Upscaling Quantifying alteration in creating geothermal ... › EGU2020 ›...

1
0.1 0.2 0.3 0.4 0.5 0 connected porosity [-] 0.6 10 -15 matrix permeability [m 2 ] 10 -14 10 -13 10 -12 10 -11 Pc = 1 MPa 10 -16 10 -17 10 -18 highly altered (quartz/adularia) highly altered (clay) slightly altered unaltered Upscaling laboratory measurements: Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources Michael Heap 1 ([email protected] @LDR_Strasbourg) Darren Gravley 2 , Ben Kennedy 2 , H. Albert Gilg 3 , Liz Bertolett 2 , and Shaun Barker 4 (1) Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST), 5 rue René Descartes, 67084 Strasbourg cedex, France (2) University of Canterbury, Christchurch, New Zealand, (3) Technische Universität München, Munich, Germany, (4) University of Tasmania, Australia W e s h o w u s i n g l a b o r a t o r y p h y s i c a l p r o p e r t y m e a s u r e m e n t s , a n d s o m e s i m p l e u p s c a l i n g c o n s i d e r a t i o n s , t h a t h y d r o t h e r m a l a l t e r a t i o n c a n c r e a t e e c o n o m i c a l l y v i a b l e g e o t h e r m a l a n d e p i t h e r m a l m i n e r a l ( A u - A g ) r e s o u r c e s 2 Experimental materials 2 Experimental methods Porosity measured using a helium pycnometer Permeability measured using nitrogen gas at a conining pressure of 1 MPa at at room temperature Uniaxial compressive strength measured using a uniaxial loadframe Young's modulus calculated from stress-strain data 3 Results 74% glass 21% plagiolcase 5% quartz 4 Discussion (b) (a) permeant gas (N 2 ) confining gas (N 2 ) pressure transducer gas flowmeter valve 3 permeant inlet upstream endcap spreader plate pressure vessel confining fluid inlet sample viton jacket downstream endcap permeant outlet 53% adularia 47% quartz 23% plagioclase 6% quartz 29% cristobalite 42% smectite 86% glass 9% plagioclase 5% quartz 1 Introduction Highly-altered, dense rock close to the Ohakuri Dam Unaltered and unlithiied parent material Large-scale hydrothermal convection, driven by magmatic heat, can create economically viable geothermal and epithermal mineral resources. Geothermal energy exploitation is most eficient at high temperatures and high low rates and requires a high-permeability reservoir and a low-permeability cap. High-grade epithermal deposits typically form in high-low (high permeability) zones and, in particular, when the low of hydrothermal luids is focussed within fractures. Our goal here is to understand, from a physical property perspective, how geothermal and epithermal mineral resources can develop in an ignimbrite. Our case study site is the Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand), which hosts a palaeo-hydrothermal system that is now accessible for sampling. We provide physical property measurements for a range of variably altered samples and show how alteration can provide both a permeable reservoir and a low-permeability cap. Hydrothermal alteration (siliciication) signiicantly reduces matrix permeability Slight alteration or alteration to smectite does not signiicantly change matrix permeability Our results also show that siliciication increases the propensity for permeability-enhancing fracture formation. Indeed, we see many fractures in the highly-altered deposit, and essentially no fractures in the unaltered, parent material We use a simple two-dimensional model that considers low in parallel layers (see Heap and Kennedy, 2016) to upscale our laboratory data We ind that highly-altered rock masses are more permeable (despite their low matrix permeability) than moderately-altered rock masses or rock masses characterised by smectite alteration We therefore show, from a rock physical property perspective, how hydrothermal alteration can produce a high-permeability reservoir and a low-permeability cap required for a viable geothermal resource and the focussed low required for a viable epithermal mineral resource 0.1 0.2 0.3 0.4 0.5 0 connected porosity [-] 0.6 0.1 0.2 0.3 0.4 0.5 0 total porosity [-] 0.6 highly altered - quartz-adularia (0 wt.% glass) highly altered - clay (0 wt.% glass) slightly altered (74 wt.% glass) 1:1 0 10 20 30 40 50 60 70 80 axial stress [MPa] 0.2 0.4 0.6 0 0.8 1.0 1.2 1.4 1.6 axial strain [%] 2A 2D TF3 2C TF2 2B 0.1 0.2 0.3 0.4 0.5 0 connected porosity [-] 0.6 uniaxial compressive strength [MPa] 0 10 20 30 40 50 60 70 80 90 100 b) a) highly altered (quartz/adularia) highly altered (clay) slightly altered unaltered 0.1 0.2 0.3 0.4 0.5 0 connected porosity [-] 0.6 Young's modulus [GPa] 0 2 4 6 8 10 12 14 16 18 20 highly altered (quartz/adularia) highly altered (clay) slightly altered 1 2 3 4 5 0 axial strain [%] 6 7 120 100 80 60 40 20 0 differential stress [MPa] Peff = 20 MPa 5 MPa 5 MPa highly altered (2A) slightly altered (2B) 5 10 15 0 fracture density [m -1 ] 20 10 -15 equivalent permeability [m 2 ] 10 -14 10 -13 10 -12 Pc = 1 MPa 10 -16 highly altered (2A) slightly altered (2B) 2A fracture density surface highly altered (clay) low fracture density lower permeability (~10 -14 m 2 ) highly altered (silicified) high fracture density higher permeability (~10 -13 m 2 ) S N channelised flow Maps showing the location of the Ohakuri ignimbrite (Gravley et al., 2007; doi: 10.1130/B25924.1) Permeameter (modiied from Heap and Kennedy, 2016; doi: 10.1016/j.epsl.2016.05.004) bottom plate LVDT for measuring axial displacement actuator piston sample perspex casing Uniaxial loadframe (Heap et al., 2020; doi: 10.1016/j.jvolgeores.2019.106684) There is no isolated porosity in the studied materials Permeability is reduced by up to four orders of magnitude as a result of alteration Young's modulus increases by up to a factor of ten as a result of alteration Uniaxial compressive strength increases by up to a factor of ten as a result of alteration We also performed triaxial deformation experiments Highly-altered samples are brittle over a range of pressures (depths) Slightly-altered samples are ductile at low pressure (depth) Large fractures in the highly-altered deposit Photo credit: M.J. Heap Heap, M. J., Gravley, D. M., Kennedy, B. M., Gilg, H. A., Bertolett, E., & Barker, S. L. (2020). Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: The Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand). Journal of Volcanology and Geothermal Research, 390, 106703 doi: 10.1016/j.jvolgeores.2019.106703 Unless otherwise stated, all images are from:

Transcript of Upscaling Quantifying alteration in creating geothermal ... › EGU2020 ›...

Page 1: Upscaling Quantifying alteration in creating geothermal ... › EGU2020 › EGU2020-7237_presentation.pdfof hydrothermal alteration in creating geothermal and epithermal mineral resources:

0.1 0.2 0.3 0.4 0.50

connected porosity [-]0.6

10-15

mat

rix p

erm

eabi

lity

[m2 ]

10-14

10-13

10-12

10-11

Pc = 1 MPa

10-16

10-17

10-18

highly altered (quartz/adularia)

highly altered (clay)

slightly altered

unaltered

Upscalinglaboratorymeasurements:QuantifyingtheroleofhydrothermalalterationincreatinggeothermalandepithermalmineralresourcesMichaelHeap1([email protected]@LDR_Strasbourg)DarrenGravley2,BenKennedy2,H.AlbertGilg3,LizBertolett2,andShaunBarker4(1)GéophysiqueExpérimentale,InstitutdePhysiquedeGlobedeStrasbourg(UMR7516CNRS,UniversitédeStrasbourg/EOST),5rueRenéDescartes,67084Strasbourgcedex,France(2)UniversityofCanterbury,Christchurch,NewZealand,(3)TechnischeUniversitätMünchen,Munich,Germany,(4)UniversityofTasmania,Australia

Weshowusinglaboratoryphysicalpropertymeasurements,andsomesimpleupscalingconsiderations,thathydrothermalalterationcancreateeconomicallyviablegeothermalandepithermalmineral(Au-Ag)resources

2 Experimentalmaterials

2 Experimentalmethods

PorositymeasuredusingaheliumpycnometerPermeabilitymeasuredusingnitrogengasatacon�iningpressureof1MPaatatroomtemperature

Uniaxialcompressivestrengthmeasuredusingauniaxialloadframe

Young'smoduluscalculatedfromstress-straindata

3 Results

74%glass21%plagiolcase5%quartz

4 Discussion

(b)

(a)pe

rme

an

t g

as

(N2)

con

finin

gg

as

(N2)

pressure transducer

gas flowmeter

valve

3

permeant inlet

upstream endcap

spreader plate

pressure vessel

confining fluid inlet

sample

viton jacket

downstream endcap

permeant outlet

53%adularia47%quartz

23%plagioclase6%quartz

29%cristobalite42%smectite

86%glass9%plagioclase5%quartz

1 Introduction

Highly-altered,denserockclosetotheOhakuriDam Unalteredandunlithi�iedparentmaterial

Large-scalehydrothermalconvection,drivenbymagmaticheat,cancreateeconomicallyviablegeothermalandepithermalmineralresources.Geothermalenergyexploitationismostef�icientathightemperaturesandhigh�lowratesandrequiresahigh-permeabilityreservoirandalow-permeabilitycap.High-gradeepithermaldepositstypicallyforminhigh-�low(highpermeability)zonesand,inparticular,whenthe�lowofhydrothermal�luidsisfocussedwithinfractures.

Ourgoalhereistounderstand,fromaphysicalpropertyperspective,howgeothermalandepithermalmineralresourcescandevelopinanignimbrite.OurcasestudysiteistheOhakuriignimbrite(TaupōVolcanicZone,NewZealand),whichhostsapalaeo-hydrothermalsystemthatisnowaccessibleforsampling.Weprovidephysicalpropertymeasurementsforarangeofvariablyalteredsamplesandshowhowalterationcanprovidebothapermeablereservoirandalow-permeabilitycap.

Hydrothermalalteration(silici�ication)signi�icantlyreducesmatrixpermeability

Slightalterationoralterationtosmectitedoesnotsigni�icantlychangematrixpermeabilityOurresultsalsoshowthatsilici�icationincreasesthepropensityforpermeability-enhancingfractureformation.Indeed,weseemanyfracturesinthehighly-altereddeposit,andessentiallynofracturesintheunaltered,parentmaterialWeuseasimpletwo-dimensionalmodelthatconsiders�lowinparallellayers(seeHeapandKennedy,2016)toupscaleourlaboratorydata

We�indthathighly-alteredrockmassesaremorepermeable(despitetheirlowmatrixpermeability)thanmoderately-alteredrockmassesorrockmassescharacterisedbysmectitealteration

Wethereforeshow,fromarockphysicalpropertyperspective,howhydrothermalalterationcanproduceahigh-permeabilityreservoirandalow-permeabilitycaprequiredforaviablegeothermalresourceandthefocussed�lowrequiredforaviableepithermalmineralresource

0.1 0.2 0.3 0.4 0.50

connected porosity [-]0.6

0.1

0.2

0.3

0.4

0.5

0

tota

l por

osity

[-]

0.6

highly altered - quartz-adularia (0 wt.% glass)

highly altered - clay (0 wt.% glass)

slightly altered (74 wt.% glass)

1:1

0

10

20

30

40

50

60

70

80

axia

l str

ess

[MP

a]

0.2 0.4 0.60 0.8 1.0 1.2 1.4 1.6

axial strain [%]

2A

2D

TF32C

TF2

2B

0.1 0.2 0.3 0.4 0.50

connected porosity [-]0.6

unia

xia

l com

pres

sive

str

eng

th [M

Pa]

0

10

20

30

40

50

60

70

80

90

100

b)

a)

highly altered (quartz/adularia)

highly altered (clay)

slightly altered

unaltered

0.1 0.2 0.3 0.4 0.50

connected porosity [-]0.6

You

ng's

mod

ulu

s [G

Pa]

0

2

4

6

8

10

12

14

16

18

20

highly altered (quartz/adularia)

highly altered (clay)

slightly altered

1 2 3 4 50

axial strain [%]

6 7

120

100

80

60

40

20

0

diffe

rent

ial s

tres

s [M

Pa]

Peff = 20 MPa

5 MPa

5 MPa

highly altered (2A)

slightly altered (2B)

5 10 150

fracture density [m-1]20

10-15

equi

vale

nt p

erm

eabi

lity

[m2 ]

10-14

10-13

10-12

Pc = 1 MPa

10-16

highly altered (2A)

slightly altered (2B)

2A fracture den

sity

surface

highly altered (clay)

low fracture density

lower permeability (~10-14 m2)

highly altered (silicified)

high fracture density

higher permeability (~10-13 m2)

S Nchannelised flow

MapsshowingthelocationoftheOhakuriignimbrite(Gravleyetal.,2007;doi:10.1130/B25924.1)

Permeameter(modi�iedfromHeapandKennedy,2016;

doi:10.1016/j.epsl.2016.05.004)

bottomplate

LVDTformeasuringaxial

displacement

actuatorpiston

sample

perspexcasing

Uniaxialloadframe(Heapetal.,2020;

doi:10.1016/j.jvolgeores.2019.106684)

ThereisnoisolatedporosityinthestudiedmaterialsPermeabilityisreducedbyuptofourordersofmagnitudeasaresultofalteration

Young'smodulusincreasesbyuptoafactoroftenasaresultofalteration

Uniaxialcompressivestrengthincreasesbyuptoafactoroftenasaresultofalteration

Wealsoperformedtriaxialdeformationexperiments

Highly-alteredsamplesarebrittleoverarangeofpressures(depths)

Slightly-alteredsamplesareductileatlowpressure(depth)

Largefracturesinthehighly-altereddepositPhotocredit:M.J.Heap

Heap,M.J.,Gravley,D.M.,Kennedy,B.M.,Gilg,H.A.,Bertolett,E.,&Barker,S.L.(2020).Quantifyingtheroleofhydrothermalalterationincreatinggeothermalandepithermalmineralresources:TheOhakuriignimbrite

(TaupōVolcanicZone,NewZealand).JournalofVolcanologyandGeothermalResearch,390,106703

doi:10.1016/j.jvolgeores.2019.106703

Unless otherwise stated, all images are from: