Untargeted Metabolomics Profiling and Global Semi ... · For untargeted metabolomics...

13
Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57 Original Paper Thieme Untargeted Metabolomics Profiling and Global Semi-quantitation of a Prescription Chinese Herbal Medicine Formula Yinqiaosan Using UPLC-QTOF-MS with a Single Exogenous Reference Internal Standard Authors Yachun Shu 1, 2 , Chandana Mannem 2 , Gang Xu 2 , Shashank Gorityala 2 , Xiao Liu 2, 3 , Yan Xu 2, 4 Affiliations 1 Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China 2 Department of Chemistry, Cleveland State University, Cleveland, OH, USA 3 College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China 4 Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA Key words Yinqiaosan, Chinese herbal medicine formula, untargeted metabolomics profiling, global semiquantitative analysis, multivariate data analysis, UPLC-QTOF-MS received 03.09.2019 revised 26.02.2020 accepted 10.03.2020 Bibliography DOI https://doi.org/10.1055/a-1141-0119 Published online: 2020 Planta Med Int Open 2020; 7: e45–e57 © Georg Thieme Verlag KG Stuttgart · New York ISSN 2509-9264 Correspondence Yachun Shu Affiliated Hospital of Nanjing University of Chinese Medicine 155 Hanzhong Road 210029 Nanjing City Jiangsu Province P. R. China Tel.: + 8625-86617141, Fax: + 8625-86618555 [email protected] Yan Xu Department of Chemistry, Cleveland State University 2121 Euclid Ave., SI 333 Cleveland Ohio 44115-2214 USA Tel.: + 1 216 687 3991, Fax: + 1 216 687 9298 [email protected] Supporting Information for this article is available online at: http://www.thieme-connect.de/products. Abstract Yinqiaosan is a classic Chinese herbal medicine formula that has been used to treat various bacterial and viral infections by Chi- nese medicine doctors for over two centuries. In this work, we developed a comprehensive qualitative and quantitative meth- od for identification, quantitation, and quality assessment of chemical constituents of Yinqiaosan formula in four different preparation forms (i.e., decoction, granule, pill, and tablet), which employed ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry with a single exogenous reference internal standard for untargeted me- tabolomics profiling and global semiquantitative analysis. The use of a single exogenous reference internal standard permit- ted not only qualitative and quantitative analyses of multiple herbal components in a single instrument run, but also cross- comparison of chemical contents in between all four Yinqia- osan preparation forms. The acquired mass chromatograms were analyzed, quantitated, and compared using multivariate data analysis for similarities and differences of chemical con- stituents in four Yinqiaosan preparation forms. For the first time, we were able to identify over 100 chemical constituents from each preparation form using the available database. Among the 49 commonly identified compounds in the 4 Yin- qiaosan preparation forms, 16 have been reported to have pharmacological activities, which may be used in a network pharmacology study of Yinqiaosan for exploring the underlying mechanism of the herbal formula. e45 Published online: 2020-04-21

Transcript of Untargeted Metabolomics Profiling and Global Semi ... · For untargeted metabolomics...

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Paper Thieme

Untargeted Metabolomics Profiling and Global Semi-quantitation of a Prescription Chinese Herbal Medicine Formula Yinqiaosan Using UPLC-QTOF-MS with a Single Exogenous Reference Internal Standard

AuthorsYachun Shu1, 2 , Chandana Mannem2, Gang Xu2, Shashank Gorityala2 , Xiao Liu2, 3, Yan Xu2, 4

Affiliations1 AffiliatedHospitalofNanjingUniversityofChinese

Medicine,Nanjing,P.R.China2 DepartmentofChemistry,ClevelandStateUniversity,

Cleveland,OH,USA3 CollegeofPharmacy,NanjingUniversityofChinese

Medicine,Nanjing,P.R.China4 CaseComprehensiveCancerCenter,CaseWestern

ReserveUniversity,Cleveland,OH,USA

Key wordsYinqiaosan,Chineseherbalmedicineformula,untargetedmetabolomicsprofiling,globalsemiquantitativeanalysis,multivariatedataanalysis,UPLC-QTOF-MS

received 03.09.2019 revised 26.02.2020 accepted 10.03.2020

BibliographyDOI https://doi.org/10.1055/a-1141-0119Publishedonline:2020PlantaMedIntOpen2020;7:e45–e57©GeorgThiemeVerlagKGStuttgart·NewYork ISSN2509-9264

CorrespondenceYachunShuAffiliatedHospitalofNanjingUniversityofChineseMedicine155HanzhongRoad210029NanjingCityJiangsuProvinceP.R.China Tel.:+8625-86617141,Fax:+8625-86618555 [email protected]

YanXuDepartmentofChemistry,ClevelandStateUniversity2121EuclidAve.,SI333ClevelandOhio44115-2214USA Tel.:+12166873991,Fax:+12166879298 [email protected]

Supporting Informationforthisarticleisavailableonlineat:http://www.thieme-connect.de/products.

AbstractYinqiaosanisaclassicChineseherbalmedicineformulathathasbeenusedtotreatvariousbacterialandviralinfectionsbyChi-nesemedicinedoctorsforovertwocenturies.Inthiswork,wedevelopedacomprehensivequalitativeandquantitativemeth-odforidentification,quantitation,andqualityassessmentofchemicalconstituentsofYinqiaosanformulainfourdifferentpreparationforms(i.e.,decoction,granule,pill,andtablet),whichemployedultra-performanceliquidchromatographyquadrupoletime-of-flightmassspectrometrywithasingleexogenousreferenceinternalstandardforuntargetedme-tabolomicsprofilingandglobalsemiquantitativeanalysis.Theuseofasingleexogenousreferenceinternalstandardpermit-tednotonlyqualitativeandquantitativeanalysesofmultipleherbalcomponentsinasingleinstrumentrun,butalsocross-comparisonofchemicalcontentsinbetweenallfourYinqia-osanpreparationforms.Theacquiredmasschromatogramswereanalyzed,quantitated,andcomparedusingmultivariatedataanalysisforsimilaritiesanddifferencesofchemicalcon-stituentsinfourYinqiaosanpreparationforms.Forthefirsttime,wewereabletoidentifyover100chemicalconstituentsfromeachpreparationformusingtheavailabledatabase.Amongthe49commonlyidentifiedcompoundsinthe4Yin-qiaosanpreparationforms,16havebeenreportedtohavepharmacologicalactivities,whichmaybeusedinanetworkpharmacologystudyofYinqiaosanforexploringtheunderlyingmechanismoftheherbalformula.

e45

Published online: 2020-04-21

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Papers Thieme

AbbrevIAtIonS

CHM ChineseherbalmedicineCV coefficientofvariationEBM evidence-basedmedicineESI electrosprayionizationIS internalstandardPCA principalcomponentanalysisPLS-DA partialleastsquaresdiscriminantanalysisQC qualitycontrolQ-marker qualitymarkerRCT randomizedcontrolledtrialSIM selectedionmonitoringTCM traditionalChinesemedicineTIC totalioncurrentUPLC-QTOF-MS ultra-performanceliquidchromatogra-

phy-quadrupoletime-of-flightmassspectrometry

IntroductionCHMformulasarethekeycomponentsofTCMinterventions,whichhavemanypreparationformsincludingdecoctions,granules,pills,tablets,capsules,powders,medicatedteas,medicatedwines,etc.[1].DespitethewidespreaduseofCHMformulasinAsiaandtheirgrowinguseintheWest,thefundamentalissuehinderingCHMin-tegrationintotheWesternmainstreamhealthcaresystemisthatrigorousscientificevidenceofCHMefficacyandsafetyobtainedthroughRCTsorsystematicreviewsofRCTshasbeenlimitedfromEBMperspectives[2].Thisismainlyattributedtotwomajorde-fectsintheRCTstodate:(1)improperdifferentiationorreportingofaTCMpatternorsyndromesincepatterndifferentiationiscru-cialinTCMforprescribingCHMtherapy,and(2)thelackofacom-prehensivequalityassessmentandcontrolofCHMformulassincethechemicalconstituentsinmedicinalplantsvarywithgeograph-icoriginandcultivar,partsinuse,timeofharvest,ecologicalenvi-ronmentandpotentialcontaminationwithheavymetals,pesti-cides,ormycotoxins,processinganddetoxificationmethodaswellasvariousformsofpreparations[1].

Themethodscurrentlyadoptedbytheinternationalpharma-copeialmonographs[3–5]foridentificationandqualityassessmentofmedicinalplantsandCHMformulasemphasizethequalitativeandquantitativedeterminationofagroupofsubjectivelyselectedQ-markerconstituentsthatmayormaynothaveatherapeuticef-fect.Thesemethodscanʼtdistinguishwhetheramarkerconstitu-entisendogenousorfalsifiedbecausenoinformationonqualita-tiveandquantitativechemicalprofilesofmedicinalplantsorCHMformulasisobtained.Therefore,comprehensivequalitativeandquantitativechemicalanalysismethodsaremuchmoredesirable,notonlyforphytochemicalprofilingandqualityassessmentofme-dicinalplantsandCHMformulasbutalsofordetectionofcounter-feits.UntargetedmetabolomicsprofilingusingLC-QTOF-MShasbeensuccessfullyappliedtofingerprintingherbalmedicines[6–8].Ifthistechniquecombineswiththeuseofasingleexogenousref-erenceISforsemiquantitativeanalysisandPCAforpatternrecog-

nition,itwouldprovideamoreadequatemethodforidentificationofchemicalconstituentsandqualityassessmentofmedicinalplantsandCHMformulas.Thisworkdemonstratessuchanat-tempt.

YinqiaosanisaclassicCHMformuladevelopedbytheQingDy-nastyfamousChinesedoctorWuJutong(1758–1836).Itiscom-posedofnineherbsincludingJinyinhua(Flos lonicerae),Lianqiao(Fructus forsythiae),Bohe(Herba menthae),Jingjie(Herba schizone-petae),Niubangzhi(Fructus arctii),Jiegeng(Radix platycodonis),Dandouchi(Semen Sojae preparatum),Gancao(Radix glycyrrhizae),andDanzhuye(Herba lophatheri)[9].BasedonCHMclassification,Yinqiaosanhascoolenergy,anacridtaste,andpropertiesofreleas-ingexterior,clearingheatandremovingtoxicityfromhumanbod-ies[10].IthasbeenusedbyTCMdoctorsforovertwocenturiesastreatmentforvariousbacterialandviralinfectionssuchasinfluen-za[11],hand,foot,andmouthdisease[12],pharyngitis[13],pneu-monia[14],acutetonsillitis[15],measles[16],andmumps[17]. ArecentrandomizedclinicaltrialindicatedthatYinqiaosanplusan-otherCHMformula,Maxingshigan,wasaseffectiveasoseltamivir(alsoknownasTamiflu)forthetreatmentofH1N1influenzaAvirusinfections[18].

Yinqiaosanwasoriginallypreparedintheformofadecoction.Duetotheeaseofuse,carry,andstorage,Yinqiaosanhasbeenpre-paredinvariousformsoverthecourseofhistory,suchasYinqia-osanpeifangkeli(granule),Yinqiaojieduwan(pill),andYinqiao-jiedupian(tablet),whicharebeingusedinterchangeablyinclinicalinterventions.Currently,therearevariousformsofYinqiaosanpro-ducedbynumerousChinesemanufacturers[19].Thelackofcom-prehensivequalitativeandquantitativechemicalanalysismethodsforchemicalprofilingandquantitationnotonlyimpedecompletequalityassessmentofvariousYinqiaosanpreparationforms,butalsoconfusetheassessmentofoutcomesofclinicalstudies[2,20].Therefore,wehavedevelopedacomprehensivequalitativeandquantitativemethodthatcombinesuntargetedmetabolomicspro-filingandglobalsemiquantitativeanalysiswiththeuseofasingleexogenousIS,aswellaspatternrecognitionthroughPCAforiden-tification,quantitation,andqualityassessmentofYinqiaosaninfourpreparationforms(decoction,granule,pill,andtablet).

ResultsandDiscussionOneofthekeytechnicaladvancesofthemethoddevelopedistheimplementationofasingleexogenousreferenceIS(etoposide-d3),whichservesmultiplerolesincludingselectionofretentiontimeandmassshiftwindowsforUPLC-QTOF-MSanalysis,assessementandcorrectionofasamplematrixeffect,peaknormalizationformultivariatedataanalysis,andglobalsemiquantitativeanalysisofmulticomponentsineachYinqiaosanpreparationform,aswellascross-comparisonofchemicalcontentsinbetweenvariousYinqia-osanpreparationforms.

Ourexperimentaldata(notshown)indicatedthattherewerenochromatographicormassspectrometricinterferencestotheISintheblanksolutionsandsamplesofthefourYinqiaosanprepara-tionforms.ThematrixeffectofeachYinqiaosanpreparationformonthemassspectrometricdetectionoftheISexpressedasmatrixfactorwascalculatedbythemeanpeakareaoftheISspikedinsam-plesofeachYinqiaosanpreparationformoverthatoftheISspiked

e46

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

intheblanksolutions.ThematrixfactorsoffourYinqiaosanprep-arationformsrangedfrom0.87–1.07(▶table 1),indicatingtherewasnosignificantsignalsuppressionorenhancementoftheISinanyofthesamplematrices.

Foruntargetedmetabolomicsprofiling,constituentidentifica-tion,andglobalsemiquantitationofchemicalconstituentsinYin-qiaosanformula,triplicatesampleswerepreparedforeachYinqia-osanpreparationformandthesolutionblank.Atotalof15Yinqia-osansampleswereanalyzedusingtheUPLC-QTOF-MSmethod

developed.Thechromatographicandspectra(MSandMS/MS)datawereacquiredbybothpositiveandnegativeESImodes.Therep-resentativeTICchromatogramsareshownin▶Fig. 1.ChemicalconstituentsofeachYinqiaosanpreparationformwereextractedaftersubtractingTICchromatogramsofthesolutionblanksfromthoseofYinqiaosansamplesolutions.

Thereareseveralnonvolatile,water-solubleQ-markersfromthenineherbsofYinqiaosan[3].Toillustratethistargetedfeatureofthemethoddeveloped,theseQ-markersweretargetedandex-

▶table 1 MatrixeffectsofYinqiaosansamplesonmassspectrometricdetectionoftheISa.

Sample matrix (n = 3) eSI mode PAISb in extracted sample matrix ± SDc PAIS in solution ± SD MFIS

d ± SD

Decoction + (4.75±0.06)×105 (5.4±0.2)×105 0.88±0.03

− (2.34±0.02)×106 (2.68±0.03)×106 0.87±0.01

Granule + (5.4±0.2)×105 (5.4±0.2)×105 1.00±0.05

− (2.52±0.03)×106 (2.68±0.03)×106 0.94±0.02

Tablet + (5.8±0.2)×105 (5.4±0.2)×105 1.07±0.05

− (2.37±0.04)×106 (2.68±0.03)×106 0.88±0.02

Pill + (4.83±0.04)×105 (5.4±0.2)×105 0.89±0.03

− (2.43±0.01)×106 (2.68±0.03)×106 0.91±0.01

aIS=1.69µM,bAIS=meanpeakareaofthespikedIS,cSD=standarddeviation,dMFIS=(PAISintheextractedsamplematrix)/(PAISinthesolution).

Coun

ts

Coun

ts

–TIC Blank

–TIC Decoction

–TIC Granules

–TIC Tablet

–TIC Pill

Retention Time (min)

f

g

h

i

j

x106

3210

x106

3

2

1

0

5 10 15 20 25 30 35 40 45 50 55

5 10 15 20 25 30 35 40 45 50 55

x106

3

2

1

05 10 15 20 25 30 35 40 45 50 55

x106

3

2

1

05 10 15 20 25 30 35 40 45 50 55

x106

3

2

1

05 10 15 20 25 30 35 40 45 50 55

x106+TIC Blank

+TIC Decoction

+TIC Granules

Retention Time (min)

+TIC Tablet

+TIC Pill

3

a

b

c

d

e

2

1

5 10 15 20 25 30 35 40 45 50 55

x106

3

2

1

0

x106

3

2

1

0

x106

3

2

1

0

x106

3

2

1

0

5 10 15 20 25 30 35 40 45 50 55

5 10 15 20 25 30 35 40 45 50 55

5 10 15 20 25 30 35 40 45 50 55

5 10 15 20 25 30 35 40 45 50 55

▶Fig. 1 RepresentativeTICchromatogramsofthesolutionblankandsamplesofvariousYinqiaosanpreparationformsbybothpositiveionizationmode(a–e)andnegativeionizationmode(f–j).

e47

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Papers Thieme

tracted.TherepresentativeSIMchromatogramsofsixQ-markers(i.e.,chlorogenicacid,luteolin7-glucoside,forsythiaside,liquiritin,forsythin,andarctiin)areprovidedin▶Fig. 2.

Duetotheshortageofstandardreferencematerialandthecostconcern,determinationofmulticomponentsforqualityassessmentofCHMformulaiscurrentlynotrequiredbytheChineseregulato-ryagency.InthecaseofYinqiaosanproducts,onlyoneofthe Q-markers(i.e.,arctiin,chlorogenicacid,orforsythin)isregulatedbytheChinesePharmacopoeia[3].SinceYinqiaosanproductscon-tainmultiplebioactivecomponents,thecurrentmethodsforsin-gle-componentanalysiscanneitherassessthequalityofYinqia-osanproductsobjectivelynordetectcounterfeitseffectively.ThemethoddevelopedinthisworkprovidesamuchbettertechnicalsolutionforqualityassessmentofYinqiaosanproducts,whichnotonlyprofilesaproductbutalsoquantitatesmultipleQ-markerssi-multaneously.

IdentificationofchemicalconstituentsineachYinqiaosanprep-arationformwasaccomplishedbyfollowingtheproceduredetailed

in“Dataprocessing,constituentidentification,andstatisticalanal-ysis”inthe“MaterialsandMethods”section.Thedataobtainedwerethensubjectedtomolecularfeatureextractionsusingpossi-bleionadducts,isotopepatterns,andchargestatesaswellasapresetretentiontimeandmasswindow.Itisworthnotingthatthepost-processingfilterofthedataprocessingsoftwarewassetat3outof3toensureeachmolecularfeatureextractedpresentedinallthreemasschromatogramsofthetriplicatemeasurementsforeachYinqiaosanpreparationform.Thetotalnumberofconstitu-entsidentifiedwithchemicalnamesandthenumberofconstitu-entsidentifiedwithmolecularformulasineachpreparationformaresummarizedin▶table 2.Thenumberofchemicalconstituentsfoundindecoction,granule,pill,andtabletformsofYinqiaosanwere302,434,427,and388,respectively.Amongthe4prepara-tionforms,therewere104commonconstituents(▶Fig. 3),49identifiedwithbothchemicalnamesandformulas(▶table 3)and55identifiedonlywithchemicalformulas(▶table 1S,SupportingInformation).TheMS/MSspectraofthe49chemicalconstituents

▶Fig. 2 RepresentativeSIMchromatogramsofsixmarkerconstituentsofYinqiaosanalongwiththeISataconcentrationof1.69μM.

x103 1.801

1

1

1

1

1

1

1

Chlorogenic acid +ESI

+ESI

+ESI

+ESI

+ESI

+ESI

+ESI

–ESI

Luteolin 7-glucoside

Forsythiaside

Liquiritin

Forsythin

14.36

17.36

22.94

25.99

28.99

28.95

30.00

Arctiin

Etoposide d3 (IS)

Etoposide d3 (IS)

x104

x103

x104

x104

x104

x104

x104

6

4

2

0

6

4

4

3

2

2.52

1.5

0.50

5 10 15 20 25 30 35 40 45 50 55

1

1

0

2

0

6

1.51.25

10.75

0.50.25

8

2.5

Coun

ts

Retention time (min)

21.5

10.5

0

6420

0

4

2

0

e48

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

commonlyidentifiedinallfourYinqiaosanpreparationformsareprovidedin(▶Fig. 1S,SupportingInformation).

SinceeachYinqiaosanpreparationformexertsasimilarthera-peuticeffectandisusedtotreatthesameillnesses,itisreasonabletothinkthatpharmacologicallyactiveconstituentsareamongthe49commonlyidentifiedchemicalconstituentsinallfourprepara-tionforms,whereastheuniquechemicalconstituentsineachprep-arationform(▶tables 2S– 9S,SupportingInformation)maycomefromtheherbsusedbythemanufacturers,wherechemicalcon-stituentsmayvarywithgeographicoriginandcultivar,timeofhar-vestandtheecologicalenvironmentoftheherbs,potentialagri-culturalpollutionsofpesticidesandherbicidesorindustrialcross-contaminationwithotherpharmaceuticalsaswellassidereactionsandby-productsassociatedwiththeuniquemanufacturingcondi-tions(e.g.,temperature,pressure,time,solvent,additives,etc.)ofeachYinqiaosanpreparationform.Thisstudyshowsthatproductprofilingisanindispensablepartofqualityassessment,andtheun-targetedmetabolomicsapproachnotonlyallowsustoprofilebutalsofingerprintanherbalproductintermsofQ-markers,originandcultivars,potentialcontaminations,andsignatureconstituentsas-sociatedwithaparticularpreparationormanufacturingprocess.

MultivariateanalysisoftheacquiredMSdata(i.e.,exactmasstoretentiontimepairandnormalizedpeakarea)wasfirstcarriedoutwithanunsupervisedPCAscoreplottoassessthesimilaritiesofchemicalconstituentsamongthefourYinqiaosanpreparationformsandthereproducibilityofreplicatesamplesofeachprepa-rationformbytheUPLC-QTOF-MSmethod,thenvisualizedbyasu-pervisedPLS-DAscoreplottoestablishrecognitionpatternsofthefourYinqiaosanpreparationforms.

AsshowninthePCAscoreplot(▶Fig. 4a),thedifferencesinchemicalconstituentsamongthefourYinqiaosanpreparationformswereapparent.Thefirsttwoprincipalcomponentsencom-passed72.3%ofthetotalvariance,andthetightgroupingoftrip-licatemeasurementsonthesamplesofeachpreparationformin-dicatedthattheUPLC-QTOF-MSmethoddevelopedhadexcellentreproducibility.ThePLS-DAscoreplot(▶Fig. 4b)wasinagreementwiththePCAscoreplot,andshoweddistinctivepatternsamongthefourYinqiaosanpreparationforms.Hence,thesepatternsmaybeusedforproductdifferentiationandrecognition.

Ahigh-throughputUPLC-QTOF-MSmethodforglobalsemi-quantitativeanalysisofchemicalconstituentsinCHMformulawasdemonstratedinthiswork.Asillustratedbythecontentsof49commonlyidentifiedchemicalconstituentsinfourYinqiaosanpreparationforms(▶table 4),theuseofasingleexogenousrefer-enceIS(etoposide-d3)inthemethodenabledustoperformnotonlyglobalsemiquantitativeanalysisofmulticomponentsineachYinqiaosanpreparationformbutalsocross-comparisonamongthefourpreparationforms.Therefore,themethoddevelopedprovidesanefficientandeconomicalsolutionforbothherbalcontentanal-ysisandproductcomparison.

ThereproducibilityofglobalsemiquantitativeanalysisbytheUPLC-QTOF-MSmethodwasinvestigatedbytriplicatemeasure-mentsofsampleofeachYinqiaosanpreparationform,andthepre-cisionofthesemiquantitativemeasurementswascalculatedintermsofCVofthechemicalcontents.Itwasshown(▶table 4)that91.8–98.0%ofthe49chemicalconstituentsofthe4preparationformshadCVvaluesthatfellwithintherecommendedvalues(CV≤30%)[21],whichindicatedthereliabilityoftheUPLC-QTOF-MSmethod.

Thepharmacologicalactivitiesofthe49commonlyidentifiedchemicalconstituentsinall4Yinqiaosanpreparationformswerein-vestigatedthroughtextmininganddatabasesearching.Sixteenoftheforty-ninechemicalconstituentswerefoundtohavevarious

▶table 2 SummaryofchemicalconstituentsfoundinfourYinqiaosanpreparationforms.

Yinqiaosan Constituents Common constituents

Forms eSI mode Identified Unidentified total eSI mode Identified Unidentified total

Decoction+ 158 37

302

+ 46 21

104

− 21 86

Granule+ 79 177

434− 36 142

Tablet+ 91 163

388

- 3 34− 24 110

Pill + 67 186427

− 38 136

Pill (P)

Granules (G) Tablet (T)

G

P 226

155

13

27

104

3

24245

1

7

162

5

196

35

D

T

Decoction (D)

▶Fig. 3 VenndiagramofthechemicalconstituentsfoundineachpreparationformofYinqiaosan.

e49

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Papers Thieme▶

tabl

e 3

Common

chemicalcon

stitu

entsdetectedandidentifi

edinallfourYinqiaosanpreparationform

s.

no.

Form

ula

nam

etr

(min

)o

bser

ved

mas

sD

atab

ase

mas

sPr

ecur

sor

ion,

m/z

1C 1

6H18O9

Chlorogenicacid

*

1.80

354.09

6135

4.09

5135

5.10

26[M

+H]+

2C 1

1H12N

2O2

D-Tryptop

han

3.01

204.09

1420

4.08

9120

5.09

86[M

+H]+

3C 3

4H34O18

Isorientin4'-O

-glucoside2''-O-p-hydroxybenzoagte

4.88

730.17

6473

0.17

7773

1.18

41[M

+H]+

4C 2

4H24O

11Echioidinin2'-(6''-acetylglucoside)

6.36

488.13

3248

8.13

3748

9.13

93[M

+H]+

5C 1

9H25N5O

6Asn-Trp-Thr

8.11

419.18

2041

9.18

1742

0.18

95[M

+H]+

6C 2

0H26O9

BruceineD

8.40

410.15

7341

0.15

8341

1.16

44[M

+H]+

7C 1

7H18N

4O5

202-79

18.49

358.12

8635

8.12

8138

1.11

77[M

+Na]

+ ;3

59.138

2[M

+H]+

8C 2

1H28O8

Vernofl

exuo

side

8.49

408.17

8540

8.17

9340

9.18

59[M

+H]+

9C 2

1H24O

12Ca

techin-4-ol3-O

-BeTa-D-galactopyrano

side

9.59

468.12

7446

8.12

7946

9.13

45[M

+H]+

10C 2

8H34O

12Ca

ohuo

sideD

9.79

562.20

5656

2.20

6656

3.21

30[M

+H]+

11C 1

1H14O5

Genipin

11.14

226.08

5322

6.08

5522

7.09

25[M

+H]+

12C 2

0H18N

4O6

Phe-His-O

H11

.14

410.12

1441

0.12

2641

1.12

87[M

+H]+

13C 1

3H22N

4O8S

2Cysteineglutathion

edisulfide

11.19

426.08

8542

6.08

7121

4.05

06[M

+2H]2+

14C 2

0H24N

4O6

Asp-Pro-Trp

11.69

416.16

8141

6.16

7741

7.17

54[M

+H]+

15C 1

8H26O7

Prop

ofolglucuronide

12.04

354.16

7635

4.16

7235

5.17

44[M

+H]+

16C 2

3H20O9

Pong

amosideA

12.25

440.11

1144

0.11

1244

1.11

85[M

+H]+

17C 1

5H12O

4Liqu

iritig

enin

13.37

256.07

4825

6.07

5225

7.08

20[M

+H]+

18C 2

1H21ClN

2O8

Dem

eclocycline

13.43

464.09

7746

4.09

9048

7.08

72[M

+Na]

+ ;4

65.105

2[M

+H]+

19C 3

2H31N

3O5

KT572

013

.78

537.22

3653

7.22

5053

8.23

08[M

+H]+

20C 2

2H22O7

Artoindo

nesianinR

14.13

398.13

7139

8.13

6939

9.14

37[M

+H]+

21C 2

1H20O

11Luteolin7-glucoside

*

14.42

448.10

8744

8.10

3844

9.10

98[M

+H]+

22C 2

2H24O7

Dihydroanhydrop

odorhizol

15.60

400.15

2040

0.15

3140

1.15

94[M

+H]+

23C 2

5H23ClN

2O7

TyrM

e-Phe4Cl-O

H17

.02

498.11

8849

8.12

0149

9.12

58[M

+H]+

24C 2

9H36O15

Forsythiaside *

17

.32

624.20

3562

4.20

5464

7.19

94[M

+Na]

+

25C 2

8H30O

11IkarisosideD

17.98

542.18

1154

2.18

0954

3.18

75[M

+H]+

26C 2

9H32O

12Am

orph

igeninO-glucoside

19.41

572.19

0257

2.19

0157

3.19

77[M

+H]+

27C 2

3H28O

11Albiflo

rin20

.08

480.16

3448

0.16

4048

1.17

06[M

+H]+

28C 2

1H19ClN

2O8

Oxazepamglucuronide

20.73

462.08

3146

2.08

2546

3.09

03[M

+H]+

29C 3

4H30N

2O9

Atalanine

21.18

610.19

2461

0.19

3161

1.19

97[M

+H]+

30C 2

1H22O9

Liqu

iritin

*

22.87

418.12

9341

8.12

8241

9.13

66[M

+H]+

31C 2

8H50N

2O19P 2

N,N'-D

iacetylchitobiosyldiph

osph

odolicho

l23

.52

780.24

8678

0.25

0278

1.25

77[M

+H]+

32C 3

2H42O15

3,4,7-Trihydroxy-5-m

etho

xy-8-prenylflavan4-O

-(beta-D-xylop

yranosyl-

(1-6)-beta-D-glucopyrano

side)

24.24

666.25

0866

6.25

0866

7.25

81[M

+H]+

33C 2

7H34O

11Forsythin

* 25

.88

534.20

8653

4.21

0155

7.20

15[M

+Na]

+

34C 2

3H36O8

3''-H

ydroxypravastatin

26.01

440.24

0544

0.24

1844

1.24

77[M

+H]+

35C 2

1H25ClN

2O3

Cetirizine

27.06

388.15

4838

8.15

4741

1.14

41[M

+Na]

+

36C 2

7H34O

11Arctiin

*

29.02

534.21

0753

4.21

0155

7.20

17[M

+Na]

+

e50

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

pharmacologicalactivities(▶table 5),rangingfromantibacterial,antiviral,anti-inflammatory,andantifungaltoantioxidant,anti-cancer,andtreatmentofallergicrhinitis[22–52].Thesepharma-cologicalactivecompoundsmayservenotonlyasleadcompoundsinnewdrugdevelopment,butalsoasbaitfortheretrievalofpro-teintargetsinanetworkpharmacologystudy[53,54].ThelattermayhelpustounderstandtheunderlyingactionmechanismofYinqiaosanformula.

Inconclusion,aUPLC-QTOF-MSmethodwiththeuseofasingleexogenousreferenceIShasbeendevelopedforuntargetedmetab-olomicsprofilingandglobalsemiquantitationoftheprescriptionChineseherbalmedicineformulaYinqiaosan.Thechemicalprofilesof4Yinqiaosanpreparationforms(i.e.,decoction,granule,pill,and▶

tabl

e 3

Common

chemicalcon

stitu

entsdetectedandidentifi

edinallfourYinqiaosanpreparationform

s.

37C 3

1H42O15

Erub

erinC

33.29

654.25

0665

4.25

1065

5.25

77[M

+H]+

38C 2

0H30O5

19(R)-Hydroxy-PGA2

34.33

350.20

9335

0.20

9135

1.21

67[M

+H]+

39C 2

0H32O5

Tuberonicacid

35.72

352.22

4735

2.22

4535

3.23

22[M

+H]+

40C 1

5H19NO

Pron

etalol

38.36

229.14

8322

9.14

7523

0.15

57[M

+H]+

41C 1

8H14O

3OvaliteninA

39.93

278.09

3527

8.09

3227

9.10

06[M

+H]+

42C 1

9H26O

6S2-Metho

xyestradiol-1

7β3-sulfate

40.02

382.14

4338

2.14

4140

5.13

36[M

+Na]

+ ;3

83.151

2[M

+H]+

43C 2

3H28O

417

-Phenyltrin

orprostagland

inA2

47.86

368.20

1136

8.20

0536

9.20

85[M

+H]+

44C 2

4H40O

63α

,6α,7β,12α

-Tetrahydroxy-5α

-cho

lan-24

-oicacid

48.05

424.28

2442

4.28

3642

5.28

98[M

+H]+

45C 2

4H41NO

4Ca

ssaidine

48.75

407.30

4440

7.30

3440

8.31

16[M

+H]+

46C 2

4H38O

43α

,12α

-Dihydroxy-5β-chol-6-en-24

-oicacid

51.34

390.27

8739

0.27

8941

3.26

76[M

+Na]

+ ;3

91.286

1[M

+H]+

47C 3

6H64N8O

17Glycopeptide

7.86

880.44

1788

0.44

1687

9.43

33[M

-H]-

48C 3

1H39NO

10S

Labrifo

rmin

16.28

617.23

3261

7.22

7861

6.22

59[M

-H]-

49C 4

9H76O

20LanatosideC

21.15

984.49

0698

4.49

3549

1.23

83[M

-2H

]2- ;983

.485

1[M

-H]-

* Markercon

stitu

ent.

Con

tinued

▶Fig. 4 Visualizationofmultivariatedataanalysis.aThePCAscoreplot,andbthePLS-DAscoreplotoffourYinqiaosanpreparationforms.

10

5

5

0

– 5

– 10

0

– 5

– 20 – 10

DecoctionGranulesPillTablet

DecoctionGranulesPillTablet

0

Decoction

Decoction

Pill

Tablet

Granules

Granules

Tablet

Pill

PC1 (54.8 %)

a

b

PLS1 (54.8 %)

PC2

(17.

5%

)PL

S2 (1

6.6

%)

10 20

– 20 – 10 0 10 20

e51

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Papers Thieme▶

tabl

e 4

Semiquantitativeanalysisof49common

lyidentifi

edcom

poundsin4Yinqiaosanpreparationform

s(n=3).

no.

Form

ula

nam

eD

± S

D (µ

g/g)

Cv (

%)

G ±

SD (µ

g/g)

Cv (

%)

t ± SD

(µg/

g)Cv

( %

)P

± SD

(µg/

g)Cv

( %

)

1C 1

6H18O9

Chlorogenicacid

*

2.6±0.4

1314

.5±0.3

23.9±0.2

41.4±0.1

9

2C 1

1H12N

2O2

D-Tryptop

han

18±2

1261

±2

43.4±0.1

41.8±0.2

13

3C 3

4H34O18

Isorientin4'-O

-glucosid

e2''-O

-p-hydroxybenzoagte

22±5

2243

±10

2485

±17

2042

±2

5

4C 2

4H24O

11Echioidinin2'-(6''-acetylglucoside)

13±5

3916

±1

45.0±0.2

32.7±0.1

5

5C 1

9H25N5O

6Asn-Trp-Thr

3.9±0.8

2022

±3

1415

±3

205±2

43

6C 2

0H26O9

BruceineD

7±2

2742

±16

3824

±3

147.5±0.5

6

7C 1

7H18N

4O5

202-79

113

±2

1611

3±16

1414

±2

137.5±0.5

7

8C 2

1H28O8

Vernofl

exuo

side

6±2

3049

±7

1321

±1

610

±1

9

9C 2

1H24O

12Ca

techin-4-ol3-O

-BeTa-D-galactopyrano

side

4.1±0.5

1230

.6±0.7

230

±1

53.3±0.2

5

10C 2

8H34O

12Ca

ohuo

sideD

2.8±0.7

2416

±3

205±1

284±1

35

11C 1

1H14O5

Genipin

12.5±0.5

412

2±1

111

±3

2818

±3

15

12C 2

0H18N

4O6

Phe-His-O

H72

±2

360

1±10

210

5±24

2313

8±50

38

13C 1

3H22N

4O8S

2Cysteineglutathion

edisulfide

18.3±0.2

110

9±12

1119

±4

2115

±2

12

14C 2

0H24N

4O6

Asp-Pro-Trp

3.2±0.6

1727

.5±0.7

26.8±0.7

113.3±0.4

13

15C 1

8H26O7

Prop

ofolglucuronide

13±2

1310

5±44

4253

±10

1917

±2

9

16C 2

3H20O9

Pong

amosideA

34±3

1029

2±20

711

9±3

269

±8

12

17C 1

5H12O

4Liqu

iritig

enin

11±1

1188

±3

417

±2

1224

±2

6

18C 2

1H21ClN

2O8

Dem

eclocycline

4.1±0.5

1330

.2±0.8

322

±2

113.5±0.4

12

19C 3

2H31N

3O5

KT572

026

±3

1213

2±5

417

.0±0.8

523

±3

11

20C 2

2H22O7

Artoindo

nesianinR

4.7±0.9

1914

±3

184.1±0.4

94.7±0.4

9

21C 2

1H20O

11Luteolin7-glucoside

*

9±1

1265

±3

512

.2±0.2

22.1±0.2

8

22C 2

2H24O7

Dihydroanhydrop

odorhizol

4.0±0.4

922

.2±0.2

18.4±0.2

34.6±0.4

10

23C 2

5H23ClN

2O7

TyrM

e-Phe4Cl-O

H48

±11

2323

8±61

2627

5±13

512

1±19

16

24C 2

9H36O15

Forsythiaside *

7±2

2319

6±38

2033

6±23

793

±7

7

25C 2

8H30O

11IkarisosideD

27±3

1145

4±15

366

6±26

414

5±14

10

26C 2

9H32O

12Am

orph

igeninO-glucoside

12±2

1488

±2

238

±3

714

.0±0.7

5

27C 2

3H28O

11Albiflo

rin4±1

2940

±6

144±1

242.7±0.7

26

28C 2

1H19ClN

2O8

Oxazepamglucuronide

5±1

2519

±6

327.5±0.4

63.8±0.5

12

29C 3

4H30N

2O9

Atalanine

5.9±0.9

1539

.0±0.6

216

.5±0.7

44.9±0.2

4

30C 2

1H22O9

Liqu

iritin

*

12±3

2619

7±10

530

±3

117.6±0.4

5

31C 2

8H50N

2O19P 2

N,N'-D

iacetylchitobiosyldiph

osph

odolicho

l22

±1

672

±2

29.2±0.3

43.2±0.4

12

32C 3

2H42O15

3,4,7-Trihydroxy-5-m

ethoxy-8-prenylflavan4-O-(beta-

D-xylopyranosyl-(1-6)-beta-D-glucopyranosid

e)3.7±0.6

1515

.9±0.5

31.81

±0.08

44.3±0.4

9

33C 2

7H34O

11Forsythin

* 1.4±0.1

1095

±3

313

8±7

513

±1

11

34C 2

3H36O8

3''-H

ydroxypravastatin

3.7±0.6

175.9±0.7

124.9±0.3

61.4±0.2

12

35C 2

1H25ClN

2O3

Cetirizine

2.03

±0.09

47.0±0.9

1228

±3

1110

.0±0.3

3

36C 2

7H34O

11Arctiin

*

2.1±0.3

1431

8±9

351

±5

116.8±0.6

8

37C 3

1H42O15

Erub

erinC

2.9±0.3

1091

±10

1112

.6±0.3

23.9±0.3

7

e52

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

tablet)wereobtained,andthe49commonchemicalconstituentsand16pharmacologicalactivecompoundswereidentified.Simul-taneoussemiquantitativeanalysisofthemulticomponentsineachYinqiaosanpreparationformwascarriedoutalongwithuntarget-edmetabolomicsprofiling,andcross-comparisonofthechemicalcontentsinbetweenfourpreparationformswasaccomplished.PCAandPLS-DAanalysesshowedthattheUPLC-QTOF-MSmethoddevelopedwasreproducibleandthechemicalconstituentsfoundinthefourYinqiaosanpreparationformsdisplayeduniquepatternsforproductdifferentiationandrecognition.Themethoddevelopedisusefulfortheidentification,quantitation,andcross-comparisonofchemicalconstituentsnotonlyinYinqiaosanproducts,butalsoinotherCHMformulas.

MaterialsandMethods

Chemicals and Chinese herbal medicine formulasAmmoniumhydroxideandformicacidwerepurchasedfromSig-ma-Aldrich.OptimaLC/MSgradeacetonitrileandmethanol,andHPLCgradewaterwerefromFisherScientific.Deionizedwaterwasobtainedfromanin-houseBarnsteadNanopureewaterpurifica-tionsystem(ThermoScientific)witharesistivitymeterreadingof18.2MΩ-cm.Etoposide-d3(purity,97.8%)waspurchasedfromTorontoResearchChemicalsandusedasthesingleexogenousref-erenceinternalstandardinthiswork.

TheYinqiaosandecoctionwaspreparedbyJiangsuProvincialHospitalofTraditionalChineseMedicine(Nanjing,Jiangsu,China)withninekindsofprocessedCHMs(Jinyinhua,BatchNo.150320;Lianqiao,BatchNo.150718;Bohe,BatchNo.150701;Jingjie,BatchNo.150313;Niubangzhi,BatchNo.150601;Jiegeng,BatchNo.150601;Dandouchi,BatchNo.150401;Gancao,BatchNo.150701;andDanzhuye,BatchNo.150302).Yinqiaosan peifangkeli(granules)weremanufacturedbyJiangyinTianjiangPharmaceuticalCo.(Ji-angyin,Jiangsu,PRC)asindividualpackagesforeachCHM[i.e.,Jiny-inhua(BatchNo.1503112),Lianqiao(BatchNo.1501092),Bohe(BatchNo.1412140),Jingjie(BatchNo.1501094),Niubangzhi(BatchNo.1411156),Jiegeng(BatchNo.1503133),Dandouchi(BatchNo.1410023),Gancao(BatchNo.1502100),andDanzhuye(BatchNo.1501021)].Yinqiaojieduwan(pills)(BatchNo.14033352)wasproducedbyBeijingTongrentang(FengtaiDistrict,Beijing,PRC).Yinqiaojiedupian(tablets)(BatchNo.140695)wasmadebytheYunnanTengyaoPharmaceuticalCo.(Tengyue,Yunnan,PRC).

Preparation of the internal standard solutionThestocksolutionofISwaspreparedbydissolving1.00mgetopo-side-d3powderin1.00mLofmethanoltoaconcentrationof1.00mg/mL.TheworkingsolutionoftheISwaspreparedbya1/10di-lutionofthestocksolutioninmethanoltoaconcentrationof100μg/mL(or169μM).

Preparation of various forms of Yinqiaosan sample solutionsYinqiaosandecoctionsamplesolutionTheYinqiaosandecoctionwaspreparedusingthefollowingproce-dure:First,sevenofthenineprocessedCHMs,Jinyinhua(FlosLoni-cerae,9.00g),Lianqiao(FructusForsythiae,9.00g),Niubangzhi▶

tabl

e 4

Semiquantitativeanalysisof49common

lyidentifi

edcom

poundsin4Yinqiaosanpreparationform

s(n=3).

38C 2

0H30O5

19(R)-Hydroxy-PGA2

8±1

1217

±1

616

.1±0.8

56.2±0.8

13

39C 2

0H32O5

Tuberonicacid

5.6±0.4

721

±3

1618

±3

146±1

17

40C 1

5H19NO

Pron

etalol

3.9±0.6

1523

±2

810

±1

129.4±0.7

7

41C 1

8H14O

3OvaliteninA

1.3±0.3

217±2

282.0±0.5

242.3±0.2

9

42C 1

9H26O

6S2-Metho

xyestradiol-1

7β3-sulfate

4.3±0.6

1426

.4±0.4

22.98

±0.02

18±1

19

43C 2

3H28O

417

-Phenyltrin

orprostagland

inA2

1.4±0.2

127.4±0.7

106.3±0.3

53.5±0.4

11

44C 2

4H40O

63α

,6α,7β,12α

-Tetrahydroxy-5α

-cho

lan-24

-oicacid

1.46

±0.01

111

±1

107.7±0.6

84±2

41

45C 2

4H41NO

4Ca

ssaidine

0.54

±0.06

125.0±0.2

48.0±0.6

72.4±0.4

17

46C 2

4H38O

43α

,12α

-Dihydroxy-5β-chol-6-en-24

-oicacid

4±1

3112

±5

437±2

223.7±0.8

21

47C 3

6H64N8O

17Glycopeptide

12±1

1069

±7

109.4±0.2

38.6±0.1

2

48C 3

1H39NO

10S

Labrifo

rmin

28.7±0.8

318

2±13

712

±4

3313

±1

11

49C 4

9H76O

20LanatosideC

8±2

2428

4±57

2017

±5

2983

±10

13

* Markercon

stitu

ents.D

=decoctio

n,G=granu

le,T=tablet;P=pill.

Con

tinued

e53

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Papers Thieme

(FructusArctii,9.00g),Jiegeng(RadixPlatycodonis,6.00g),Dan-douchi(SemenSojaePreparatum,5.00g),Gancao(RadixGlycyr-rhizae,5.00g),andDanzhuye(HerbaLophatheri,4.00g)werefirstsoakedin696mLofdeionizedwaterinsideaclaypotfor30min;next,thepotwasheatedoveragasrangewithahighflame.Oncethewaterinsidethepotstartedtoboil,thegasflamewasadjustedtolowandthepotcontinuedtobeheatedforanother10min.Atthispoint,theremainingtwoprocessedCHMs,Bohe(HerbaMen-thae,6.00g)andJingjie(HerbaSchizonepetae,5.00g),wereadded,andboilingwascontinuedforanother5min.Attheendofheating,thehotdecoction(<500mL)waspouredintoa500-mLglassbeakerandcooledtoroomtemperature.Thecooleddecoc-tionwastransferredintoa500-mLvolumetricflask,andthebeak-erwasrinsedthreetimeswithdeionizedwater.Therinsesolutionwasthencombinedwiththedecoctionintheflask,andadditionaldeionizedwaterwasaddedtothe500-mLmarkoftheflask.Thesolutionwasvortexedandallowedtosettleonabenchtopfor30min;then,3.00mLofthesupernatantwerepipettedandtrans-ferredintoaborosilicateglasstube(16×100mm;FisherScientif-ic)followedbytheadditionof6.90mLofmethanoland0.100mLoftheISworkingsolution(169μM).Themixturewasvortexedfor30susingaMaxiMixIIVortexMixer(ThermoScientific).Next,1.00mLofthesolutionwastransferredintoa1.5-mLmicrocentrifugetube(VWR),andcentrifugedat18000×gfor10minusingaSor-vallST40Rcentrifuge(ThermoFisherScientific).Aftercentrifuga-tion,500µLofthesupernatantwastransferredintoan8-mmclearglassscrewthreadautosamplervialfromThermoFisherScientificandsubjectedtoUPLC-QTOF-MSanalysis.

Yinqiaosangranule,pill,andtabletsamplesolutionsFirst,1/12.5ofthedailymaximumdoseofeachpreparationformofYinqiaosanwasweighedoutprecisely,andeachsamplewas

transferredintoa50.0-mLcentrifugetube(Corning).Then,deion-izedwaterwasaddedtothe40.0-mLmark.Eachsamplewassoakedindeionizedwaterfor90min,followedbyvortexmixingfor3min,thenplacedinaThermoFisherScientificFS-28ultrasonicbathfor30min.Aftersettlingonabenchtopfor30min,3.00mLofthesu-pernatantwerepipettedandtransferredintoaborosilicateglasstube(16×100mm),andthen6.90mLofmethanoland0.100mLoftheISworkingsolution(169μM)wereadded.Themixturewasvortexedfor30s.Next,1.00mLofthesolutionwastransferredintoa1.5-mLmicrocentrifugetubeandcentrifugedat18000×gfor10min.Aftercentrifugation,500µLofthesupernatantweretrans-ferredintoan8-mmclearglassscrewthreadautosamplervialandsubjectedtoUPLC-QTOF-MSanalysis.

Preparation of QC sampleTheQCsample(800µL)couldbepreparedbymixing200µLofeachofthefourYinqiaosansamplesolutions(see“Preparationofvari-ousformsofYinqiaosansamplesolutions”),andusedwitheachbatchanalysisbymonitoringtheselectivityandreproducibilityofthemethodoverthecourseofanalysisonthe49commonlyiden-tifiedcompounds.

UPLC-QTOF-MS systemTheUPLC-QTOF-MSsystemusedinthisworkconsistedofanAgi-lent1290InfinityUPLCsystemcoupledwithanAgilent6540QTOFmassspectrometer.TheUPLCsystemincludedasolventreservoir,adegasser,aG4220Abinarypump,aG1330Bthermostat,aG4226Aautosampler,aG1316Cthermostattedcolumncompart-ment,andaG4212Adiodearraydetector.ThemassspectrometerwasequippedwithanAgilentjetstreamESIprobe.

LiquidchromatographicseparationwasachievedusinggradientelutiononaWatersACQUITYUPLCBEHC18(2.1mmi.d.×100mm,

▶table 5 PharmacologicalactiveconstituentsfoundinallfourYinqiaosanpreparationforms.

no. name PubChem CID CAS reported pharmacological activity

1 Chlorogenicacid * 1794427 327-97-9 antibacterial,antiviral[26–27]

2 Luteolin7-glucoside * 5280637 5373-11-5 antibacterial,antifungal,antioxidant,anti-inflammatory[28,29],antidiabetic[30]

3 Forsythiaside * 5281773 79916-77-1 antibacterial,antiviral,anti-inflammatory[31–32]

4 Forsythin * 101712 487-41-2 antioxidant,anti-inflammatory[33]

5 Liquiritin * 503737 551-15-5 antioxidant[34],antioxidative,anticancer,andneuroprotective[35]

6 Arctiin * 100528 20362-31-6 antiviral,anti-inflammatory[36–39]

7 D-Tryptophan 9060 153-94-6 antibacterial[40]

8 BruceineD 441788 21499-66-1 anticancer:inhibitshepatocellularcarcinomagrowth[41]

9 202-791 122114 101342-80-7 acalciumchannelagonist[42]

10 Genipin 442424 6902-77-8 anticancer:suppressescolorectalcancercells[43–45]

11 Liquiritigenin 114829 578-86-9 restoresosteoblastdamage[46],attenuatescardiacinjury[47],preventspalmitate-inducedbeta-cellapoptosis[48]

12 Demeclocycline 54680690 127-33-3 forthetreatmentofhyponatremiasecondarytoSIADH[49]

13 KT5720 3844 108068-98-0 reversesmultidrugresistance,achemosensitizer[50–51]

14 Albiflorin 51346141 39011-90-0 amelioratesobesity[52]

15 Cetirizine 2678 83881-51-0 forthetreatmentofallergicrhinitis[53–54]

16 LanatosideC 656630 17575-22-3 anticancer:inducesapoptosisinhumangastriccancercells[55]andhumanhepatocellularcarcinomacells[56]

* Markerconstituents.

e54

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

1.7µm,130Å)columnwithaninlineVHPfilter(0.5µm,stainlesssteel)fromUpchurchScientific.ThemobilephaseforthepositiveESI-QTOF-MSconsistedofA)0.1%formicacidaqueoussolution(v/v)andB)acetonitrile.ThemobilephaseforthenegativeESI-QTOF-MSconsistedofA)0.05%ammoniumhydroxideaqueoussolution(v/v)andB)acetonitrile.Thegradientelutionprofilewasasfollows:0–4min,5%B;4–7min,5–10%B;7–20min,10–15%B;20–30min,15–22%B;30–35min,22–35%B;35–40min,35–50%B;40–45min,50–70%B;45–50min,70–90%B;50–52min,5%B;52–60min,5%B.Theflowratewas0.4mL/min.Thecolumntemperaturewasat60℃.Thesampleinjectionvolumewas5.00µL.Priortosampleanalyses,thecolumnwasequilibratedwiththemobilephaseforatleast30minataflowrateof0.4mL/min.

TheQTOF-MSwasoperatedinbothpositiveandnegativeESImodes.Thechromatographicandspectradata(.d)wereacquiredforeachESImodeusingAgilentMassHunterDataAcquisitionsoft-ware(VersionB.05.01).Theoperationparametersofthemassspectrometerwereasfollows:dryinggas(N2)temperature,350°C;dryinggasflowrate,10.0L/min;nebulizergas(N2)pressure,35psi;sheathgasflowrate,11.0L/min;sheathgas(N2)temperature,325°C;capillaryvoltage,4000V;nozzlevoltage,500V;fragmen-torvoltage,100V;skimmervoltage,65V;octopoleradio-frequen-cyvoltage,750V;collisionenergy,10,20,and40eV.ThedatawereacquiredbyautoMS/MSmodewithanextendeddynamicrange (2GHz).TheMSscanrangewas50–1000m/zatascanrate5spectra/s.TheMS/MSscanrangewas50–1000m/zatascanrateof3spectra/swithanisolationwidthatnarrow(~1.3m/z).Tomaintainthemassaccuracy,themassspectrometerwascalibrat-edandtunedbeforeanalysis,andinternalreferencemassesfromthereferencemasssolutionwereusedforreal-timemasscorrec-tionatm/z121.0508and922.0098forthepositiveionmode,andm/z112.9885and1033.9881forthenegativeionmodethrough-outtheacquisitionprocess.Thereferencemasssolutionwaspre-paredusinganAgilentAPI-TOFreferencemasssolutionkit(PartNo:G1969-85001).

Method validationThespecificityandreproducibilityoftheUPLC-QTOF-MSmethodwereassessedbyreplicatemeasurementsofsamplesoffourYin-qiaosanpreparationforms.PCAscoreplotswereconstructedusingtheacquiredMSdata,andtheCVswerecalculatedontheconcen-trationsofreplicatemeasurementsof49commonlyidentifiedcompoundsthroughglobalsemiquantitativeanalysis.

Data processing, constituent identification, and statistical analysisThedatafiles(.d)ofreplicatemeasurementsforfourYinqiaosanpreparationformsacquiredbyAgilentMassHunterDataAcquisi-tionsoftwareatthesameionpolarity(i.e.,eitherpositiveornega-tiveESI)werefirstassessedusingAgilentMassHunterQualitativeAnalysissoftware(Version:B.06.00)forthesignal/noiselevel,andretentiontimeandmassshiftswithrespecttothespikedIS,whichwerethenprocessedusingAgilentProfindersoftware(VersionB.06.00)forbatchrecursiveanalysis.Thedatafilesweregroupedintofourpreparationformsandsubjectedtomolecularfeatureex-tractionbyselectingapeakheightthresholdof1000counts,pos-

sibleionadducts,isotopemodelofcommonorganicmolecules,chargestatesuptotwo,aretentiontimewindowof0.10%+0.60min,amasswindowof20.00ppm+2.00mDa(foralignmentoftheISinallrunswiththesamepolarity),andapost-processingfil-terat3outof3replicatemeasurementsforeachYinqiaosanprep-arationform.

Eachmolecularfeatureextracteddatafile(.cef)byProfindersoftwarealongwiththecorrespondingdatafile(.d)byMassHunt-erDataAcquisitionsoftwarewasimportedintoAgilentMassHunt-erQualitativeAnalysissoftware.Using“FindbyFormula”,MS/MSdataalongwithitsMSandretentiontimedatawereextracted.Thenewdatafiles(.cef)inthesameionpolarityofreplicatemeasure-mentsofeachYinqiaosanpreparationformwerethenimportedintoAgilentMassProfilerProfessionalsoftware(Version:B.13.1.1)foranMETLINAMdatabasesearchandmolecularformulagenera-tion.Theselectionofelementsandlimitsformolecularformulagenerationwereasfollows:C(3–156),H(0–180),O(0–40),N(0–20),S(0–14),Cl(0–12),F(0–12),Br(0–10),P(0–9),andSi(0–15)[55].Thetopfiveconstituentswiththehighestscoreswereanno-tated,andcross-checkedwiththeTraditionalChineseMedicineIn-tegratedDatabase[56]andTraditionalChineseMedicineSystemsPharmacologyDatabaseandAnalysisPlatform[57]forfinalnameassignments.Thecombineddatafile(.cef)ofreplicatemeasure-mentsofeachYinqiaosanpreparationformwiththenamesofchemicalconstituentswassavedforglobalsemiquantitativeanal-ysis.

Formultivariatedataanalysis,themolecularfeatureextracteddatafiles(.csv)bytheProfindersoftwarewereimportedintoMe-taboAnalyst4.0[58]intermsofmass,retentiontime,andpeakarea.Themasstoleranceandtheretentiontimetoleranceweresetat0.025and30s,respectively.Samplenormalizationwasper-formedbytheISreferencefeatures(i.e.,mass,retentiontime,andpeakarea),andthedatawerelogtransformedandautoscaled.PCAandPLS-DAwereperformedusingtheISfornormalization.PCAandPLS-DAscoreplotswereconstructedforsimilaritycomparisonofthechemicalconstituentsandreproducibilityassessmentoftheUPLC-QTOF-MSmethodaswellaspatternrecognitionamongthefourYinqiaosanpreparationforms.

Global semiquantitative analysisThedatafiles(.d)withthesameionpolarityofreplicatemeasure-mentsofeachYinqiaosanpreparationformbytheMassHunterDataAcquisitionsoftwareandtheircorrespondingcombineddatafile(.cef)withthenamesofchemicalconstituentsbytheMassProfilerProfessionalsoftwarewereimportedintoAgilentMassHunterQuantitativeAnalysissoftware(Version:B.06.00).Inthemethodsetuptask,theretentiontimewindowwassetat0.6min,etopo-side-d3ammoniumadductwaschosenastheISandflagged,otheridentifiedchemicalconstituentswerechosenastargetsrelativetotheIS,andproperionpolaritywaschosen.Aftervalidatingthemethodsetup,globalsemiquantitativeanalysiswasperformedbasedonthepeakarearatioofeachindividualtargettotheIS,andthequantitationdatawereexportedasexcelfileforreporting.

e55

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

Original Papers Thieme

Supporting InformationTheMS/MSspectraofthe49chemicalconstituentscommonlyidentifiedinallfourYinqiaosanpreparationforms(▶Fig. 1S),thecommonchemicalconstituentsdetectedbutunidentifiedinallfourYinqiaosanpreparationforms(▶table 1S),andtheuniquecon-stituentsfoundindecoction,granule,pill,andtabletformsofYin-qiaosan(▶tables 2S– 9S)areavailableasSupportingInformation.

AcknowledgementsYachunShuwouldliketoacknowledgethefundingsupportoftheChinaNaturalScienceFoundation(81503216)andJiangsuProv-ince(LGY2016017).

ConflictofInterest

Theauthorsdeclarethattheyhavenoconflictofinterest.

References

[1] ChengCW,WuTX,ShangHC,LiYP,AltmanDG,MoherD,BianZX.CONSORTExtensionforChineseHerbalMedicineFormulas2017:Recommendations,Explanation,andElaboration(TraditionalChineseVersion).AnnInternMed2017;167:112–121

[2] FungFY,LinnYC.DevelopingtraditionalChinesemedicineintheeraofevidence-basedmedicine:currentevidencesandchallenges.EvidBasedComplementAlternatMed2015;2015:425037

[3] TheChinesePharmacopoeiaCommission.PharmacopoeiaofthePeople’sRepublicofChina,VolumeI.Beijing:ChinaMedicalSciencePress.2015

[4] TheUnitedStatesPharmacopeialConvention.PharmacopeialConventionHerbalMedicinesCompendium.Availableat:https://hmc.usp.org/monographs/all.AccessedFebruary20,2020

[5] TheEuropeanPharmacopoeiaCommission.EuropeanPharmacopoeia,VolumeI.Strasbourg,France:EDQM.2017

[6] MaXD,FanYX,JinCC,WangF,XinGZ,LiP,LiHJ.Specifictargetedquantificationcombinedwithnon-targetedmetaboliteprofilingforqualityevaluationofGastrodia elatatubersfromdifferentgeographicaloriginsandcultivars.JChromatogrA2016;1450:53–63

[7] LiW,TangY,GuoJ,ShangE,QianY,WangL,ZhangL,LiuP,SuS,QianD,DuanJ.ComparativemetabolomicsanalysisonhematopoieticfunctionsofherbpairGui-Xiongbyultra-high-performanceliquidchromatographycoupledtoquadrupoletime-of-flightmassspectrometryandpatternrecognitionapproach.JChromatogrA2014;1346:49–56

[8] KimN,RyuSM,LeeD,LeeJW,SeoEK,LeeJH,LeeD.AmetabolomicapproachtodeterminethegeographicaloriginsofAnemarrhena asphodeloidesbyusingUPLC-QTOFMS.JPharmBiomedAnal2014;92:47–52

[9] XieM.Formulaology.Beijing:People’sMedicalPublishingHouse2007;53–54

[10] WuT.AnalysisofWarmDiseases,VolumeI.Beijing:People’sMedicalPublishingHouse2017;17–19

[11] ChenYJ,ZhuXX,CaiBC,WangQ,ShuYC.ComparativestudyoneffectsofYinqiaopowderdecoctedlateratdifferenttimeagainstinfluenzaavirusinbody.CJTCMP2015;30:4048–4052

[12] YuY,ZhangG,HuangHL,LuZ,QiuDW,HanT,TangJQ.Meta-analysisoftheclinicaleffectsofYinqiaodecoctiononhand-foot-mouthdisease.JETCM2016;25:590–593

[13] ChenQY.TheClinicalandBasicStudyofYinqiaoPowderforAcuteViralPharyngitis[doctoraldissertation].Guangzhou:GuangzhouUniversityofChineseMedicine.2013

[14] XiYL,HuiHY,LiDT,DengZJ.ClinicalefficacyofYinqiaopowderagainstpediatricpneumonia.ChinHospPharmJ2016;36:571–574

[15] LiYQ.ExperienceofYinqiaoPowderfortheTreatmentofChildrenwithAcuteTonsillitis.ChineseCommunityDoctors2016;32:118120

[16] DuanSH,LiuMS.StudyonadultmeaslesoftreatmenteffectwithYinqiaopowder.ChineseJournalofBasicMedicineinTraditionalChineseMedicine2014;20:1150–1151

[17] ShuYC,QinKM,ChenYJ,ZhuXX,CaiH,LuTL,LiH,CaiBC.StudyonthedifferentdecoctingmethodsonYinqiaosandecoctionofanti-inflammatoryandantipyreticeffects.CJTCMP2013;28:1413–1418

[18] WangC,CaoB,LiuQQ,ZouZQ,LiangZA,GuL,DongJP,LiangLR,LiXW,HuK,HeXS,SunYH,AnY,YangT,CaoZX,GuoYM,WenXM,WangYG,LiuYL,JiangLD.OseltamivircomparedwiththeChinesetraditionaltherapyMaxingshigan-YinqiaosaninthetreatmentofH1N1influenza:Arandomizedtrial.AnnInternMed2011;155:217–225

[19] WangJJ,ZhangL,GuoQ,KouJP,YuBY,GuDH.QuantitativeanalysisofsevenphenolicacidsineightYinqiaojieduserialpreparationsbyquantitativeanalysisofmulti-componentswithsingle-marker.ActaPharmaceuticaSinica2015;50:480–485

[20] HaoM,LuTL,MaoCQ,WangQH,SuLL,ZhangJ.StudyonqualitycontrolofChineseherbalpiecesbasedonQ-markerofChinesemateriamedica.ChineseTraditionalandHerbalDrugs2017;48:1699–1708

[21] WantEJ,WilsonID,GikaH,TheodoridisG,PlumbRS,ShockcorJ,HolmesE,NicholsonJK.GlobalmetabolicprofilingproceduresforurineusingUPLC-MS.NatProtoc2010;5:1005–1018

[22] WangX,HaoO,WangW,YingX,WangH.EvaluationoftheuseofdifferentsolventstoextractthefourmaincomponentsofYinqiaosanandtheirin vitroinhibitoryeffectsoninfluenza-Avirus.KaohsiungJMedSci2010;26:182–191

[23] ShuYC,QinKM,CaiH,LiuX,YinFZ,ZhangJZ,CaiBC.StudyontheoptimaltraditionaldecoctionprocessforYinqiaoSanbyorthogonalexperiments.CJTCMP2012;27:2651–2655

[24] ChiruvellaKK,MohammedA,DampuriG,GhantaRG,RaghavanSC.Phytochemicalandantimicrobialstudiesofmethylangolensateandluteolin-7-O-glucosideisolatedfromcallusculturesofSoymidafebrifuga.IntJBiomedSci2007;3:269–278

[25] HuC,KittsDD.Luteolinandluteolin-7-O-glucosidefromdandelionflowersuppressiNOSandCOX-2inRAW264.7cells.MolCellBiochem2004;265:107–113

[26] ZangY,IgarashiK,LiY.Anti-diabeticeffectsofluteolinandluteolin-7-O-glucosideonKK-A(y)mice.BiosciBiotechnolBiochem2016;80:1580–1586

[27] WuYT,CaiMT,ChangCW,YenCC,HsuMC.Bioanalyticalmethoddevelopmentusingliquidchromatographywithamperometricdetectionforthepharmacokineticevaluationofforsythiasideinrats.Molecules2016;21:E1384

[28] ChenL,LinL,DongZ,ZhangL,DuH.ComparisonofneuroprotectiveeffectofForsythia suspensaleafextractandforsythiaside,oneofitsmetabolites.NatProdRes2017;8:1–4

[29] PanX,CaoX,LiN,XuY,WuQ,BaiJ,YinZ,LuoL,LanL.Forsythininhibitslipopolysaccharide-inducedinflammationbysuppressingJAK-STATandp38MAPKsignalingsandROSproduction.InflammRes2014;63:597–608

e56

Shu Y et al. Untargeted Metabolomics Profiling and … Planta Med Int Open 2020; 7: e45–e57

[30] HuangX,WangY,RenK.ProtectiveeffectsofliquiritinonthebrainofratswithAlzheimerʼsdisease.WestIndianMedJ2015;64:468–472

[31] ZhangY,ZhangL,ZhangY,XuJJ,SunLL,LiSZ.Theprotectiveroleofliquiritininhighfructose-inducedmyocardialfibrosisviainhibitingNF-κBandMAPKsignalingpathway.BiomedPharmacother2016;84:1337–1349

[32] HayashiK,NarutakiK,NagaokaY,HayashiT,UesatoS.Therapeuticeffectofarctiinandarctigenininimmunocompetentandimmuno-compromisedmiceinfectedwithinfluenzaAvirus.BiolPharmBull2010;33:1199–1205

[33] LeeS,ShinS,KimH,HanS,KimK,KwonJ,KwakJH,LeeCK,HaNJ,YimD,KimK.Anti-inflammatoryfunctionofarctiinbyinhibitingCOX-2expressionviaNF-κBpathways.JInflamm(Lond)2011;8:1–9

[34] MatsuzakiY,KoyamaM,HitomiT,YokotaT,KawanakaM,NishikawaA,GermainD,SakaiT.Arctiininducescellgrowthinhibitionthroughthedown-regulationofcyclinD1expression.OncolRep2008;19:721–727

[35] HiroseM,YamaguchiT,LinC,KimotoN,FutakuchiM,KonoT,NishibeS,ShiraiT.EffectsofarctiinonPhIP-inducedmammary,colonandpancreaticcarcinogenesisinfemaleSprague-DawleyratsandMeIQx-inducedhepatocarcinogenesisinmaleF344rats.CancerLett2000;155:79–88

[36] ChenJ,KudoH,KanK,KawamuraS,KosekiS.Growthinhibitoryeffectofd-tryptophanonVibriospp.inshuckedandliveoysters.ApplEnvironMicrobiol2018;84:e01543–18

[37] ChengZ,YuanX,QuY,LiX,WuG,LiC,ZuX,YangN,KeX,ZhouJ,XieN,XuX,LiuS,ShenY,LiH,ZhangW.BruceineDinhibitshepatocel-lularcarcinomagrowthbytargetingβ-catenin/jagged1pathways.CancerLett2017;403:195–205

[38] HughesAD,HeringS,BoltonTB.EvidencethatagonistandantagonistenantiomersofthedihydropyridinePN202-791actatdifferentsitesonthevoltage-dependentcalciumchannelofvascularmuscle.BrJPharmacol1990;101:3–5

[39] ShanmugamMK,ShenH,TangFR,ArfusoF,RajeshM,WangL,KumarAP,BianJ,GohBC,BishayeeA,SethiG.Potentialroleofgenipinincancertherapy.PharmacolRes2018;133:195–200

[40] KimBR,JeongYA,NaYJ,ParkSH,JoMJ,KimJL,JeongS,LeeSY,KimHJ,OhSC,LeeDH.GenipinsuppressescolorectalcancercellsbyinhibitingtheSonicHedgehogpathway.Oncotarget2017;8:101952–101964

[41] LeeSY,KimHJ,OhSC,LeeDH.GenipininhibitstheinvasionandmigrationofcoloncancercellsbythesuppressionofHIF-1α accumulationandVEGFexpression.FoodChemToxicol2018;116:70–76

[42] ChoiEM,SuhKS,LeeYS.Liquiritigeninrestoresosteoblastdamagethroughregulatingoxidativestressandmitochondrialdysfunction.PhytotherRes2014;28:880–886

[43] XieXW.Liquiritigeninattenuatescardiacinjuryinducedbyhighfructose-feedingthroughfibrosisandinflammationsuppression.BiomedPharmacother2017;86:694–704

[44] BaeGD,ParkEY,BaekDJ,JunHS,OhYS.Liquiritigeninpreventspalmitate-inducedbeta-cellapoptosisviaestrogenreceptor-mediatedAKTactivation.BiomedPharmacother2018;101:348–354

[45] MiellJ,DhanjalP,JamookeeahC.Evidencefortheuseofdemeclocy-clineinthetreatmentofhyponatraemiasecondarytoSIADH:asystematicreview.IntJClinPract2015;69:1396–1417

[46] GalskiH,LazaroviciP,GottesmanMM,MurakataC,MatsudaY,HochmanJ.KT-5720reversesmultidrugresistanceinvariantS49mouselymphomacellstransducedwiththehumanMDR1cDNAandinhumanmultidrug-resistantcarcinomacells.EurJCancer1995;31A:380–388

[47] GalskiH,SivanH,LazaroviciP,NaglerA.In vitroandin vivoreversalofMDR1-mediatedmultidrugresistancebyKT-5720:implicationsonhematologicalmalignancies.LeukRes2006;30:1151–1158

[48] JeongMY,ParkJ,YounDH,JungY,KangJ,LimS,KangMW,KimHL,SoHS,ParkR,HongSH,UmJY.AlbiflorinamelioratesobesitybyinducingthermogenicgenesviaAMPKandPI3K/AKTin vivoandin vitro.Metabolism2017;73:85–99

[49] ZhangL,ChengL,HongJ.Theclinicaluseofcetirizineinthetreatmentofallergicrhinitis.Pharmacology2013;92:14–25

[50] NayakAS,BergerWE,LaForceCF,UrdanetaER,PatelMK,FranklinKB,WuMM.Randomized,placebo-controlledstudyofcetirizineandloratadineinchildrenwithseasonalallergicrhinitis.AllergyAsthmaProc2017;38:222–230

[51] HuY,YuK,WangG,ZhangD,ShiC,DingY,HongD,ZhangD,HeH,SunL,ZhengJN,SunS,QianF.LanatosideCinhibitscellproliferationandinducesapoptosisthroughattenuatingWnt/β-catenin/c-Mycsignalingpathwayinhumangastriccancercell.BiochemPharmacol2018;150:280–292

[52] ChaoMW,ChenTH,HuangHL,ChangYW,HuangFuWC,LeeYC,TengCM,PanSL.LanatosideC,acardiacglycoside,actsthroughproteinkinaseCδtocauseapoptosisofhumanhepatocellularcarcinomacells.SciRep2017;7:46134

[53] HopkinsAL.Networkpharmacology:thenextparadigmindrugdiscovery.NatChemBiol2008;4:682–690

[54] ChenYL,ZhangYL,DaiYC,TangZP.Systemspharmacologyapproachrevealstheanti-inflammatoryeffectsofampelopsisgrossedentataondextransodiumsulfate-inducedcolitis.WorldJGastroenterol2018;24:1398–1409

[55] KindT,FiehnO.Sevengoldenrulesforheuristicfilteringofmolecularformulasobtainedbyaccuratemassspectrometry.BMCBioinformat-ics2001;8:105

[56] CenterforBioinformaticsandComputationalBiologyatEastChinaNormalUniversity,TraditionalChineseMedicineIntegratedDatabase.Availableat:http://119.3.41.228:8000/tcmid.AccessedFebruary20,2020

[57] WangY.TraditionalChineseMedicineSystemsPharmacologyDatabaseandAnalysisPlatform.Availableat:http://tcmspw.com.AccessedFebruary20,2020

[58] XiaJ.MetaboAnalyst4.0.Availableathttp://www.metaboanalyst.ca.AccessedFebruary20,2020

e57