for thymol and linalool. Rateeffects were not statistically significant forany of the three blends. The overall lowlevel of mortality was attributed to the largeamounts of brood present during treatment,as a much higher efficacy of 96.7 % wasachieved with the application of a similarthymol blend on nearly broodless colonies[15].

4.2.4. Menthol, camphor and linalool

Sidorov et al. [86] reported an unquanti-fied acaricidal activity of menthol in beecolonies, in addition to that of other essen-tial oils. Menthol was also tested by Mik-itjuk et al. [73]. Its efficacy was only 13 %,that of thymol was 55 % (0.25 g per space inbetween combs used). Higes et al. [41]treated two groups of four broodless coloniesover 4 weeks with either 30 g of mentholor 60 g of camphor. Menthol had an averageefficiency of 20.5 %, which was not signif-

icantly different from the control. The effi-cacy of camphor was 71.9 %. The resultsof the laboratory trials of Imdorf et al. [49]showed that menthol and camphor causeda high mite mortality at concentrationswhich were not toxic for bees. Thus, fur-ther trials to develop the optimal applica-tion mode are necessary to clarify whetherthis substance can successfully be used formite control. Two applications of 17 g oflinalool applied 14 days apart to brood-freecolonies produced a mite mortality of only27.4 % [15]. The reason for this low effi-cacy may be due to the weak varroacideeffect of this substance or it may requirehigher temperatures for a better evaporationand effectiveness.

5. RESIDUES OF ESSENTIAL OILS

Essential oils, and components thereof,have been used with varying degrees of suc-cess for mite control. However, there arefew studies dealing with residues in honeyand other hive products, and those that havebeen carried out were performed after theuse of individual essential oil components,rather than after treatment with essentialoils. Since essential oils are, themselves,complex blends of compounds, and sincemost honeys naturally contain many essen-tial oil constituents as aroma components[67], analysis of residues after treatmentwith essential oils can be complicated andinconclusive. This can make compliancewith EU and US governmental regulationsdifficult.

Residues are a significant concern, notonly because of possible health considera-tions, but because of their possible effects onhoney quality. According to EU regulationno. 2377/90, thymol is in group II of thenon-toxic veterinary drugs, which do notneed a MRL (maximal residue limit). Essen-tial oils are, however, odor-intensive sub-stances and very small amounts in honeycan alter its taste. When thymol is used forcontrol of V. jacobsoni when there is no

Page 15: Use of essential oils for the control of Varroa jacobsoni ...

nectar flow in progress, residues found in

honey vary from 0.02 to 0.48 mg·kg-1 [6,77, 64, 90]. However, if thymol is used dur-ing nectar flow, there is considerable dangerthat residues may reach levels above thetaste threshold. Bogdanov et al. [8] foundthat 1.1-1.6 mg of thymol·kg-1, 5-10 mg·kg-1of camphor and 20-30 mg·kg-1 of mentholcan significantly alter honey taste. For this reason, in Switzerland a MRL value of0.8 mg thymol·kg-1 was fixed. The treat-ment method of Knobelspiess [51] is used indifferent European countries. This methoddelivers thymol in the hive continuouslythroughout the entire year. Honeys harvestedin bee hives treated with this method oftenhave thymol residues higher than the SwissMRL value of 0.8 mg·kg-1 [7].

Bogdanov et al. [6], evaluated the effectsof a long-term use of Api Life-VAR® (mainingredient thymol) on honey and waxresidues. The thymol residues in honey andwax did not increase with increasing num-ber of Api Life-VAR® treatments. Broodcomb residues reached a relatively high level(average of 517 mg·kg-1). However, if ApiLife VAR® treatment is stopped, thymolrapidly evaporates from wax and after 1 yeardrops to near the limit of detection. Inunopened, bottled honey, thymol, camphorand menthol remain stable for 2 years [6].

Menthol, another substance with a var-roacidal activity [49], has been used for con-trol of A. woodi in North America. After a3-week treatment, a maximum of 18 mg·kg-1)in honey and 2 790 mg·kg-1) in wax weredetected [56]. This level is below the sensorythreshold of menthol in honey.

6. DISCUSSION

New alternatives for the control ofV. jacobsoni are necessary because of therapid and widespread development ofpyrethroid and organo-phosphate-resistantmite populations and because of the poten-tial for contamination of hive products by

these chemicals. Essential oils, and espe-cially components of essential oils, mayserve as alternatives or as adjuncts to tradi-tional treatment measures. In extensive

screening tests, many oils show significantacaricidal activity. Some oils are repellent toV. jacobsoni, others are attractive, and somecause mite mortality. However, very few ofthem have proven effective when appliedin hives in field trials. Considerable variationin local environmental and colony condi-tions affect efficacy and make it difficult topredict the outcome of many treatments.Difficulty in obtaining standardized essen-tial oils also affects treatment predictabil-ity. Only a combination of wintergreen oiland thermal treatment, an aerosol treatmentof a thyme-sage oil mixture, and the pas-sive evaporation of thymol, oregano oil andmarjoram oil in combination with dilutedformic acid have been successfully used formite control (see sections 4.1 and 4.2). Forseveral reasons, however, none of thesetreatments have been widely adopted bybeekeepers, with the exception of thymol.Indeed, thymol and thymol blends arewidely used to control V. jacobsoni inEurope and in most cases their varroacidalefficacy is greater than 90 %. In due time,different thymol-containing products willbe available on the market. In laboratorytests, a high mite toxicity, combined withgood bee tolerance, were demonstrated fora number of other components of essentialoils (see section 3.1).

Identifying compounds with acceptableacaricidal activity but with low toxicity tohoney bees is essential for providing can-didate compounds for field trials. Futureresearch can assist in this effort by focus-ing on the characterization of the dose-response relationships between essential oilsand 1) mite/bee toxicity, and 2) effects onmite behaviour. This procedure can serveas a powerful screening technique becauseit guides subsequent field research into themost productive avenues.

The development of effective deliverysystems for essential oils remains one of the

Page 16: Use of essential oils for the control of Varroa jacobsoni ...

greatest roadblocks to their implementationas mainstream control measures. Highlyvolatile substances such as camphor are dif-ficult to use, but formulations retarding theevaporation rate, e.g. special gels, mightovercome this difficulty. Products with mix-tures of different components with differ-ent modes of action, might also provideeffective solutions. For example, substancesthat disrupt the mite’s host location processmay be effective in conjunction with sub-stances that kill mites.

Residues pose another challenge to theuse of essential oils. Most essential oils aremixtures of more than 50 components.Depending on the individual partition coef-ficients of the constituents, residues in honeyand wax are to be expected. Residues inhoney can lead to adverse effects on taste,while residues in wax can render it unsuitablefor some applications. Quantitative residueanalyses are required for product registra-tion. The complex nature of many essentialoils, combined with the fact that many essen-tial oil components are naturally occurring inhoney, makes such residue analysis diffi-cult. Thus, the successful development ofproducts employing essential oils can beextremely difficult unless the particularessential oil has been granted an exemptionfrom tolerance. The use of individual com-

ponents of essential oils makes residue anal-

ysis much easier and limits the potential forproducing off-flavor honey. Long-term stud-ies demonstrated that when used properly,residues of thymol in honey remain at lowand safe levels.

Based on the available studies, relyingsolely on one treatment per bee season withessential oils or essential oil componentscan not be recommended as an effective andreliable method to maintain mite popula-tions below the economic injury level. Thechallenge for future research is to optimizethe use of essential oils and essential oil

components and to incorporate the result-ing products along with other measures forlimiting mite populations such as cutting

out of drone brood, trapping combs, forma-tion of nucleus colonies or the use of organicacids [47, 48, 58, 82, 81, 94], into an inte-grated pest management strategy for thecontrol of V. jacobsoni. Adapting thesestrategies to local climatic conditions, todiverse apicultural management practicesand to beekeeping operations of varyingsizes pose additional and significant chal-lenges. Finally, resistance to essential oilsmay eventually develop, as it has with syn-thetic pesticides. Consideration must begiven to the development of resistance man-agement plans to maximize the useful lifespan of effective acaricides and deliverysystems once they are developed.

ACKNOWLEDGEMENT

This review was supported in part by a grantfrom the USDA-CSREES Northeast-IPM Pro-

gram (#9704078) to NWC and by a grant fromthe NYS Department of Agriculture and Mar-kets (#C970001) to NWC.

Résumé - Utilisation des huiles essen-tielles dans la lutte contre Varroa jacob-soni, parasite des colonies d’abeilles. Ledéveloppement de la résistance des popu-lations de Varroa jacobsoni et le spectre dela contamination des produits du rucher ontfortement stimulé la mise au point de nou-velles stratégies de traitement qui diminuentla possibilité d’un développement rapide dela résistance et l’accumulation de résidus.Cet article passe en revue l’utilisation deshuiles essentielles (h.e.) et de leurs compo-sants dans la lutte contre V. jacobsoni.« Huiles essentielles » est un terme géné-rique qui désigne les composants liquideset hautement volatiles des plantes, marquéspar une odeur forte et caractéristique. Lesterpènes (principalement les monoterpènes)représentent la majeure partie (environ 90 %)de ces composants. L’eucalyptol, le camphre,le menthol et le thymol sont des monoter-pènes typiques. Chaque espèce de plantetend à avoir une composition en h.e. unique.

Page 17: Use of essential oils for the control of Varroa jacobsoni ...

Pourtant, certaines espèces ont des variétésdénommées chémotypes, dont la composi-tion en h.e. varie. On a utilisé les méthodesde criblage au laboratoire pour tester sur V.jacobsoni et sur les abeilles la toxicité, larépulsivité, l’attractivité, ainsi que les effetssur la reproduction, des h.e. et de leurs com-posants. Au total, c’est plus de 150 h.e. etcomposants d’h.e. qui ont été testés (tableauxI-III), mais peu d’entre eux se sont montrésefficaces lors de leur utilisation sur ruchesen conditions de terrain. Une variationénorme des conditions du milieu local etdes colonies, ainsi que la difficulté d’obte-nir des h.e. standardisées, rendent difficile laprévision du résultat des nombreux traite-ments. Les résidus dans le miel peuventconduire à des effets négatifs sur le goût.L’analyse quantitative des résidus est exi-gée pour l’enregistrement du produit. Lanature complexe de beaucoup d’h.e. et lefait que de nombreux composants des h.e.sont présents à l’état naturel dans le mielfont que l’analyse des résidus est difficile.Néanmoins ces difficultés disparaissentlorsqu’on utilise individuellement les com-posants des h.e. La plupart sont volatils etdisponibles sur le marché à prix raison-nables. Parmi tous les composants testés desh.e., c’est le thymol qui a eu le meilleurrésultat en apiculture pratique. Dans lesessais en champ le thymol pur (tableau IV)et les mélanges à base de thymol (tableau V)ont montré une activité varroacide élevée. Le

thymol est bien toléré par les abeilles. Si lestraitements sont effectués en dehors de la

période de miellée, les résidus de thymoldans le miel n’augmentent pas lorsqu’onmultiplie les traitements et restent sous leseuil de détection gustative, qui se situe entre1,1 et 1,6 mg·kg-1. Selon les études on atrouvé des résidus compris entre 0,02 et0,48 mg·kg-1. Mais les traitements au thymolpendant la miellée peuvent conduire à desrésidus plus élevés qui modifient le goût dumiel. Le thymol, de même que d’autresmonoterpènes tels que le menthol et lecamphre, ont le statut GRAS (generallyrecognized as safe, généralement reconnu

comme sans danger), de la FAO aux concen-trations allant jusqu’à 50 mg·kg-1. Les rési-dus de ces substances dans le miel ne posentdonc pas de problème toxicologique. Aprèsun traitement au thymol les résidus dans lacire sont 1 000 fois plus élevés que dans lemiel, mais ils diminuent rapidement par éva-poration dès que le traitement est arrêté.D’après les études disponibles, un seul trai-tement à base d’h.e. ou d’un composantd’h.e. est généralement insuffisant pourmaintenir la population d’acariens en des-sous du seuil de dégât économique pendanttoute la saison. Des efforts sont donc néces-saires pour intégrer ces produits, ainsi qued’autres mesures pour limiter les popula-tions d’acariens tels que l’élimination ducouvain de mâles, les rayons pièges, la for-mation de nuclei et l’utilisation d’acides

organiques, dans une stratégie de lutte inté-grée contre V. jacobsoni. © Inra/DIB/AGIB/

Elsevier, Paris

Apis mellifera / Varroa jacobsoni / luttechimique / huile essentielle / résidu

Zusammenfassung - Ätherische Öle zurBekämpfung von Varroa jacobsoni inHonigbienenvölkern. Die Entwicklung vonVarroazidresistenzen und das Ausmaß ver-schiedenartigster Verunreinigungen von Bie-nenprodukten stellt eine dringende Heraus-forderung zur Entwicklung neuer Behand-lungsstrategien dar, durch die diese Nach-teile eingegrenzt werden können. Der vor-liegende Artikel gibt einen Überblick überdie Nutzung von ätherischen Ölen oder ihrerKomponenten zur Bekämpfung von Varroajacobsoni. Als ’ätherische Öle’ werden hier-bei flüssige, hochflüchtige Pflanzenbe-standteile zusammengefasst, die durch inten-siven und charakteristischen Duft gekennzeich-net sind. Den Hauptanteil stellen mit etwa90 % Terpene, zumeist Monoterpene. Typi-sche Monoterpene sind zum Beispiel Euka-lyptol, Kampfer, Menthol und Thymol. DieMischung ätherischer Öle ist zumeist fürdie jeweilige Pflanzenart einheitlich. Aller-

Page 18: Use of essential oils for the control of Varroa jacobsoni ...

dings bilden einige Pflanzenarten Varietätenaus, sogenannte Chemotypen, die sich inder Zusammensetzung ihrer ätherischen Öleunterscheiden.

Toxische Eigenschaften oder die Wirkun-gen als Attraktans, Repellent oder auf dieReproduktion wurde in Labortests unter-sucht. Insgesamt wurden hierbei bisher über150 verschiedene ätherische Öle oder ihreKomponenten getestet (Tabelle I-III). Aller-dings erwiesen sich nur wenige als wirk-sam, sobald sie in Feldversuchen in Völ-kern angewandt wurden. Die erheblichenUnterschiede in den örtlichen Umgebungs-bedingungen und zwischen den Völkernbeeinflussen die Wirksamkeit und erschwe-ren eine zuverlässige Aussage über den zuerwartenden Behandlungserfolg. Hinzukommt die Schwierigkeit, standardisierteätherische Öle zu erhalten. Die Rückständeim Honig können den Geschmack negativbeeinflussen. Zur Registrierung einesBehandlungsmittels sind quantitative Rück-standsanalysen erforderlich. Diese wirddurch die komplexe Zusammensetzung vie-ler ätherischer Öle und durch die Tatsacheerschwert, daß viele der Komponenten auchnatürlicherweise im Honig vorkommen. DieNutzung einzelner Komponenten der äthe-rischen Öle ist allerdings nicht von diesenSchwierigkeiten begleitet. Die meistenKomponenten sind flüchtig und zu annehm-baren Preisen auf dem Markt erhältlich.

In der praktischen Imkerei hat sich von allenuntersuchten Komponenten ätherischer ÖleThymol am besten bewährt. In Freiland-versuchen zeigten Thymol (Tabelle IV) undThymolmischungen (Tabelle V) eine hohevarroazide Wirksamkeit. Andererseits wird

Thymol von den Bienen gut vertragen.Solange die Thymolbehandlungen außer-halb der Trachtzeit durchgeführt werden,steigen die Thymolrückstände auch mitzunehmender Anzahl von Anwendungennicht an und bleiben weit unterhalb der

geschmacklich wahrnehmbaren Schwellevon 1,1 bis 1,6 mg·kg-1. In verschiedenenUntersuchungen wurden Rückstände imHonig zwischen 0.02 und 0.48 mg·kg-1

gefunden. Allerdings können Thymolan-wendungen während der Trachtzeiten zuhöheren Rückständen und verändertemGeschmack des Honigs führen. Thymolsowie andere milbengiftige Monoterpenewie Menthol und Kampfer werden bis zu50 mg·kg-1 generell als sicher angesehen(Status FAO GRAS ). Rückstände dieserSubstanzen im Honig sind daher toxikolo-gisch ohne Belang. Thymolrückstände imWachs sind nach einer Behandlung umeinen Faktor von 1 000 höher als im Honig,nach der Anwendung vermindern sie sichallerdings rasch durch Verdunstung.Nach den bestehenden Untersuchungen isteine einzige Behandlung mit ätherischenÖlen generell nicht ausreichend, um die Mil-benpopulation über eine ganze Saison unter-halb der ökonomischen Schadensschwellefür die Bienenvölker zu halten. Zur Begren-zung der Milbenpopulation sind daher imRahmen einer integrierten Bekämpfungs-strategie zusätzliche Maßnahmen erforder-lich, wie das Ausschneiden von Drohnen-brut, Fangwaben, Jungvolkbildung oder dieAnwendung organischer Säuren. © Inra/

DIB/AGIB/Elsevier, Paris

Apis mellifera / Varroa jacobsoni /ätherische Öle / Wirksamkeitstests /Rückstände

REFERENCES

[1] Adams R., Identification of Essential Oils byIon Trap Mass Spectroscopy, Academic Press,1989.

[2] Amrine J.W., Stansy T.A., Skidmore R., Newmite controls investigated, Am. Bee J. (1996)652-654.

[3] Angelloz-Nicoud E., Treatment of acarine dis-ease with methyl salicylate, Bee World 10 (1930)12-14.

[4] Bassand D., Du bon ou mauvais usage du flu-valinate contre Varroa jacobsoni : Etude desrisques d’apparition d’une résistance, La Santé del’abeille (1993) 113-117.

[5] Baxter J., Eischen F., Pettis J., Wilson W.T.,Shimanuki H., Detection of fluvalinate-resistantVarroa mites in U.S. honey bees, Am. BeeJ. 138 (1998) 291.

Page 19: Use of essential oils for the control of Varroa jacobsoni ...

[6] Bogdanov S., Imdorf A., Kilchenmann V.,Residues in wax and honey after Api Life VARtreatment, Apidologie 29 (1998) 513-524.

[7] Bogdanov S., Imdorf A., Kilchenmann V., Fluri P.,Rückstände in Honig nach Verwendung des Thy-molrähmchens gegen die Varroa, Schweiz.

Bienenztg. 121 (1998) 224-226.[8] Bogdanov S., Kilchenmann V., Fluri P., Bühler U.,

Lavanchy P., Einfluss von organischen Säurenund Komponenten von ätherischen Ölen auf denHoniggeschmack, Bienenwelt 40 (1998)232-236.

[9] Bogdanov S., Kilchenmann V., Imdorf A., Aca-ricide residues in some bee products, J. Apic.Res. 37 (1998) 57-67.

[10] Bollhalder F., Thymovar zur Varroabekämp-fung, Schweiz. Bienenztg. 121 (1998) 148-151.

[11] Borgstädt M., Alternative Varroabekämpfung.Mit Warmluft und Essenzen gegen die Varroa,Schweiz. Bienenztg. 114 (1991) 340-344.

[12] Bunsen J.D., Experimentelle Untersuchungenzur Bekämpfung der Milbe Varroa jacobsoniOud., einem Ektoparasit der Honigbiene (Apismellifera L.) mit Stoffen natürlicher Herkunft,Dissertation, Justus-Liebig-Universität Giessen,1991.

[13] Bunsen J.D., Ritter W., Wirkung der kom-binierten Thermobehandlung mit Wintergrünölin die verdeckelte Brut, Allg. Dtsch. Imkerztg.(1991) 12-15.

[14] Calderone N.W., Evaluation of formic acid andthymol-based blend of natural products for thecontrol of Varroa jacobsoni in colonies of thehoney bee, Apis mellifera, J. Econ. Entomol.(1999)in press.

[15] Calderone N.W., Spivak M., Plant extracts forcontrol of the parasitic mite Varroa jacobsoni(Acari: Varroidae) in colonies of the Westernhoney bee (Hymenoptera: Apidae), J. Econ.Entomol. 88 (1995) 1211-1215.

[16] Calderone N.W., Wilson W.T., Spivak M., Plantextracts used for control of the parasitic mitesVarroa jacobsoni and Acarapis woodi in coloniesof Apis mellifera, J. Econ. Entomol. 90 (1997)1080-1086.

[17] Chiesa F., Effective control of varroatosis usingpowdered thymol, Apidologie 22 (1991)135-145.

[18] Colin M.E., Essential oils of Labiatae for con-trolling honey bee varroosis, J. Appl. Entomol.110 (1990) 19-25.

[19] Colin M.E., Ciavarella F., Otero Colina G.,Belzunces L.P., A method for characterizing thebiological activity of essential oils against Var-roa jacobsoni, in: Matheson A. (Ed.), New Per-spectives on Varroa, International Bee ResearchAssociation, Cardiff, UK, 1994, pp. 109-114.

[20] Colin M.E., Ducos de Lahitte J., Larribau E.,Boue T., Activité des huiles essentielles deLabiées sur Ascosphaera apis et traitement d’ unrucher, Apidologie 20 (1989) 221-228.

[21] Colombo M., Lodesani M., Spreafico M., Resis-tance of Varroa jucobsoni to fluvalinate. Pre-liminary results of investigations conducted inLombardy, Ape Nostra Amica 15 (1993) 12-15.

[22] Contessi A., Donati R., Esperienze ’sul campo’nel controllo della varroatosi, Apicolt. nat. LaCitta delle Api ( 1985) 25-28.

[23] Crane E., Fresh news on the Varroa mite, BeeWorld 60 (1979) 8.

[24] De Jong D., Mites: Varroa and other parasites ofbrood, in: Morse R.A. Flottum K. (Eds.), HoneyBee Pests, Predators and Disease, 2nd ed., Cor-nell University Press, Ithaca, NY, USA, 1997.

[25] De Jong D., Gonçalves L.S., Morse R.A., Depen-dence on climate of the virulence of Varroa

jacobsoni, Bee World 65 (1984) 117-121.[26] De Jong D., Morse R.A., Eickwort G.C., Mite

pests of honey bees, Annu. Rev. Entomol. 27(1982) 229-252.

[27] Eischen F.A., Varroa resistance to Fluvalinate,Am. Bee J. (1995) 815-816.

[28] Eischen F.A., Wilson W.T., The effect of natu-ral products smoke on Varroa jacobsoni, Am.Bee J. ( 1997) 222-223.

[29] Eischen F.A., Wilson W.T., The effect of natu-ral products smoke on Varroa jacobsoni: anupdate, Am. Bee J. (1998) 293.

[30] Faucon J.P., Drajnudel P., Fleche C., Mise enévidence d’une diminution de l’efficacite de

l’Apistan® utilise contre la varroose de l’abeille(Apis mellifera L), Apidologie 26 (1995)291-296.

[31] Flores J.M., Recherches sur les traitements alter-natifs dans le sud de l’Espagne. I. Acide for-mique, thymol, rotenone - substances acaricidesnaturelles, Les Carnets du CARI (1997) 5-8.

[32] Flores J.M., Puerta F., Padilla F., Campano F.,Ruiz J.A., Ruiz D., Lucha contra la varroasis.Situacion actual y perspectivas de futuro, VidaApicola (1994) 36-43.

[33] Frilli F., Milani N., Barbattini R., Greatti M.,Chiesa F., Iob M., Dagaro M., The effectivenessof various acaricides in the control of Varroa

jacobsoni and their tolerance by honeybees, in:Prota R., Floris I. (Eds), Proceedings of the Cur-rent State and Development of Research in Api-culture, 25-26 October, Istituto di EntomologiaAgraria, Universita degli Studi di Sassari, Sassari,Italy, 1991, pp. 59-77.

[34] Gal H., Slabezki Y., Lensky Y., A preliminaryreport on the effect of origanum oil and thymolapplications in honey bee (Apis mellifera L.)colonies in a subtropical climate on populationlevels of Varroa jacobsoni, BeeScience 2 (1992)175-180.

[35] Gregorc A., Jelenc J., Control of Varroa jacob-soni Oud. in honey bee colonies using Apilife-Var, Zbornik Veterinarske Fakultete UniverzaLjubliana 33 (1996) 231-235.

Page 20: Use of essential oils for the control of Varroa jacobsoni ...

[36] Griffiths D.A., Bowman C.E., World distribu-tion of the mite Varroa jacobsoni, a parasite ofhoneybees, Bee World 62 (1981) 154-163.

[37] Guenther E., The Essential Oils: IndividualEssential Oils of Plant Families, Krieger Publi-cations & Co., 1992.

[38] Hay R., Waterman P., Volatile Oil Crops: Theirbiology, Biochemistry and Production, JohnWiley & Sons, 1993.

[39] Higes P.M., Llorente J., Timol: Ensayo de efi-cacia en el control de varroosis en colmenas de

producción, Vida Apicola 81 (1997) 14-17.

[40] Higes P.M., Suarez R.M., Test of the efficacyof thymol in the control of varroosis in the honeybee (Apis mellifera), Colmenar (1996) 29-31.

[41] Higes P.M., Suarez R.M., Llorente J., Compar-ative field trials of Varroa mite control with dif-ferent components of essential oils (thymol, men-thol and camphor), Res. Rev. Parasitol. 57 (1997)21-54.

[42] Hoppe H., Vergleichende Untersuchungen zurbiotechnischen Bekämpfung der Varroatose,Dissertation, Justus-Liebig-Universität Giessen,1990.

[43] Hoppe H., Ritter W., Erste Ergebnisse zurBekämpfung der Varroatose mit einem ther-mischen Umluftverfahren in Kombination mit

Wintergrünöl, Die Biene (1989) 390-393.

[44] Hoppe H., Schley P., Varroa-Falle mit Lock-stoffen möglich?, Die Biene 120 ( 1984)387-388.

[45] Ian Tsin-He, Les particularites biologiques del’acarien Varroa jacobsoni (Oud.), KounchongZhishi 9 (1965) 40-41 (in Chinese).

[46] Imdorf A., Bogdanov S., Kilchenmann V.,Maquelin C., Apilife VAR: A new varroacidewith thymol as the main ingredient, Bee World76 (1995) 77-83.

[47] Imdorf A., Charrière J.D., Wie können dieresistenten Varroamilben unter der Schadenss-chwelle gehalten werden?, Schweiz. Bienenztg.121 (1998) 287-291.

[48] Imdorf A., Charrière J.D., Maquelin C., Kilchen-mann V., Bachofen B., Alternative Varroa con-trol, Am. Bee J. 136 (1996) 189-193.

[49] Imdorf A., Kilchenmann V., Bogdanov S.,Bachofen B., Beretta C., Toxic effects of thy-mol, camphor, menthol and eucalyptol on Varroajacobsoni Oud and Apis mellifera L in a labo-ratory test, Apidologie 26 (1995) 27-31.

[50] Imdorf A., Kilchenmann V., Maquelin C., Bog-danov S., Optimierung der Anwendung von’Apilife VAR’ zur Bekämpfung von Varroajacobsoni Oud. in Bienenvölkern, Apidologie25 (1994) 49-60.

[51] Knobelspies F., Die Varroamilben und die Thy-molanwendung im Sommer, Allg. Dtsch. Imk-erztg. (1996) 20-21.

[52] Kostecki R., Untersuchungen über die Anwen-dung von Thymol bei der Behandlung der Mil-benkrankheit der Bienen während der Ueber-

winterungszeit, Tierärztliche Umschau (1976)398-401.

[53] Kraus B., Untersuchungen zur olfaktorischenOrientierung von Varroa jacobsoni Oud. undderen Störung durch ätherische Öle, Disserta-tion, Goethe-Universität, Frankfurt, Fachbere-ich Biologie, 1990.

[54] Kraus B., Koeniger N., Fuchs S., Screening ofsubstances for their effect on Varroa jacobsoni:attractiveness, repellency, toxicity and maskingeffects of etheral oils, J. Apic. Res. 33 (1994)34-43.

[55] Le Tu Long, Die Kombinationsanwendung vonAmeisensäure und Majoranöl zur Bekämpfungder Varroatose unter gemässigten (Deutschland)und tropischen (Vietnam) Klimabedingungen,Dissertation, Justus-Liebig-Universität Giessen,1998.

[56] Li M., Nelson D.L., Sporns P., Determinationof menthol in honey by gas chromatography,J. Assoc. Off. Anal. Chem. Int. 76 (1993)1289-1295.

[57] Liebig G., Behandlung von varroabefallenenBienenvölkern mit Biologic V, Dtsch. ImkerJ. (1991) 170-171.

[58] Liebig G., Meine Betriebsweise mit der Varroa.Varroabekämpfung - ein fester Bestandteil derVölkerführung, Dtsch. Imker J. 2 (1991)297-304.

[59] Liebig G., Varroabekämpfung mit Apilife-VAR,Bienenpflege (1993) 247-249.

[60] Liebig G., ’Es geht auch ohne!’ Kurzfassung desVortrages auf dem Apisticus-Tag am 21 Januar1995 in Münster, Dtsch. Bienen J. (1995) 4-7.

[61] Lodesani M., Variabilità dell’efficacia terapeu-tica ottenuta con trattamento di Perizin, L’ApeNostra Amica (1996) 4-9.

[62] Lodesani M., Bergomi S., Pellacani A., Carpana E.,Rabitti T., A comparative study on the efficacyof some products for controlling Varroa, anddeterminations of their residues, Apicoltura(1990) 105-130.

[63] Lodesani M., Colombo M., Spreafico M., Inef-fectiveness of Apistan® treatment against themite Varroa jacobsoni Oud in several districts ofLombardy (Italy), Apidologie 26 (1995) 67-72.

[64] Lodesani M., Pellacani A., Bergomi S., Carpana E.,Rabitti T., Lasagni P., Residue determinationfor some products used against Varroa infesta-tion in bees, Apidologie 23 (1992) 257-272.

[65] Loglio G., Lotta alla Varroa con Api Life Var ePerizin: tre anni di esperienze, Apic. Mod. 88(1997) 17-26.

[66] Loglio G., Plebani G., An appraisal of apistaneffectiveness, Apic. Mod. 83 (1992) 95-98.

[67] Maga J.A., Honey flavor, Lebensm.-Wiss. u.Technol. 16 (1983) 65-68.

Page 21: Use of essential oils for the control of Varroa jacobsoni ...

[68] Marchetti S., Barbattini R., D’Agaro M., Provepremilinari sull’impiego di alcune specie vege-tali nel controllo di Varroa jacobsoni oud., Attidel II convegno internazionale dell’apicultura,Lazise (1983) 71-77.

[69] Marchetti S., Barbattini R., D’Agaro M., Com-parative effectiveness of treatments used to con-trol Varroa jacobsoni, Apidologie 15 (1984)363-378.

[70] Matheson A., First documented findings of Var-roa jacobsoni outside its presumed natural range,Apiacta 30 (1995) 1-8.

[71] Maul V., Kurzbericht über Versuche zur Var-roatosebekämpfung mit Japanischem Heilpfla-zenöl, Die Biene 118 (1982) 388-390.

[72] Mikityuk V.V., Efficiency of thymol againstVarroa disease, Veterinariya Moscow, USSR(1983) 43-44 (in Russian).

[73] Mikityuk V.V., Grobov O.F., Trials of chemi-cal for controlling Varroa jacobsoni infestationsof bees, Tr. Vses. Instit. Eksp. Vet. 50 (1979)120-125 (in Russian).

[74] Milani N., La resistenza agli acaricidi: un prob-lema emergente nella lotta contro la Varroa,Ape Nostra Amica 15 (1992) 4-5, 7-11.

[75] Milani N., The resistance of Varroa jacobsoniOud. to pyrethroids: a laboratory assay, Api-dologie 26 (1995) 415-429.

[76] Moosbeckhofer R., Versuche mit Api-Life-VARzur Bekämpfung der Varroamilbe, Bienenwelt35 (1993) 161-166.

[77] Mutinelli F., Irsara A., Cremasco S., Piro R.,Control of varroatosis by means of APILIFE-VAR in the Varroa detection tray, Apic. Mod. 84(1993) 111-117 (in Italian).

[78] Noel B., Amrine J., More on essential oil formite control, Am. Bee J. (1996) 858-859.

[79] Ohloff G., The Fascination of Odors and theirChemical Perspectives, Scent and Fragrances,Springer Verlag, 1994.

[80] Rickli M., Imdorf A., Kilchenmann V., Varroa-Bekämpfung mit Komponenten von ätherischenÖlen, Apidologie 22 (1991) 417-421.

[81] Ritter W., Rückstandsfreie Bienenhaltung mitintegrierten Bekämpfungskonzepten, Allg. Dtsch.Imkerztg. (1996) 6-9.

[82] Rosenkranz P., Alternative Konzepte der Var-roatose-Bekämpfung, Imkerfreund (1992) 5-14.

[83] Sammataro D., Degrandi-Hoffmann G., Need-ham G., Wardell G., Some volatile plant oils aspotential control agents for Varroa mites (Acari:Varroidae) in honey bee colonies (Hymenoptera:Apidea), Am. Bee J. 138 (1999) 681-685.

[84] Schulz S., Anwendung thymolhaltiger Var-roazide bei Magazinvölkern, Dtsch. Bienen J. 1(1993) 18-20.

[85] Shutov N.N., Study of acaricidal properties ofsystemic phytopreparations in varroatosis ofbees, Soviet Agric. Sci. (1989) 52-54.

[86] Sidorov N.G., Stolbov N.M., Platukhina N., Theeffect of volatile oils of higher plants on the Var-roa parasite of honeybees, Veterinariya,Moscow, USSR (1977) 65-68 (in Russian).

[87] Smirnov A.M., Research results obtained inUSSR concerning etiology, pathogenesis, epi-zootiology, diagnosis and control of Varroa dis-ease, Apiacta 13 (1978) 149-162.

[88] Tonelli S., Sostanze naturali antivarroa se usatebene funzionano, Apitalia (1989) 11-12.

[89] Trouiller J., Moosbeckhofer R., Resistenz derVarroa gegen Pyrethroide, Bienenvater 118(1997) 6-9.

[90] Tüshaus M., Gaschromatographischer und sen-sorischer Thymolnachweis in Bienenhonig zurBeurteilung der Rückstandsproblematik bei derVarroabekämpfung mit ätherischen Ölen, Dis-sertation, Universität Hohenheim, 1993.

[91] Van der Steen J., Der Effekt einer Mischungätherischer Oele auf die Varroainfektion inBienenvölkern, Apidologie 23 (1992) 383.

[92] Vandame R., Colin M.E., Belcunces L. P., Jour-dan P., Résistance de varroa au fluvalinate,Abeilles et Fleurs (1995) 15-22.

[93] Vecchi M.A., Giordani G., Chemotherapy ofacarine disease. I. Laboratory tests, J. Invertebr.Pathol. 10 (1968) 390-416.

[94] Wallner A., Imkern heute - Meine Betriebsweise,die Varroakiller-Biene, Auslesekriterien, Wall-ner A., Randegg, 1990.

[95] Weiss E.A., Essential Oil Crop, CAB Interna-tional, Wallingford, UK, 1997.

[96] Wiedmer H., Wirksamkeit von Apistan gegenVarroa in der Schweiz, Schweiz. Bienenztg. 119(1996) 270.