Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

21
Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 11, 2002, pp. 39-59. Copyright ©TÜB‹TAK 39 Upper Cretaceous Stratigraphy of the Bey Da¤lar› Carbonate Platform, Korkuteli Area (Western Taurides, Turkey) B‹LAL SARI & SAC‹T ÖZER Department of Geological Engineering, Faculty of Engineering, Dokuz Eylül University, Bornova, TR-35100 ‹zmir - TURKEY (e-mail: [email protected]) Abstract: The Upper Cretaceous Korkuteli (Antalya) carbonate sequence of the Bey Da¤lar› autochthonous unit (western Taurides) comprises two formations. The Cenomanian-Santonian Bey Da¤lar› formation lies at the base of this sequence and can be divided into two parts. Neritic part is characterized by platform-type, peritidal limestones and comprises an approximately 600-m-thick sequence that contains two main rudistid horizons corresponding to Cenomanian and early Santonian. The neritic limestones pass gradually upward into the 15-m- thick, middle-upper Santonian massive hemipelagic limestones that form the upper part. The upper Campanian- middle Maastrichtian Akda¤ formation consists totally of pelagic limestones that indicate basinal conditions and disconformably overlies different stratigraphic levels of the Bey Da¤lar› formation. Palaeogene pelagic marls form the base of the Tertiary sequence and disconformably overlie different stratigraphic levels of the Upper Cretaceous sequence. The presence of two erosional phases in the Upper Cretaceous sequence is obvious. The autochthonous unit was subaerially exposed after post-Santonian and middle Maastrichtian regressions. Key Words: Upper Cretaceous, Bey Da¤lar›, carbonate platform, erosion, planktonic foraminifera Bey Da¤lar› Karbonat Platformunun Üst Kretase Stratigrafisi, Korkuteli Bölgesi (Bat› Toroslar, Türkiye) Özet: Bey Da¤lar› otoktonunun (Bat› Toroslar) Korkuteli (Antalya) bölgesindeki Üst Kretase karbonat istifi iki formasyon içerir. Senomaniyen-Santoniyen yafll› Bey Da¤lar› formasyonu istifin taban›nda yer al›r ve iki bölümden oluflur. Alttaki Senomaniyen-erken Santoniyen yafll› neritik bölüm, gelgit ortam›nda çökelmifl, platform karbonatlar›ndan oluflur ve yaklafl›k 600 m kal›nl›¤›nda bir istif oluflturur. Bu istif Senomaniyen ve erken Santoniyen’e karfl›l›k gelen iki rudist resifi içerir. Senomaniyen rudist resifi radiolitid ve caprinid’lerden yap›l›d›r ve 10 m kal›nl›¤a sahiptir. Yanal yönde sürekli olan alt Santoniyen rudist resifi ise hippuritid’lerden yap›l›d›r ve 20 m kal›nl›¤a sahiptir. Senomaniyen yafll› düzeylerde rudistlere efllik eden bentonik foraminiferler çeflitlilik aç›s›ndan fakir ancak birey say›s› bak›m›ndan zengindirler. Senomaniyenin üstündeki düzeylerde ise hem tür çeflitlili¤i hem de birey say›s› oldukça s›n›rl›d›r. Neritik kireçtafllar› üste do¤ru dereceli olarak Bey Da¤lar› formasyonunun üst bölümünü oluflturan 15 m kal›nl›¤›ndaki, planktonik foraminifer içeren yar› pelajik massif kireçtafllar›na geçer. Santoniyen sonras› regresyonu ve afl›nman›n ard›ndan, havza koflullar›nda çökelmifl, transgresif Akda¤ formasyonu, Bey Da¤lar› formasyonunun farkl› stratigrafik düzeylerini belirgin bir erozyon yüzeyi ile, koflut uyumsuz olarak üstler. ‹nce katmanl› çörtlü kireçtafllar›nda oluflan, 75 m kal›nl›¤›ndaki formasyon, geç Kampaniyen-orta Maastrihtiyen yafl›n› veren zengin bir planktonik foraminifer faunas› içerir. Bölgedeki ikinci regresyon orta Maastrihtiyen sonunda gerçekleflmifltir ve Alt Kretase’ye ait karbonatlar büyük oranda afl›nm›fllard›r. Planktonik foraminifer içeren Paleojen yafll› transgresif marnlar, Üst Kretase istifinin farkl› stratigrafik düzeylerini koflut uyumsuz olarak üstler. Anahtar Sözcükler: Üst Kretase, Bey Da¤lar›, karbonat platformu, afl›nma, planktonik foraminifer

Transcript of Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

Page 1: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 11, 2002, pp. 39-59. Copyright ©TÜB‹TAK

39

Upper Cretaceous Stratigraphy of the Bey Da¤lar›Carbonate Platform, Korkuteli Area

(Western Taurides, Turkey)

B‹LAL SARI & SAC‹T ÖZER

Department of Geological Engineering, Faculty of Engineering, Dokuz Eylül University, Bornova,TR-35100 ‹zmir - TURKEY (e-mail: [email protected])

Abstract: The Upper Cretaceous Korkuteli (Antalya) carbonate sequence of the Bey Da¤lar› autochthonous unit(western Taurides) comprises two formations. The Cenomanian-Santonian Bey Da¤lar› formation lies at the baseof this sequence and can be divided into two parts. Neritic part is characterized by platform-type, peritidallimestones and comprises an approximately 600-m-thick sequence that contains two main rudistid horizonscorresponding to Cenomanian and early Santonian. The neritic limestones pass gradually upward into the 15-m-thick, middle-upper Santonian massive hemipelagic limestones that form the upper part. The upper Campanian-middle Maastrichtian Akda¤ formation consists totally of pelagic limestones that indicate basinal conditions anddisconformably overlies different stratigraphic levels of the Bey Da¤lar› formation. Palaeogene pelagic marls formthe base of the Tertiary sequence and disconformably overlie different stratigraphic levels of the Upper Cretaceoussequence. The presence of two erosional phases in the Upper Cretaceous sequence is obvious. The autochthonousunit was subaerially exposed after post-Santonian and middle Maastrichtian regressions.

Key Words: Upper Cretaceous, Bey Da¤lar›, carbonate platform, erosion, planktonic foraminifera

Bey Da¤lar› Karbonat Platformunun Üst Kretase Stratigrafisi,Korkuteli Bölgesi (Bat› Toroslar, Türkiye)

Özet: Bey Da¤lar› otoktonunun (Bat› Toroslar) Korkuteli (Antalya) bölgesindeki Üst Kretase karbonat istifi ikiformasyon içerir. Senomaniyen-Santoniyen yafll› Bey Da¤lar› formasyonu istifin taban›nda yer al›r ve iki bölümdenoluflur. Alttaki Senomaniyen-erken Santoniyen yafll› neritik bölüm, gelgit ortam›nda çökelmifl, platformkarbonatlar›ndan oluflur ve yaklafl›k 600 m kal›nl›¤›nda bir istif oluflturur. Bu istif Senomaniyen ve erkenSantoniyen’e karfl›l›k gelen iki rudist resifi içerir. Senomaniyen rudist resifi radiolitid ve caprinid’lerden yap›l›d›r ve10 m kal›nl›¤a sahiptir. Yanal yönde sürekli olan alt Santoniyen rudist resifi ise hippuritid’lerden yap›l›d›r ve 20 mkal›nl›¤a sahiptir. Senomaniyen yafll› düzeylerde rudistlere efllik eden bentonik foraminiferler çeflitlilik aç›s›ndanfakir ancak birey say›s› bak›m›ndan zengindirler. Senomaniyenin üstündeki düzeylerde ise hem tür çeflitlili¤i hem debirey say›s› oldukça s›n›rl›d›r.

Neritik kireçtafllar› üste do¤ru dereceli olarak Bey Da¤lar› formasyonunun üst bölümünü oluflturan 15 mkal›nl›¤›ndaki, planktonik foraminifer içeren yar› pelajik massif kireçtafllar›na geçer.

Santoniyen sonras› regresyonu ve afl›nman›n ard›ndan, havza koflullar›nda çökelmifl, transgresif Akda¤formasyonu, Bey Da¤lar› formasyonunun farkl› stratigrafik düzeylerini belirgin bir erozyon yüzeyi ile, koflutuyumsuz olarak üstler. ‹nce katmanl› çörtlü kireçtafllar›nda oluflan, 75 m kal›nl›¤›ndaki formasyon, geçKampaniyen-orta Maastrihtiyen yafl›n› veren zengin bir planktonik foraminifer faunas› içerir.

Bölgedeki ikinci regresyon orta Maastrihtiyen sonunda gerçekleflmifltir ve Alt Kretase’ye ait karbonatlar büyükoranda afl›nm›fllard›r. Planktonik foraminifer içeren Paleojen yafll› transgresif marnlar, Üst Kretase istifinin farkl›stratigrafik düzeylerini koflut uyumsuz olarak üstler.

Anahtar Sözcükler: Üst Kretase, Bey Da¤lar›, karbonat platformu, afl›nma, planktonik foraminifer

Page 2: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

Introduction

The study area is located around the Korkuteli district ofAntalya, southwestern Turkey (Figure 1). The area coversan area of ~25 km2 between Korkuteli and Ulucak(formerly Simand›r) on the northern flank of the BeyDa¤lar› autochthonous unit that is bounded on the westby the Lycian nappes, and on the east by the Antalyanappes. The Upper Cretaceous carbonate sequence of theKorkuteli area contains facies variations and widespreadstratigraphic gaps (Poisson 1967, 1977; Farinacci &Köylüo¤lu 1982; Özye¤in et al. 1985; Farinacci & Yeniay1986; Gültekin 1986; Köylüo¤lu 1987; Özkan &Köylüo¤lu 1988; Naz et al. 1992). In order to elucidatethe precise age of the rocks beneath and above thedisconformity surfaces, detailed (1/25,000 and 1/10,000in scale) geological mapping was carried out and morethan 40 closely spaced stratigraphic sections weremeasured. Five representative sections are presented inthis paper (Figure 2). Field observations and thin-sectionstudy have yielded important stratigraphic andpalaeontological data. Planktonic foraminifera and rudistshave been the source of the main palaeontological dataused in reappraising the age of the Upper Cretaceouscarbonates.

Geological Setting

The Jurassic-Cretaceous Taurus sediments, that is, theautochthonous part of the Alpine Taurus belt, weredeposited in shallow water on the unstable northern-northwestern palaeomargin of the Arabian-African plate.In Mesozoic times, this was part of the same sedimentaryfacies as the rest of Taurides and Zagrides to the east andthe Hellenides and Dinarides to the west, as well as theother shelves of the northern African palaeomargin, suchas the Apennines (Farinacci & Köylüo¤lu 1982; Farinacci& Yeniay 1986).

The Bey Da¤lar› is an important fragment rifted, withthe Anatolian block (Taurus platforms) away from thenorthern margin of Gondwana in two steps: first, duringthe Permo-Triassic, there was a general break-up of theGondwana margin, and then there was a second eventduring the Early Cretaceous opening of the easternMediterranean basin. This second event completelyseparated the Bey Da¤lar› fragment from the motherplate (i.e., the Africa plate). Permo-Triassic riftingseparated the Bey Da¤lar› fragment from the Anatolian

fragment but not completely from the Gondwana/Africaplate (Poisson 2001). Regional compression began in thelatest Cretaceous (Maastrichtian), and the deep-waterpassive margins of the carbonate platforms weredeformed and thrust-imbricated (Robertson 1993).

The Bey Da¤lar› autochthonous unit oriented, NE-SWdirection, is a segment of a Mesozoic Tethyan platform onwhich carbonate accumulation persisted until the EarlyMiocene. This segment was thrust over to the east by theAntalya nappes and to the northwest by the Lyciannappes, and is partially exposed in the Göcek windows(Naz et al. 1992) (Figure 1).

Many studies that have focused on the Bey Da¤lar›carbonate platform have found that sequences arecharacterized by breaks in deposition and importantfacies variations in both neritic and pelagic carbonates(Poisson 1967, 1977; Özgül 1976, 1977; Gutnic etal.1979; Farinacci & Köylüo¤lu 1982; Özye¤in et al.1985; Farinacci & Yeniay 1986; Gültekin 1986;Köylüo¤lu 1987; Özkan & Köylüo¤lu 1988; Naz et al.1992).

According to Günay et al. (1982), Triassic dolomiteslie at the bottom of the carbonate sequence of theautochthonous unit and the Beyda¤› formationgradationally overlies the dolomites and forms a thickmonotonous sequence (910 to 2500 m), extending fromLower Jurassic to Upper Cretaceous. The thickness of thismonotonous carbonate sequence exceeds 3000 m in drillholes (André Poisson, personal communication 2001).

The Cenomanian deposits of the Bey Da¤lar› aretypically of the marine-open platform type (rudistaccumulations and reefs) and the major part of the BeyDa¤lar› (especially the northern part) subsided during theTuronian and were invaded by pelagic deposits. Pelagicsedimentation persisted there until the Oligocene(Poisson et al. 1983). These carbonates are typical of ashelf environment and contain a rich benthic foraminiferaland rudist fauna (Bignot & Poisson 1974; Poisson 1977;Farinacci & Köylüo¤lu 1982; Özye¤in et al. 1985;Farinacci & Yeniay 1986; Gültekin 1986; Köylüo¤lu1987; Özkan & Köylüo¤lu 1988; Özer 1988; Naz et al.1992).

The presence of benthic foraminifera and calcispheressuggests a Cenomanian to- ? early Turonian age for theuppermost levels of the Bey Da¤lar› formation (Özkan &Köylüo¤lu 1988).

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

40

Page 3: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

B. SARI & S. ÖZER

41

BE

YD

A

LA

RI

AU

TO

CH

TH

ON

BE

YD

A

LA

RI

AU

TO

CH

TH

ON

Figu

re 1

.M

aps

show

ing

(a)

the

mai

n te

cton

ic b

elts

of t

he w

este

rn T

aurid

es (s

impl

ified

from

Poi

sson

et a

l.19

83; s

ee in

set f

or lo

catio

n), a

nd (

b)th

e lo

catio

n of

the

stud

y ar

ea. 1

– U

pper

Mio

cene

-Q

uate

rnar

y po

st-c

ompr

essi

onal

tect

onic

form

atio

ns, 2

– N

eoge

ne fo

rmat

ions

pre

ceed

ing

the

Aksu

com

pres

sion

al e

vent

, 3–

Low

er a

nd M

iddl

e M

ioce

ne o

f the

Bey

Da¤

lar›

Auto

chth

on,

4– B

ey D

a¤la

r› au

toch

thon

(U

pper

Tria

ssic

to

Olig

ocen

e),

5– A

ntal

ya n

appe

s, a

nd 6

– Ly

cian

nap

pes.

Page 4: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

The Akda¤ formation of Coniacian-Maastrichtian ageis represented by planktonic foraminifera-bearing, thin-bedded, clayey limestones with chert nodules, anddisconformably overlies the Bey Da¤lar› formation(Poisson 1977; Farinacci & Köylüo¤lu 1982; Özye¤in etal. 1985; Farinacci & Yeniay 1986; Gültekin 1986;Köylüo¤lu 1987; Özkan & Köylüo¤lu 1988; Naz et al.1992). The same authors state that the hiatus betweenthe Bey Da¤lar› and Akda¤ formations corresponds to theearly Turonian to Maastrichtian. Poisson (1967, 1977) isthe only author to report the presence of Santonian-lower Campanian rudistid neritic limestones from theKorkuteli area.

The Tertiary is represented by various formations, ofdifferent lithologies and ages (Poisson 1977; Özye¤in etal. 1985; Özkan & Köylüo¤lu 1988). Palaeogene pelagicmarls form the base of the Tertiary sequence, anddisconformably overlie different levels of the underlyingtwo formations.

Stratigraphy

The Upper Cretaceous sequence of the Bey Da¤lar›autochthonous unit comprises two formations in theKorkuteli area (Figures 2 & 3). The Cenomanian-Santonian Bey Da¤lar› formation lies at the base and isdisconformably overlain by the upper Campanian-middleMaastrichtian Akda¤ formation along an erosionalsurface. As mentioned above, Palaeogene pelagic marlsform the base of the Tertiary sequence anddisconformably overlies different stratigraphic levels oftwo Upper Cretaceous formations.

Upper Cretaceous

Bey Da¤lar› Formation

Description and Depositional Environment – Poisson(1977) named the Cenomanian rudistid limestones in theKatran Da¤ as the Ya¤ca Köy formation, however he didnot name the Santonian rudistid limestones. Günay et al.(1982) described the neritic limestones ranging fromLower Jurassic to Upper Cretaceous, as the Beyda¤›formation and noted that the Beyda¤› formationgradationally overlies the Upper Triassic dolomites.

Later, some researchers used Beyda¤› formation(Erakman et al. 1982; Naz et al. 1992) and others usedBey Da¤lar› formation (Özye¤in et al. 1985; Gültekin

1986; Özkan & Köylüo¤lu 1988) for the Jurassic toCenomanian neritic limestones.

In this study, because of their lithologic similarity, theBey Da¤lar› formation is used for the neritic limestones ofCenomanian-early Santonian age and the overlyinghemipelagic limestones of middle-late Santonian age(Figures 2 & 3). The formation is recognizable by itstypical prominent high relief and forms K›z›lçamda¤ thatextends from SW to NE through the study area (Figure2).

The Bey Da¤lar› formation can be divided into twoparts (Figures 2 & 3). Neritic limestones of Cenomanian-early Santonian age lie at the base and hemipelagiclimestones of middle-late Santonian age at the top. Theneritic part of the formation is approximately 600-m-thick and is generally made up of cream coloured,massive, mainly medium- to thickly but locally thinlybedded limestones.

In the neritic limestones, two main rudistid horizonshave been identical, one of which is observed in theCenomanian limestones and distinguished fromunderlying and overlying medium- to thickly beddedlimestones by its massive structure (Figure 3). It is about10-meters-thick and can be traced laterally for 70-80 m.The unique outcrop is in the Bozcalar Dere (Figure 2).The other horizon is observed within the Santonianlimestones and is about 20-m-thick. This horizon iscomposed of thickly or massively bedded limestones andgenerally forms high relief in outcrop profile. Theserudistid level is more widespread and distinctive ascompared to the Cenomanian reefs, and is especiallyprevalent in the western part of Kargal›köy (NE part ofthe study area) (Figure 2).

Microfacies studies on the neritic limestones havedetermined five main microfacies and relatedmicroenvironments that are gradational, both laterallyand vertically. These microfacies are: (1) laminatedpelsparitic/pelmicritic and fenestral micritic microfacies,(2) an alternation of cryptalgal and pelsparite/pelmicritelamina microfacies, (3) sparse benthonic foraminiferabearing pelsparitic/pelmicritic microfacies, (4) benthicforaminifera-bearing biomicritic microfacies, and (5)rudist fragment-bearing biosparitic/biomicriticmicrofacies. These microfacies are the result ofdeposition in supratidal, intertidal, tidal ponds, tidalchannel, subtidal (lagoonal), and reef and fore-reefsubenvironments (Wilson 1975; Sar› & Özer 2001).

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

42

Page 5: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

The faunal turnover during the Santonian, from rudistand benthic foraminifera to planktonic foraminifera, andgradual facies change indicate a slight drowning of theplatform which produced hemipelagic conditions on theplatform until the end of the Santonian. The limestonesdeposited under hemipelagic conditions are massive,cream-coloured, fractured and contain sparse planktonicforaminifera and abundant spheroidal forms. The neritic

and hemipelagic limestones are both massive and cream-coloured and nearly the same in appearance. In thinsections of samples coming from at and near the contact,benthic and planktonic fauna are found together (Figure4a, b; samples 76, 30-32). The maximum thickness ofthe hemipelagic levels was measured at the ÇakmakKerti¤i locality as about 15 m (Figure 4b).

B. SARI & S. ÖZER

43

50 10

3037

30

30

4070

4530

50

50

Kaklýk Tepe

Kargalýköy

Orta Tepe?

Çakmak Kertiði

Meydandüz Tepe

45

5530

6070

Yörükalan

50

1406

Hacýemin Çiftliði

Fedil Dere

to Fethiye

70

45

Küçüktepe

1374

45

30

50

40 20

70

7570

50

50

Savran Ekinliði

7070

10

50

60

1277

1501

1501

48 50

00

02

Boztaþ Tepe1803

to Korkuteli(3 km)

to Ulucak(3 km)

N

0 500 m

Binge

çitDer

e

Bozcalar Dere

KI

ZI

L

ÇA

M

D

A

Ð

06

04

4442

+

+

+

+

+

+

20

50

Kargalýk Boðazý

3

2

1

4

5

Terrace

Erosional Surface

Section line andsection number

Cenomanian rudist reef

Cenomanianbenthonic foraminifera

Santonian rudist reef

Strike and dip of bedding

Stream

Peak of hill

Road

Explanation for all figures

Rudist biostrome

Individual rudist

Rudist fragmentLate Cretaceousplanktonic foraminifera

Tertiaryplanktonic foraminifera

Benthonic foraminifera

Stromatolitic lamination

Fault

Middle-LateSantonian

Tertiary (undifferentiated)

Quaternary

Middle Maastrichtian-Upper Campanian

Lower Santonian-Cenomanian

Bey

Dað

larý

fm.

Akd

aðfm

.

Conglomerate

Pelagic marls at the base

Massive hemipelagic limestones

Thick-bedded neritic limestones

Thin-bedded chertypelagic limestones

4

Figure 2. Geological map of the Korkuteli area (between Korkuteli and Ulucak). The Tertiary sequence is undifferentiated because of the scale.Palaeogene pelagic marls form the base of the Tertiary sequence.

Middle-UpperSantonianLower Santon-ian-

Page 6: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

44

ME

SO

ZO

IC

CE

NO

ZO

IC

CR

ET

AC

EO

US

Up

pe

rC

re

tac

eo

us

Cen

oman

ian

Tur

onia

n(?

)C

onia

cian

(?)

San

toni

anU

.Cam

pani

an-

M.M

aast

rich

tian

Akd

aðB

ey

Da

ðla

PAL

EO

GE

NE

TE

RT

IAR

Y

600

1575

250

DISCONFORMITY

DISCONFORMITY

Pelagic marls

Thinly to medium bedded pelagic clayeylimestones with chert nodules.

Massive hemipelagic limestones

Massively or thickly bedded limestoneswith rudist reef

Medium to thickly sometimes thinlybedded neritic limestones and dolomiticlimestones with stromatolitic laminationand rudist biostromes

Massively bedded limestones withrudist reef

FO

RM

AT

ION

STA

GE

SE

RIE

S

SY

ST

EM

ER

A

-QUAT.P

leis

t.

LIT

HO

LO

GY

FO

SS

IL EXPLANATIONS

TH

ICK

NE

SS

?

ANGULAR UNCONFORMITYReddish conglomerates

SY

MB

OL

PC

KA

KB

PA

LA

EO

GE

NE

Figure 3. Generalized columnar section of the study area (see Figure 2 for explanation).

Page 7: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

Age and Fossil Content – Benthic foraminifera and rudistsare the unique fossil components to use in dating theneritic limestones of the Bey Da¤lar› formation. TheCenomanian part of the formation is rich in benthicforaminifera, specifically, it is rich in number ofindividuals but poor in diversity because of the restrictingenvironmental conditions. The following fauna indicatinga Cenomanian age has been determined for the unit (Sar›

1999): Pseudedomia viallii (COLALONGO), Chrysalidinagradata d’ORBIGNY, Pseudolituonella reicheli MARIE,Pseudorhapydionina dubia (de CASTRO), P. cf. laurinensis(de CASTRO), Nummoloculina sp., Nezzazata sp. andCuneolina sp. Similar benthic foraminifer associationswere reported from the Cenomanian of the Korkuteliarea (Çakmak Kerti¤i locality, west of Kargal›köy) byPoisson (1967, 1977) and Gutnic et al. (1979), and from

B. SARI & S. ÖZER

45

NW

SE

9291

9089

88

85

80

7576

70

65

62

3,5 m

a) SECTION-4

Pelagic limestones of theAkdað formation(late Campanian)

Hemipelagic limestones of theBey Daðlarý formation(middle-late Santonian)

Neritic limestones of theBey Daðlarý formation(early Santonian)

Transitional contact:benthonic and planktonicfauna exist together

Erosional surface

NW

SE5 m

1 5 1617

1820

25

3032

Fethiye-Korkuteliroad

b) SECTION-5

Rudist reef(early Santonian)

Hemipelagic limestones(middle-late Santonian)

Akdað formation(middle Maastrichtian)

Plio-Quaternaryconglomerates

Paleogenepelagic marls

Erosional surface

97-392B

97-437

97-435B

97-436

97-435

97-434

97-433

97-432

Sample number

Palaeogenepelagic marls

Figure 4. Contact relationship between the neritic and hemipelagic limestones of the Bey Da¤lar› formation and the pelagic limestones of theAkda¤ formation at the Çakmak Kerti¤i locality. The erosional surface, marked by bioturbation and reworked pebbles derived from theunderlying hemipelagic limestones in Section 4, is characterized by flat surface, and shows intense silicification and iron oxidation inSection 5 (see Figure 2 for locations of the sections).

Page 8: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

the Ya¤ca Köy formation (Cenomanian) of Katran Da¤(Sam Da¤) (30 km east of the study area) by Bignot &Poisson (1974) and Poisson (1977). Poisson (1977)recognized a succession of Early Jurassic to Cenomanianage in the Katran Da¤ carbonate platform. TheCenomanian Ya¤ca Köy formation has a rich benthicforaminiferal fauna that is associated with rudists(caprinids), algae, gastropoda and chondrodonta. Bignot& Poisson (1974) and Poisson (1977) distinguished twolevels in the neritic carbonates of the Ya¤ca Köyformation. The lower level containing Pseudedomia viallii(COLALONGO) corresponds to the middle Cenomanianand the upper level containing Pseudorhapydioninalaurinensis (de CASTRO) corresponds to the lateCenomanian.

The upper part of the Lower Jurassic-Cenomaniansuccession along the eastern margin of the Katran Da¤carbonate platform was re-examined by Robertson(1993) with the aim of shedding light on theemplacement history of the Antalya complex. Heproposed that the upper surface of the Cenomanianplatform carbonates, occupied largely by rudistlimestones, is fissured and karstic and then overlain by 40m of medium-bedded micritic limestones, with abundantLate Cretaceous planktonic foraminifera (e.g,Globotruncana).

Farinacci & Yeniay (1986) noted that the Cenomanianlayered carbonates of the Bey Da¤lar› are typical of anopen-shelf environment and contain a rich benthicforaminiferal fauna. They also stated that rudistid debrisis rare and very localized, and became more abundant inthe early Turonian, together with calcisphaeurulids andthe first planktonic foraminifers to appear on thisplatform.

The rudist fauna is especially made up of caprinids andaccompanies the benthic foraminiferal fauna. Bignot &Poisson (1974) recognized a rudist fauna, consistingespecially of caprinids and radiolitids from the Cenomanianof Katran Da¤. Özer (1988) described this fauna in detail.The present forms resemble the fauna reported by Özer’s(1988) that consists of Neocaprina gigantea PLENICAR,Caprina schiosensis BOEHM, Caprina cf. carinata (BOEHM)and Ichthyosarcolites bicarinatus (GEMMELLARO),indicating a middle-late Cenomanian age.

The Cenomanian rudistid limestones grade intomedium- to thickly bedded limestones which have thesame macroscopic and microscopic features as the

underlying limestones, however, they do not includediagnostic foraminifera and rudist fossils. Dicyclina cf.schlumbergeri MUNIER-CHALMAS Moncharmontiaapenninica (de CASTRO) and miliolids form the benthicforaminifera fauna. Small rudist biostromes (0.5- to 1.5-m-thick) constructed especially by the radiolitids(Sauvagesia sp. and Durania sp.) also occur throughoutthese limestones and are thought to be distributedpatchily within the restricted platform. The thickness ofthe limestones in the Cenomanian and early Santonianinterval is about 250 m and may arguably correspond toTuronian and Coniacian (Figure 3). Upward, theselimestones pass into lower Santonian massive limestoneswith rudist reefs forming the uppermost part of theneritic carbonates (Figure 3). Poisson (1967)determined this rudist fauna in the Korkuteli area (FedilDere). The fauna of Poisson (1967) comprised Vaccinitesatheniensis KTENAS, Sauvagesia cf. sharpie BAYLE,Vaccinites cf. boehmi DOUVILLE, V. cf. sulcatusDEFRANCE and Hippurites gr. sulcatus DOUVILLE,indicating a Santonian-early Campanian age.

The best outcrops of the rudist reefs can be seen atthe Yörükalan locality and in the Korkuteli-Fethiye roadcut, 1.5 km west of Kargal›köy (Figure 2). The reefs arechiefly made up of Vaccinites taburni (GUISCARDI),Hippurites nabresinensis FUTTERER and H. colliciatusWOODWARD. The fauna indicates a Santonian-Campanian age. Massive hemipelagic limestones formingthe uppermost part of the formation include rareplanktonic foraminifera and abundant spheroidal forms.At the boundary between the neritic and hemipelagiclimestones, benthic and planktonic fauna are observedtogether (Figure 4a). The limestones, in which theplanktonic foraminifera first appear, are considered to bea transitional zone between the neritic and hemipelagicfacies. Rudist fragments, echinids, bryozoans and bivalviaaccompany this foraminiferal fauna. A special microfaciesis encountered in almost all measured stratigraphicsections. This microfacies lies just beneath thehemipelagic limestones, and generally has biomicritic,intramicritic, and intrasparitic texture and containsCuneolina sp., rotalids, bryzoans, spheroidal forms andrudist fragments. Dicarinella asymetrica (SIGAL), D.concavata (BROTZEN), Marginotruncana pseudolinneianaPESSAGNO, M. coronata (BOLLI), M. cf. sigali (REICHEL),Marginotruncana sp., Contusotruncana fornicata(PLUMMER), Heterohelix sp., Rotalina sp., Goupillaudinasp., and Hedbergella sp. (Plate-I) make-up the planktonic

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

46

Page 9: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

foraminiferal association of the hemipelagic limestones,suggesting a Coniacian-Santonian age (Sar› 1999). Thefirst appearance of the Globotruncanids, together with D.concavata in the transition zone between the neritic andthe hemipelagic limestones, is accepted as the beginningof the zone. The first appearance of D. asymetricacharacterizes the end of the zone. The Dicarinellaconcavata interval zone is the oldest planktonicforaminiferal zone identified in this study andcorresponds to the lower part of the Santonian. Thelower limit of this zone does not reach the Coniacian-Santonian boundary because these hemipelagic limestones

grade into the rudistid neritic limestones to the base.Thus the age of the rudistid limestones cannot be youngerthan the early Santonian. The first and the lastappearances of D. asymetrica characterize the Dicarinellaasymetrica total range zone (Robaszynski et al. 1984;Caron 1985; Sliter 1989) and the interval corresponds tothe middle and late Santonian (Figure 5).

The planktonic foraminiferal zonation of Robaszynskiet al. (1984) and Caron (1985) is followed in this paper.Robaszynski & Caron (1995) calibrated the verticaldistribution of some zone marker planktonic foraminifera

B. SARI & S. ÖZER

47

BIOZONESPlanktonicforaminifera AmmoniteSUBSTAGESTAGE STAGE

Robaszynski &Caron (1995)

Robaszynski et al. (1984)Caron (1985)Sliter (1989)

Abathomphalusmayaroensis

Gansserinagansseri

Glo

botr

unca

nafa

lsos

tuar

ti

Globotruncanaaegyptiaca

Globotruncanellahavanensis

Globotruncanitacalcarata

Globotruncanaventricosa

Globotruncanitaelevata

Dicarinellaasymetrica

Dicarinellaconcavata

89.0

85.8

83.5

71.3

65.066.5

74.5

84.0

87.5

88.5

TURONIAN TURONIAN

CONIACIAN CONIACIAN

SANTONIANSANTONIAN

CAMPANIAN

CAMPANIAN

MAASTRICHTIAN

MAASTRICHTIAN

LOWER

MIDDLE

UPPER

LOWER

MIDDLE

UPPERGOLL.

NEUB.

HYAT

DONE

POLY

PHAL

H. III

BIDO.

PARA.

TEXA.

SERR.MARG.TRID.PETR.NEPT.DEVE.

Robaszynski et al. (1984)Caron (1985)Sliter (1989)

Figure 5. Chart showing the planktonic foraminifera and ammonite zonations and the shiftedCampanian-Maastrichtian boundary.

Page 10: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

and the ranges of some biozones with another importantfossil group (ammonites) and palaeomagnetic reversals(Figure 5).

Contact – The lower contact of the Bey Da¤lar› formationhas not been observed in the study area because of faultsand young cover, but it was stated by Günay et al. (1982)that the contact was vertically transitional into UpperTriassic dolomites. The Akda¤ formation disconformablyoverlies the different stratigraphic levels of the BeyDa¤lar› formation (Figures 4 & 6). In these sections,strikes and dips of the carbonates of the Bey Da¤lar› andAkda¤ formations are nearly the same.

Akda¤ Formation

Description and Depositional Environment – The Akda¤formation was first named by Günay et al. (1978 inÖzye¤in et al. 1985). Since then, many researchers haveused this name for the Coniacian-Maastrichtian pelagiclimestones (Özye¤in et al. 1985; Gültekin 1986;Köylüo¤lu 1987; Özkan & Köylüo¤lu 1988; Naz et al.1992).

In this study, the Akda¤ formation is used for theupper Campanian-middle Maastrichtian planktonic

foraminifera-bearing thinly bedded cherty–clayeylimestones (‘scaglia’ of Italian authors; Farinacci & Yeniay1986). They are distinguished from the middle-upperSantonian hemipelagic limestones by their distinctive thinbedding. The middle-upper Santonian hemipelagiclimestones are massive and have high relief in outcropprofile (Figures 3, 4 & 7).

The Akda¤ formation is composed of thinly tomedium bedded (8-10 cm), planktonic foraminifera-bearing dirty-white to cream-coloured, cherty–clayeylimestones. The formation has a 75 m maximumthickness that varies laterally. These limestones aredistinctly bedded and rather strong at the base of theformation. They include brown iron-oxide spots thatgradually disappear upward. The middle and upper partsof the formation have no clear bedding because of thefractured nature of the limestones, especially at theÇakmak Kerti¤i locality. Brown and gray chert nodulesare abundant in these levels. These nodules are irregularin shape, their diameters range from 3 to 20 cm and evenreach 120 cm near the Savran Ekinli¤i locality. Thesenodules are sometimes coated with white coloured chalk.The limestones of the Akda¤ formation have planktonicforaminifera-bearing biomicritic texture which isindicative of basinal depositional conditions (cf. Wilson1975).

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

48

Figure 6. Contact relationship between the Bey Da¤lar› and Akda¤ formations and Palaeogene pelagic marls in the Bozcalar Dere. Pelagic limestonesof the Akda¤ formation disconformably overlie the neritic limestones of the Bey Da¤lar› formation. The hemipelagic limestones of the BeyDa¤lar› formation were completely eroded. The erosional surface is rather distinct. The thickness of the pelagic limestones of the Akda¤formation is 1.5 m, and the age of this level is middle Maastrichtian. The Palaeogene marls disconformably overlie the Akda¤ formationand include pebbles derived from the Akda¤ formation. (a) cross section, (b) sketch map (see Figure 2 for the location).

193

194195196 198 199 200 201 202 203 204

205206

207

208

209

210

1 m

N

Boz

cala

rD

ere

Erosional surface

Section line

b)

Neritic limestones of theBey Daðlarý formation(pre-Santonian)

193

194

198

200

202

205206

210

W

E

50 cm

SECTION-1

Chert nodules

Pebbles from the limestonesof the Akdað formation

Erosional surface

Pelagic limestones of theAkdað formation(middle Maastrichtian)

Paleogenepelagic marls

a)

97-297-3

97-4

97-597-697-7

Palaeogenepelagic marls

Page 11: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

Age and Fossil Content – The Akda¤ formation has a richplanktonic foraminiferal fauna: Globotruncana arca(CUSHMAN), G. bulloides VOGLER, G.(?) insignisGANDOLFI, G. linneiana (d’ORBIGNY), G. mariei BANNER& BLOW, G. orientalis EL NAGGAR, G. rosetta (CARSEY),G. ventricosa WHITE, Globotruncanita atlantica (CARON),Gt. calcarata (CUSHMAN), Gt. elevata (BROTZEN), Gt.stuartiformis (DALBIEZ), Gt. subspinosa (PESSAGNO),Contusotruncana fornicata (PLUMMER),Archaeglobigerina sp., Rugoglobigerina sp. andHeterohelix sp. (Plate-I) make up the late Campanianassemblage (Sar› 1999). The Globotruncanita calcaratatotal range zone is characterized by the first and lastappearance of Gt. calcarata (CUSHMAN), andcorresponds to the late Campanian (Robaszynski et al.1984; Caron 1985; Sliter 1989). The Campanian-Maastrichtian boundary is marked by the disappearanceof Gt. calcarata (CUSHMAN) as determined by manyresearchers (Robaszynski et al. 1984; Caron 1985;Almogi-Labin et al. 1986; Sliter 1989). Robaszynski &Caron (1995) shifted the Campanian-Maastrichtianboundary from 74.3 Ma to 71.3 Ma (Figure 5).

Globotruncana aegyptiaca NAKKADY, G. arca(CUSHMAN), G. bulloides VOGLER, G. dupeublei CARONet al., G. esnehensis NAKKADY, G. falsostuarti SIGAL, G.

linneiana (d’ORBIGNY), G. mariei BANNER & BLOW, G.orientalis EL NAGGAR, G. rosetta (CARSEY), G.ventricosa WHITE, Globotruncanita angulata (TILEV), Gt.conica WHITE, Gt. pettersi (GANDOLFI), Gt. stuarti (deLAPPARENT), Gt. stuartiformis (DALBIEZ), Gt.subspinosa (PESSAGNO), Contusotruncana contusa(CUSHMAN), C. fornicata (PLUMMER), Gasserinagansseri (BOLLI), G. wiedenmayeri (GANDOLFI),Archaeglobigerina sp., Rugoglobigerina rugosa(PLUMMER), Heterohelix sp., and Racemiguembelina sp.(Plate-II) make up the early-middle Maastrichtianassemblage (Sar› 1999). The lower-middle Maastrichtianhas two planktonic foraminiferal zones. TheGlobotruncana falsostuarti partial range zone ischaracterized by the last appearance of Gt. calcarata(CUSHMAN) and the first appearance of G. gansseri(BOLLI) and corresponds to the early Maastrichtian. Thefirst appearance of G. gansseri (BOLLI), is used to drawthe early-middle Maastrichtian boundary, as reported bymany researchers (Robaszynski et al. 1984; Caron 1985;Almogi-Labin et al. 1986; Sliter 1989). The G. gansseriinterval zone is characterized by the first appearance ofthe G. gansseri (BOLLI) and the last appearance of thenominal species together with whole Late Cretaceousplanktonic foraminifera around the lower part of themiddle Maastrichtian. According to the zonation ofRobaszynski & Caron (1995), the Globotruncanafalsostuarti partial range zone and the lower part of theGansserina gansseri interval zone correspond to theupper part of the Campanian (Figure 5).

Contact – The Akda¤ formation disconformably overliesdifferent stratigraphic levels of the Bey Da¤lar› formationalong a prominent erosional surface. Distinctly beddedpelagic limestones (upper Campanian) of the Akda¤formation overlie the massive hemipelagic limestones(Santonian) of the Bey Da¤lar› formation at the ÇakmakKerti¤i locality (Figures 2 & 4a, b). The erosional surfaceat this locality is characterized by iron oxidation,silicification and bioturbation, indicative of a later periodof low rates of sedimentation due to relative starvation(Rosales et al. 1994). At the Bozcalar Dere locality, thinlybedded pelagic limestones (middle Maastrichtian) of theAkda¤ formation disconformably overlie the neriticlimestones (? pre-Santonian) of the Bey Da¤lar›formation (Figure 6).

B. SARI & S. ÖZER

49

1 m

NW168155

156157

158159

160161

163

164

165166

167

SE

16297-366

97-367

97-368

97-36997-370

SECTION-3

Hemipelagic limestones ofthe Bey Daðlarý formation(Santonian)

Paleogenepelagic marls

Erosional surface

Neritic limestones of theBey Daðlarý formation

Sample numbers

Palaeogenepelagic marls

Figure 7. Contact between the hemipelagic limestones of the BeyDa¤lar› formation and the pelagic marls of the Palaeogene(See Figure 2 for location of the section).

Page 12: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

Palaeogene

The Palaeogene is represented by various lithologies andformations that show lateral and vertical facies variationsthroughout the Bey Da¤lar› autochthonous unit; hencemany names have been used for these formations.Because it is beyond the scope of this study, thePalaeogene is not described in detail.

Planktonic foraminifera-bearing thin-bedded, lightgreenish to cream-coloured marls form the base of theTertiary sequence. These marls disconformably overliethe different stratigraphic levels of the Upper CretaceousBey Da¤lar› and Akda¤ formations. The thickness of thesemarls is about 250 m.

Contact – The pelagic marls of the Palaeogenedisconformably overlie pelagic limestones of the Akda¤formation at the Çakmak Kerti¤i locality (Figure 4a, b)and Bozcalar Dere locality (Figure 6). Blocks and bigpebbles of the Akda¤ formation are seen at the base ofthe Palaeogene at this locality. At the Meydandüz Tepelocality, the Palaeogene disconformably overlies thehemipelagic levels of the Bey Da¤lar› formation (Figure 2,section 3; Figure 7).

A rather extreme case is encountered in section 2 atwhich the Palaeogene lies directly on neritic limestones ofthe Bey Da¤lar› formation (Figure 8). Hemipelagiclimestones of the Bey Da¤lar› formation and the Akda¤formation are totally absent. The Palaeogene begins with

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

50

1,5 m

NW

SE

161 162163

170

165

169

166

167

168

171

172

173

164

Erosional surface

Sample no

Conglomeratic limestones

Paleogene

Pelagic marls

SECTION-2

Neritic limestones of theBey Daðlarý formationPre-Santonian(?)

Palaeogene

Neritic limestones of theBey Da ları formation[pre-Santonian(?)]

Figure 8. Section showing the contact between the neritic limestones of the Bey Da¤lar› formation (? pre-Santonian) and the pelagic conglomeraticlimestones of the Palaeogene. Pebbles are embedded in a lime-mud matrix with planktonic foraminifera. Note the total absence ofhemipelagic limestones of the Bey Da¤lar› formation and pelagic limestones of the Akda¤ formation.

Page 13: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

a 1.5-m-thick conglomeratic level composed of pebblesembedded in abundant planktonic- foraminifera andscarce benthic-foraminifera-bearing, pelagic lime mudmatrix. The pebbles are mostly derived from the pelagic,hemipelagic and neritic limestones of the UpperCretaceous formations. Rudistid fragments are alsoobserved.

Evolution of the Carbonate Platform

Peritidal conditions persisted from the Cenomanian to theearly Santonian in the Bey Da¤lar› autochthonous unit.Slight drowning of the Korkuteli part of the platform atthe end of the early Santonian produced a hemipelagicenvironment that would persist until the end of theSantonian.

The major part of the Bey Da¤lar› carbonate platform(especially the northern part) subsided during theTuronian and was invaded by pelagic deposits (Bignot &Poisson 1974; Poisson 1977; Gutnic et al. 1979;Farinacci & Köylüo¤lu 1982; Poisson et al. 1983; Özye¤inet al. 1985; Farinacci & Yeniay 1986; Gültekin 1986;Köylüo¤lu 1987; Özkan & Köylüo¤lu 1988; Naz et al.1992; Robertson 1993).

Poisson et al. (1983) reported that three mainextensional events are well documented in the westernTaurides during Middle and Late Triassic, at the Jurassic-Cretaceous boundary and during the Turonian-earlySenonian. Robertson (1993) proposed that subduction ofold, dense (Late Triassic ?) oceanic crust and mantle couldhave led to regional crustal extension, and this may havebeen the driving force for subsidence of the carbonateplatforms after Cenomanian time. The extensionaltectonics may have been the cause of subsidence of theBey Da¤lar› carbonate platform during Turonian;alternatively short-term major sea-level fall in the lateTuronian (90 Ma) as proposed by Haq et al. (1987), mayhave been the main control. The Korkuteli part of theplatform retained its neritic character until the earlySantonian. Deepening began in the middle Santonian andshort term major sea-level fall in the middle Santonian(85 Ma) (Haq et al. 1987) or Turonian extension(Poisson et al. 1983) may have been the major control.

The lower and middle Campanian, the upper part ofthe middle Maastrichtian and the upper Maastrichtian areabsent in all sections. The absence of the lower andmiddle Campanian may have been related to the

discontinuity of pelagic sedimentation at the Santonian-Campanian boundary and nondeposition during post-Santonian subaerial exposure. The absence of the upperpart of the middle Maastrichtian and the upperMaastrichtian should have been related to another breakin pelagic deposition at the Cretaceous-Tertiaryboundary. Measured stratigraphic sections show that theplatform was subaerially exposed after the Santonian andduring the middle Maastrichtian. Discontinuity may havebeen related to nondeposition during these times ofsubaerial exposure.

Farinacci & Yeniay (1986) suggested that the basin inwhich the Upper Cretaceous pelagic carbonates weredeposited was not so deep, and facies variations (e.g.,presence of cherts) and gaps in the pelagic sequence ofthe Bey Da¤lar› was caused by sub-marine volcaniceruptions, represented now by an ophiolitic complex thatcrops out immediately north. They also noted thateustatic variations and tectonic pulses are also importantevents that change environment. The large platform ofthe Arabo-African palaeomargin divided into numerousbasins; a large part of that palaeomargin, the Bey Da¤lar›area, was subaerially exposed for short periods of time,between which there were long periods of drowning(Farinacci & Yeniay 1986).

The last transgression of the Mesozoic wasCampanian in age and ceased in the Early Palaeocenewhen a new regression took place (Farinacci & Köylüo¤lu1982). The Maastrichtian was the closure time for theArabo-African and Eurasiatic plates in this particularlycritical area of Tethys (Farinacci & Yeniay 1986). It wasalso the time of the onset of collision (Poisson et al.1983) and the initial stages of emplacement time of theAntalya Complex in the Katran Da¤ area (Robertson1993).

The hiatus at the end of the Late Cretaceous (aftermiddle Maastrichtian), and subaerial exposure anderosion, may have been caused by the aforementionedtectonic events and/or short-term major sea-level fallduring the middle Maastrichtian (68 Ma) (Haq et al.1987).

Discussion

The age of the neritic limestones of the Bey Da¤lar›formation extends from Cenomanian to the earlySantonian. The uppermost level of the neritic part is

B. SARI & S. ÖZER

51

Page 14: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

characterized by massive lower Santonian rudistidlimestones (Figure 4b). In the study area, the platformretained its shallow character until the end of the earlySantonian, on contrary to the general agreement thatestablishment of the pelagic facies began in the Turonianthroughout the major parts of the Bey Da¤lar›autochthonous unit.

Slight drowning of the platform at the end of theearly Santonian produced a hemipelagic environment thatwould persist until the end of the Santonian. Thishemipelagic level was included in the Akda¤ formation inmost previous studies (Farinacci & Köylüo¤lu 1982;Özye¤in et al. 1985; Farinacci & Yeniay 1986; Gültekin1986; Köylüo¤lu 1987; Özkan & Köylüo¤lu 1988; Naz etal. 1992) due to its hemipelagic character (Figure 9), butthe present authors propose that it should be included inthe Bey Da¤lar› formation because of its transitionalcontact with the neritic limestones, its massive structure,and the presence of a prominent erosional surfacebetween the hemipelagic limestones of the Bey Da¤lar›formation and the pelagic limestones of the Akda¤formation.

Figure 212 of Poisson (1977) clearly shows thelateral and vertical facies changes in the neritic and pelagiccarbonates of the Upper Cretaceous Bey Da¤lar›carbonate sequence. Subsidence of the platform, thusinitiation of the pelagic facies is diachronous throughoutthe platform. Poisson (1977) separated the lowerSenonian and upper Senonian carbonates along a surfacewhich corresponded to a gap ‘discontinuité desedimentation en régime pélagique’.

Farinacci & Yeniay (1986) reported upper Coniacian-Santonian pelagic limestones over lower Turonian neriticdeposits, interposing sedimentary gap between them insome sections. They proposed that the early-middleSenonian foraminiferal assemblage might be considered atransitional benthic neritic facies and a planktonic marineassemblage. They also reported a hiatus betweenSantonian and Campanian pelagic limestones.

Gültekin (1986) and Naz et al. (1992) mentioned thepresence of the late Maastrichtian in their generalizedcolumnar sections (Figure 9) but did not give the fossilassociation. Poisson (1977) and Farinacci & Yeniay(1986) reported the presence of the late Maastrichtianfrom the Korkuteli area (Figure 9). The planktonicforaminiferal assemblage given by Poisson (1977) in theBozcalar Dere (Ulucak) section (table 6 in Poisson 1977)

does not indicate the late Maastrichtian according torecent planktonic foraminiferal zonations (Robaszynski etal. 1984; Caron 1985; Robaszynski & Caron 1995).Farinacci & Yeniay (1986) also suggested the presence ofthe pelagic upper Maastrichtian in their Tarakl› andKüçüktepe sections (Figure 9). Photomicrographs ofupper Maastrichtian samples in plates 7 and 8 of theirpaper are very similar to our observations in theKüçüktepe sequence, but the planktonic foraminiferalassociation given in their paper does not indicate lateMaastrichtian. In the absence of zone markerAbathomphalus mayaroensis (BOLLI), it is very difficult todetermine the late Maastrichtian.

Conclusions

1- The Upper Cretaceous Korkuteli sequence comprisestwo formations. The Cenomanian-Santonian BeyDa¤lar› formation lies at the base of the sequence andis disconformably overlain by the upper Campanian-middle Maastrichtian Akda¤ formation. Palaeogenepelagic marls form the lowermost part of the Tertiarysection and disconformably overlie the differentstratigraphic levels of the Upper Cretaceous sequence.

2- The Bey Da¤lar› formation can be divided into twoparts. The 600-m-thick Cenomanian-lower Santonianneritic peritidal carbonates form the basal part andare gradationally overlain by the 15-m-thick, middle-upper Santonian hemipelagic limestones that form theupper part.

3- The neritic part is characterized by two rudistidhorizons, corresponding to the Cenomanian and earlySantonian. Massive hemipelagic limestones are easilydistinguished due to their high relief.

4- The Akda¤ formation disconformably overliesdifferent stratigraphic levels of the Bey Da¤lar›formation with a prominent erosional surface formedduring a nondepositional and/or an erosional event inthe early Campanian to early Maastrichtian. The lowerand middle Campanian is totally missing.

5- The Upper Cretaceous sequence was truncated by anerosional surface. The upper part of the middleMaastrichtian and the upper Maastrichtian are totallyabsent in all sections.

6- The presence of two erosional phases has beenobviously observed. During post-Santonian

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

52

Page 15: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

B. SARI & S. ÖZER

53

MA

AS

TR

ICH

TIA

N

L LM MU U

CA

MPA

NIA

N

SA

NT

ON

IAN

CO

NIA

CIA

N

STA

GE

SU

B-

STA

GE

TU

RO

NIA

N

CE

NO

MA

NIA

N

PO

ISS

ON

,197

7

KA

RG

AL

IKB

OZ

CA

LA

RD

ER

EB

OZ

CA

LA

RD

ER

E

FAR

INA

CC

I&

YL

ÜO

ÐL

U,

1982

KIZ

ILC

ÖZ

YE

ÐÝN

etal

.,19

85

ÇÜ

KT

EP

EK

AR

GA

LIK

LTE

KÝN

,19

86

GE

NE

RA

LIZ

ED

FAR

INA

CC

I&

YE

NÝA

Y,1

986

TAR

AK

LI

MU

LL

AK

DE

RE

ÇÜ

KT

EP

E

ÖZ

KA

N&

YL

ÜO

ÐL

U,

1988

GE

NE

RA

LIZ

ED

NA

Zet

al,

1992

BU

CA

K-A

LA

DA

Ð(B

AS

INW

AR

D)

???

? ?

PAL

EO

GE

NE

M-LE.

D ?

?

? ??

?L.SenonianU.P.

?

TH

ISS

TU

DY

GE

NE

RA

LIZ

ED

M.E.

NO

TT

OS

CA

LE

PO

ISS

ON

19

77

FA

RIN

AC

CI&

YL

ÜO

LU

19

82

ÖZ

YE

Ne

t a

l. 1

98

5G

ÜLT

EK

N1

98

6FA

RIN

AC

CI

& Y

EN

AY

19

86

ÖZ

KA

N &

YL

ÜO

LU

19

88

NA

Z e

t a

l.1

99

2

PA

LA

EO

GE

NE

Figu

re 9

. Ch

art s

how

ing

sequ

ence

s pr

evio

usly

sug

gest

ed b

y re

sear

cher

s w

ho h

ave

stud

ied

the

Bey

Da¤

lar›

auto

chto

nous

uni

t, an

d co

mpa

rison

with

the

pres

ent s

tudy

. D

– D

ania

n, U

.P.–

Upp

erPa

laeo

cene

, M

.E.–

Mid

dle

Eoce

ne.

Page 16: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

54

regression, hemipelagic limestones of the Bey Da¤lar›formation were partially or totally eroded and aprominent erosional surface was formed. The middleMaastrichtian erosional phase was more profound.Erosion reached the neritic limestones of the BeyDa¤lar› formation. These data demonstrate thatconditions were rather changeable on the platformduring the Late Cretaceous, especially from theSantonian to the Palaeogene. These importantvariations correspond to regional and local tectonicmovements and also short-term major drops in sealevel.

Acknowledgements

The authors would like to thank André Poisson and ananonymous reviewer for their incisive reviews andsuggestions that improved the paper significantly. Weparticularly thank to Sevinç Özkan-Alt›ner for invaluablediscussions on planktonic foraminifera and Demir Alt›nerfor permitting us the use this microscope. The field workwas supported financially by the Dokuz Eylül UniversityResearch Foundation project, no. 0922.97.01.32. StevenK. Mittwede helped with the English.

ALMOGI-LABIN, A., REISS, Z. & CARON, M. 1986. SenonianGlobotruncanidae from Israel. Eclogae Geologicae Helvetiae 79,849-895.

BIGNOT, G. & POISSON, A. 1974. Le Cénomanien du flanc oriental duKatran Da¤ (Sam da¤) pres d’Antalya (Turquie). Mineral Researchand Exploration Institute of Turkey (MTA) Bulletin 82, 71-77.

CARON, M. 1985. Cretaceous planktic foraminifera. In: BOLLI, H. M.,SAUNDERS, J. B. & PERCH-NIELSEN, K. (eds) Plankton Stratigraphy.Cambridge University Press, Cambridge, 17-86.

ERAKMAN, B., MEflHUR, M., GÜL, M.A., ALKAN, H., ÖZTAfl, Y. & AKP›NAR, M.1982. Fethiye-Köyce¤iz-Tefenni-Elmal›-Kalkan aras›nda kalanalan›n jeolojisi. Abstracts of the 6th Petroleum Congress of Turkey,23-31.

FARINACCI, A. & KÖYLÜO⁄LU, M. 1982. Evolution of the Jurassic-Cretaceous Taurus shelf (southern Turkey). Boletino della SocietàPaleontologica Italiana 21, 267-276.

FARINACCI, A. & YEN‹AY, G. 1986. Biostratigraphy and event-analysis ofthe Cenomanian-Maastrichtian carbonates of the Bey Da¤lar›(western Taurus, Turkey). Geologica Romana 25, 257-284.

GÜLTEK‹N, M.C. 1986. Bat› Toroslar Beyda¤› Otokton Birli¤indekiBeyda¤› Formasyonunun Senomaniyen Yafll› KarbonatDizilimlerinin Mikrofasiyesleri, Çökelme Ortamlar›, KarbonatÇökelme Modeli ve Diyajenezi. Turkish Petroleum Corporation(TPAO) Report No: 930. [in Turkish, Unpublished].

GÜNAY, Y., BÖLÜKBAfl›, S. & YOLDEM‹R, O. 1982. Beyda¤lar›n›n stratigrafisive yap›s›. Abstracts of the 6th Petroleum Congress of Turkey 91-101.

GUTNIC M., MONOD O., POISSON, A. & DUMONT, J.F. 1979. Géologie desTaurides occidentale (Turquie). Mémoires de la SociétéGéologique de France 137, 1-112.

HAQ B.U., HARDENBOL, J. & VAIL, P.R. 1987. Chronology of fluctuatingsea levels since the Triassic. Science 235, 1156-1167.

KÖYLÜO⁄LU, M. 1987. Beyda¤lar› Otoktonu Maestrihtiyenkarbonatlar›n›n Mikropaleontolojisi, Mikrofasiyes ve OrtamsalYorumlar›. Turkish Petroleum Corporation (TPAO) Report No:117. [in Turkish, Unpublished].

NAZ, H., ALKAN, H. & ERK, S. 1992. Facies and sequence characteristicsof the Late Cretaceous-Palaeocene drowning on the west Tauruscarbonate platform, S. W. Türkiye. Abstracts of the 9th PetroleumCongress of Turkey, 121-134.

Özer, S. 1988. Description de quelques Rudistes à canaux dans leCénomanien de Turquie. Géologie Méditerranéenne XV, 159-167.

ÖZGÜL, N. 1976. Toroslar›n baz› temel jeoloji özellikleri. GeologicalSociety of Turkey Bulletin 14, 75-87 [in Turkish with Englishabstract].

ÖZKAN S., & KÖYLÜO⁄LU, M. 1988. Campanian-Maastrichtian planktonicforaminiferal biostratigraphy of the Beyda¤lar› AutochtonousUnit, Western Taurids, Turkey. Middle East Technical University,Journal of Pure and Applied Sciences 21, 377-388.

ÖZYE⁄‹N, G., KÖYLÜO⁄LU, M., KURU, F. & KIRICI, S. 1985. Beyda¤lar›Otoktonu Kretase ve Tersiyer Yafll› BirimlerinMikropaleontolojileri ve Fasiyesleri. Turkish PetroleumCorporation (TPAO) Report No: 808. [in Turkish, Unpublished].

POISSON, A. 1967. Données nouvelles sur le Crétacé superieur et leTertiaire du Taurus au NW d’Antalya (Turquie). Compte RenduAcademie Sciences, Paris 264, 2443-2446.

POISSON, A. 1977. Recherches géologiques dans les Taurides occidentals.Thése Doct. d’Etat, Universitie de Paris-Sud, Orsay, 795 p.

POISSON, A. 2001. The Bey Da¤lar› platform SW margin of the IspartaAngle (SW Turkey). Abstracts of the 4th International Symphosiumon Eastern Mediterranean Geology, 21.

POISSON, A., AKAY, E., DUMONT, J.F. & UYSAL, fi. 1983. The Isparta angle:a Mesozoic paleorift in the Western Taurides. In: TEKEL‹, O. &GÖNCÜO⁄LU, M.C. (eds) Geology of Taurus Belt, 11-26.

ROBASZYNSKI, F. & CARON, M. 1995. Cretaceous planktonic foraminifera:comments on the Europe–Mediterranean zonation. Bulletin de laSociete geologique de France 166, 681-692.

ROBASZYNSKI, F., CARON, M., GONZALES DONOSO, J.M. & WONDERS, A.A.H.(eds) 1984. Atlas of Late Cretaceous Globotruncanids. Revue deMicropaléontologie 26, 145-305.

References

Page 17: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

B. SARI & S. ÖZER

55

ROBERTSON, A.H.F. 1993. Mesozoic-Tertiary sedimentary and tectonicevolution of Neotethyan carbonate platforms, margins and smallocean basins in the Antalya Complex, southwest Turkey. SpecialPublication of International Associations of Sedimentologists 20,415-465.

ROSALES, I., FERNÁNDEZ-MENDIOLA, P.A. & GARCIA-MONDÉJAR, J. 1994.Carbonate depositional sequence development on active faultblocks: the Albian in the Castro Urdiales area, northern Spain.Sedimentology 41, 861-882.

SAR›, B. 1999. Biostratigraphy of the Upper Cretaceous Sequences inthe Korkuteli Area (Western Taurides). MSc Thesis, Dokuz EylülUniversity, ‹zmir-Turkey.

SAR›, B. & ÖZER, S. 2001. Facies characteristics of the Cenomanian-Maastrichtian sequence of the Beyda¤lar› Carbonate platform inthe Korkuteli area (western Taurides). International GeologyReview 43, 830-839.

SLITER, W.V. 1989. Biostratigraphic zonation for Cretaceous planktonicforaminifers examined in thin section. Journal of ForaminiferalResearch 19, 1-19.

WILSON, J.L. 1975. Carbonate Facies in Geologic History. Springer-Verlag, 428 p.

Received 26 February 2001; revised typescript accepted 07 March 2002

Page 18: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

56

PLATE-I

Figure 1. Globotruncana arca (CUSHMAN); sample no: 97-393A;

Globotruncanita calcarata total range zone; Upper Campanian

Figure 2. Dicarinella cf. asymetrica (SIGAL); sample no: 97-390A;

Dicarinella asymetrica total range zone; Upper Santonian.

Figure 3. Dicarinella concavata (BROTZEN); sample no: 97-434;

Dicarinella asymetrica total range zone; Upper Santonian.

Figure 4. Globotruncanita elevata (BROTZEN); sample no: 96-44;

Globotruncanita calcarata total range zone; Upper Campanian.

Figure 5. Globotruncana bulloides VOGLER; sample no: 97-457;

Globotruncanita calcarata total range zone; Upper Campanian.

Figure 6. Globotruncanita calcarata (CUSHMAN); sample no: 97-392A;

Globotruncanita calcarata total range zone; Upper Campanian.

Figure 7. Globotruncana linneiana (d’ORBIGNY); sample no: 97-4;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 8. Globotruncanita subspinosa (PESSAGNO); sample no: 97-4;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 9. Globotruncana ventricosa WHITE; sample no: 97-102;

Gansserina gansseri interval zone; Middle Maastrichtian.

Page 19: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

B. SARI & S. ÖZER

57

Page 20: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

UPPER CRETACEOUS STRATIGRAPHY OF BEY DA⁄LARI

58

PLATE-II

Figure 1. Globotruncana aegyptiaca NAKKADY; sample no: 97-436;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 2. Globotruncana esnehensis NAKKADY; sample no: 97-101;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 3. Globotruncana falsostuarti SIGAL; sample no: 97-5;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 4. Globotruncanita angulata (TILEV); sample no: 97-102;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 5. Globotruncanita conica (WHITE); sample no: 97-103;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 6. Globotruncanita pettersi (GANDOLFI); sample no: 97-101;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 7. Globotruncanita stuarti (de’LAPPARENT); sample no: 97-102;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 8. Contusotruncana contusa (CUSHMAN); sample no: 97-5;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 9. Gansserina gansseri (GANDOLFI); sample no: 97-102;

Gansserina gansseri interval zone; Middle Maastrichtian.

Figure 10. Gansserina wiedenmayeri (GANDOLFI); sample no: 97-102;

Gansserina gansseri interval zone; Middle Maastrichtian.

Page 21: Upper Cretaceous Stratigraphy of the Bey DaÛlarÝ Carbonate ...

B. SARI & S. ÖZER

59