Upsilon Production in Heavy Ions with STAR and CMS

28
Upsilon Production in Heavy Ions with STAR and CMS Manuel Calderón de la Barca Sánchez HIT Seminar Berkeley Lab September 18, 2012.

description

Upsilon Production in Heavy Ions with STAR and CMS. Manuel Calderón de la Barca Sánchez . HIT Seminar Berkeley Lab September 18, 2012. Outline. Bottomonium in heavy ion collisions Upsilon measurements in: STAR CMS Upsilon cross sections in p+p - PowerPoint PPT Presentation

Transcript of Upsilon Production in Heavy Ions with STAR and CMS

Page 1: Upsilon  Production in Heavy  Ions with  STAR and CMS

Upsilon Production inHeavy Ions with STAR

and CMS

Manuel Calderón de la Barca Sánchez

HIT SeminarBerkeley LabSeptember 18, 2012.

Page 2: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 2

Outline

• Bottomonium in heavy ion collisions• Upsilon measurements in:

– STAR– CMS

• Upsilon cross sections in p+p• Upsilon nuclear modification factors• Conclusions

9/18/12 HIT Seminar, Berkeley Lab

Page 3: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 3

Quarkonium in the QGP• Heavy quarkonia:

– Heavy quark bound state are probes of the hot QCD medium

– Debye screening • Matsui & Satz, PLB 178 416 (1986)

– Sequential Suppression• Digal et al., PRD 64 2001 094015

– Landau damping: Im V. • (e.g. Laine et al., JHEP 03 2007

054)

9/18/12 HIT Seminar, Berkeley Lab

TC<T0<T<TCT=0

ϒ

Page 4: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 4

High T: the interaction between the heavy quarks is modified.

• Charmonium suppression: longstanding QGP signature– Original idea: High T leads to

screening– Screening prevents heavy

quark bound states from forming.

– J/ysuppression: • Matsui and Satz, Phys. Lett. B 178

(1986) 416

– lattice calculations, indications of screening

• Nucl.Phys.Proc.Suppl.129:560-562,2004

– Note: Calculations of internal energy or internal energy

O. Kaczmarek, et al.,Nucl.Phys.Proc.Suppl.129:560-562,2004

9/18/12 HIT Seminar, Berkeley Lab

Page 5: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 5

The heavy quark potential in QCD• Recent news: Heavy quark potential from (quenched) Lattice QCD

– A.Rothkopf, et al. PRL 108 (2012) 162001

– Broadening due to collisions with medium (Im V) possibly more important than screening (Re V).

9/18/12 HIT Seminar, Berkeley Lab

Page 6: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 6

Measuring the Temperature

hep-ph/0110406

Dissociation temperatures of quarkonia statesLattice QCD Calculations: Quarkonia’s suppression

pattern QGP thermometer

• For production at RHIC and LHC– A cleaner probe compared to J/y

• co-mover absorption → negligible• recombination → negligible

– d-Au: Cold Nuclear Matter Effects• Shadowing / Anti-shadowing at y~0

• Challenge: low rate, rare probe– Large acceptance detector– Efficient trigger

• Expectation:– (1S) no melting– (2S) likely to melt– (3S) melts

A .Mocsy, 417th WE-Heraeus-Seminar,2008

9/18/12 HIT Seminar, Berkeley Lab

Page 7: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 7

J/y Puzzles from SPS and RHIC• Similar J/y suppression at the

SPS and RHIC!– despite 10× higher √sNN

• Suppression does not increase with local energy density– RAA(forward)<RAA(mid)

• Possible ingredients– cold nuclear matter effects– sequential melting– regeneration

• What happens for bottomonium?

9/18/12 HIT Seminar, Berkeley Lab

Page 8: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 8

Charmonium vs Bottomonium• J/y suppression

– Hot nuclear matter effects: Suppression? Regeneration? Co-mover absorption? Energy loss? Flow?

• Bottomonium Expectations– Cleaner probe of screening, deconfinement.– Regeneration?

• Not a big role for bottomonium• Open bottom: sbb ~ 1.34 – 1.84 mb.• Open charm: scc ~ 551 – 1400 mb.

– Co-mover absorption?• Expected to be small for bottomonium• Charmonium sabs ~ 3 – 4 mb.

• Bottmonium sabs ~ 1 mb. – Lin & Ko, PLB 503 104 (2001)

9/18/12 HIT Seminar, Berkeley Lab

Page 9: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 9

Upsilons in STAR

• Upsilons via Triggering, Calorimetry, Tracking, and matching of tracks to calorimeter towers.

9/18/12 HIT Seminar, Berkeley Lab

Page 10: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez10

The CMS Detector

9/18/12 HIT Seminar, Berkeley Lab

• ϒ event in CMS.

Page 11: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 11

in p+p 200 GeV in STAR

9/18/12 HIT Seminar, Berkeley Lab

∫L dt = 7.9 ± 0.6 pb-1

N(total)= 67±22(stat.)

Phys. Rev. D

82 (2010) 12004

∫L dt = 19.7 pb-1

N(total)= 145±26(stat.)

2006 2009

STAR Preliminary

Page 12: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 12

Comparison to NLO pQCD

• Comparison to NLO• STAR √s=200 GeV p+p ++→e+e- cross

section consistent with pQCD Color Evaporation Model (CEM)

9/18/12 HIT Seminar, Berkeley Lab

CEM

: R. V

ogt,

Phys

. Rep

. 462

125,

200

8C

SM: J

.P. L

ansb

erg

and

S. B

rods

ky, P

RD

81,

051

502,

201

0

Page 13: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 13

• Excellent resolution at midrapidity.

• Separation of 3 states.

9/18/12 HIT Seminar, Berkeley Lab

in p+p 7 TeV in CMS

PRD 83, 112004 (2011)

Page 14: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 14

vs √s, World Data

9/18/12 HIT Seminar, Berkeley Lab

STAR √s=200 GeV and CMS √s=7 TeV p+p ++→e+e- cross section consistent with pQCD and world data trend

STAR Preliminary

Page 15: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 15

in d+Au 200 GeV

9/18/12 HIT Seminar, Berkeley Lab

∫L dt = 32.6 nb-1

N+DY+bb(total)= 172 ± 20(stat.)Signal has ~8σ significancepT reaches ~ 5 GeV/c

STAR Preliminary

Final results on RdAu coming soon. LHC pPb run in January/February.

Page 16: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 16

in Au+Au 200 GeV

9/18/12 HIT Seminar, Berkeley Lab

Raw yield of e+e- with |y|<0.5 = 197 ± 36

∫L dt ≈ 1400 µb-1

Page 17: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 17

in Au+Au 200 GeV, Centrality

9/18/12 HIT Seminar, Berkeley Lab

Peripheral Central

STAR Preliminary

STAR Preliminary

STAR Preliminary

Page 18: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 18

Bottomonia at 2.76 TeV: 2010 datapp PbPbPRL 107 (2011) 052302

9/18/12 HIT Seminar, Berkeley Lab

Page 19: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 19

Bottomonia: 2011 datapp PbPb

Ratios not corrected for acceptance and efficiency

9/18/12 HIT Seminar, Berkeley Lab

Page 20: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 20

in Au+Au 200 GeV, RAA

9/18/12 HIT Seminar, Berkeley Lab M

odel

s fro

m M

. Stri

ckla

nd a

nd D

. Baz

ow, a

rXiv

:111

2.27

61v4

•Indications of Suppression of Upsilon(1S+2S+3S) getting stronger with centrality.•Reduced pp statistical uncertainties, increased statistics from 2009 data vs 2006 data.

Page 21: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 21

(2S)/(1S) Double Ratio, CMS• Separated (2S) and (3S)

• Measured (2S) double ratio vs. centrality– no strong centrality dependence

9/18/12 HIT Seminar, Berkeley Lab

Page 22: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 22

(1S) Nuclear Modification Factor: RAA

• CMS PbPb at 2.76 TeV• In 2010: 7.28 µb−1

– (1S) RAA, 3 centrality bins– JHEP 1205 (2012) 063

• In 2011: 150 µb−1

– (1S) RAA, 7 centrality bins

– First results on (2S) RAA

• Clear suppression of (2S)– (1S) suppression

• Consistent with excited state suppression only

• ~50% feed down

9/18/12 HIT Seminar, Berkeley Lab

CMS Preliminary,arXiv:1208.2826

Page 23: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 23

Comparison: RHIC and LHC• STAR measured RAA of

(1S+2S+3S) combined– arXiv:1109.3891– min. bias value:

• CMS: separate RAA for(1S) and (2S)– can calculate min. bias RAA

of (1S+2S+3S):

9/18/12 HIT Seminar, Berkeley Lab

CMS Preliminary,arXiv:1208.2826

Page 24: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 24

ϒ RAA Comparison to models I• Incorporating lattice-based potentials,

including real and imaginary parts– A: Free energy

• Disfavored, not shown. – B: Internal energy

• Consistent with data vs. Npart

• Includes sequential melting and feed-down contributions– ~50% feed-down from cb.

• Dynamical expansion, variations in initial conditions (T0, η/S)– Data indicate:

• 428 < T0 < 442 MeV at RHIC• 552 < T0 < 580 MeV at LHC • for 3 > 4pη/S > 1 •M

. Stri

ckla

nd, P

RL

107,

132

301

(201

1).

9/18/12 HIT Seminar, Berkeley Lab

Page 25: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 25

ϒ RAA Comparison to models II

• Weak vs. Strong Binding– Narrower spectral functions for “Strong”

case– Ratios of correlators compared to Lattice:

favor “Strong” binding case• Kinetic Theory Model

– Rate Equation: dissociation + regeneration– Fireball model: T evolution. T ~ 300 MeV

9/18/12 HIT Seminar, Berkeley Lab

StrongBindingWeakBinding

Page 26: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 26

ϒ RAA Comparison to models II

• Comparison to data for “Strong” binding:– Mostly consistent with data– Little regeneration: Final result ~ Primordial suppression– Large uncertainty in nuclear absorption. Need dAu, pPb.

9/18/12 HIT Seminar, Berkeley Lab

Eur. Phys. J. A (2012) 48: 72

Page 27: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 27

ϒ RAA pT and y dependence

• Indications that suppression is largest at low pT. and mid rapidity. – Need more statistics for firmer conclusions.

9/18/12 HIT Seminar, Berkeley Lab

Page 28: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 28

The bottom line...• STAR and CMS:

– suppression vs. Npart.– RAA consistent with suppression of feed

down from excited states only (~50%)• CMS: First measurement of

(2S) suppression– RAA((3S)) < 0.09 (95% C.L.)

• (1S) RAA consistent with suppression of feed down from excited states only (~50%)– Need more pp statistics to pin down

lower-pT double ratio– Pinning down the medium properties.

• Cold nuclear matter:– coming soon!

9/18/12 HIT Seminar, Berkeley Lab