Unsymmetrical bending (2nd year)

41
Unsymmetrical Bending Dr Alessandro Palmeri <[email protected]>

description

Lecture slides on the calculation of the bending stress in case of unsymmetrical bending. The Mohr&#x27;s circle is used to determine the principal second moments of area.

Transcript of Unsymmetrical bending (2nd year)

Page 1: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  

Dr  Alessandro  Palmeri  <[email protected]>  

Page 2: Unsymmetrical bending (2nd year)

Teaching  schedule  Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff 1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- --- 2 Shear centres A P Basic Concepts J E-R Shear Centre A P 3 Principle of Virtual

forces J E-R Indeterminate Structures J E-R Virtual Forces J E-R

4 The Compatibility Method

J E-R Examples J E-R Virtual Forces J E-R

5 Examples J E-R Moment Distribution -Basics

J E-R Comp. Method J E-R

6 The Hardy Cross Method

J E-R Fixed End Moments J E-R Comp. Method J E-R

7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R 8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R 9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P 10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric

Bending A P

11 Complex Stress/Strain A P Complex Stress/Strain A P Complex Stress/Strain

A P

Christmas Holiday

12 Revision 13 14 Exams 15 2  

Page 3: Unsymmetrical bending (2nd year)

Mo@va@ons  (1/2)  

•  Many  cross  sec@ons  used  for  structural  elements  (such  us  Z  sec@ons  or  angle  sec@ons)  do  not  have  any  axis  of  symmetry  

•  How  does  the  theory  developed  for  symmetrical  bending  can  be  extended  to  such  sec@ons?  

3  

Page 4: Unsymmetrical bending (2nd year)

Mo@va@ons  (2/2)  •  The  figure  shows  the  

finite  element  model  of  a  can@lever  beam  with  Z  cross  sec@on  subjected  to  its  own  weight,  in  which  the  gravita@onal  (ver@cal)  load  induces  lateral  sway  (horizontal),    –  exaggerated  for  clarity  

•  How  can  we  predict  this?  

4  

XY XZ

YZ

XY

X

Z

Y

Z

Page 5: Unsymmetrical bending (2nd year)

Learning  Outcomes  

•  When  we  have  completed  this  unit  (2  lectures  +  1  tutorial),  you  should  be  able  to:  

– Determine  the  principal  second  moments  of  area  AND  the  principal  direc@ons  of  area  for  unsymmetrical  beam’s  cross  sec@ons  

– Evaluate  the  normal  stress  σx  in  beams  subjected  to  unsymmetric  bending  

5  

Page 6: Unsymmetrical bending (2nd year)

Further  reading  

•  R  C  Hibbeler,  “Mechanics  of  Materials”,  8th  Ed,  Pren@ce  Hall  –  Chapter  6  on  “Bending”  

 •  T  H  G  Megson,  “Structural  and  Stress  

Analysis”,  2nd  Ed,  Elsevier  –  Chapter  9  on  “Bending  of  Beams”  (eBook)  

6  

Page 7: Unsymmetrical bending (2nd year)

Symmetrical  Bending  (1/4)  •  Our  analysis  of  beams  in  bending  has  been  restricted  so  far  

(part  A)  to  the  case  of  cross  sec@ons  having  at  least  one  axis  of  symmetry,  assuming  that  the  bending  moment  is  ac@ng  either  about  this  axis  of  symmetry  (a),  or  about  the  orthogonal  axis  (b)  

7  

(a)   xz

yaxis of symmetry

beam

’s axis

My

G

(right hand)

σ x > 0

σ x < 0

tensilestress

compressivestress

(b)  

xz

yaxis of symmetry

beam

’s axis Mz

G

σ x > 0σ x < 0

tensilestress

compressivestress

Page 8: Unsymmetrical bending (2nd year)

Symmetrical  Bending  (2/4)  

8  

xz

yaxis of symmetry

beam

’s axis Mz

My

G

Right-­‐Hand  Rule  

 If  the  thumb  point  to  the  

posi0ve  direc0on  of  the  axis,  

then  the  curling  of  the  other  

fingers  give  the  posi0ve  

direc0on  of  the  bending  

Noteworthy:  Some0mes  a  double-­‐headed  arrow  is  used  to  represent  a  

moment  (as  opposite  to  a  single-­‐headed  arrow  used  for  a  force)  

 

Page 9: Unsymmetrical bending (2nd year)

Symmetrical  Bending  (3/4)  

9  

xz

yaxis of symmetry

beam

’s axis

My

G

(right hand)

σ x > 0

σ x < 0

tensilestress

compressivestress

xz

yaxis of symmetry

beam

’s axis Mz

G

σ x > 0σ x < 0

tensilestress

compressivestress

⬇  A  posi@ve  bending  moment  My>0,  induces  tensile  stress  σx>0  in  the  boiom  fibres  of  the  cross  sec@on  

A  posi@ve  bending  moment  Mz>0,  induces  tensile  stress  σx>0  in  the  right  fibres  of  the  cross  sec@on  (looking  at  it  from  the  posi@ve  direc@on  of  the  x  axis)  

⬆  

Page 10: Unsymmetrical bending (2nd year)

σ x =

My zIyy

Eq.  (1)  

Symmetrical  Bending  (4/4)  

•  The  simplest  case  when  the  bending  moment  My  acts  about  the  axis  y,  orthogonal  to  the  axis  of  symmetry  z  

•  Therefore,  the  beam  bends  in  the  ver@cal  plan  Gxz  

•  The  direct  stress  σx  is  given  by:  

10  

x z

y

axis of symmetry

beam

’s axis

My

σ x > 0

G

Page 11: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  (1/3)  

11  

•  The  case  of  unsymmetric  bending  deals  with:  –  EITHER  a  bending  moment  ac@ng  about  an  axis  which  is  neither  an  axis  of  symmetry,  nor  orthogonal  to  it  (le9)  

–  OR  a  beam’s  cross  sec@on  which  does  not  have  any  axis  of  symmetry  (right)  

xz

y

beam

’s axis

My

G

xz

yaxis of symmetry

beam

’s axis

My

G

Page 12: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  (2/3)  

12  

•  The  first  case  is  trivial,  and  can  be  solved  by  using:  –  Decomposi@on  of  the  bending  moment:  

 –  Superposi@on  of  effects:  

Mp = My cos(α )

Mq = −My sin(α )

σ x (A) =MpIpp

⋅d2−MqIqq

⋅e

=Myd /2Ipp

cos(α )+ eIppsin(α )

⎝⎜⎞

⎠⎟

Page 13: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  (3/3)  

13  

•  Par@cular  cases…  

Bending  about  the  strong  axis  

σ x (A) =MyIpp

⋅d2

Bending  about  the  weak  axis   σ x (A) =

My

Iqq

⋅e

Page 14: Unsymmetrical bending (2nd year)

Product  Moment  of  Area  (1/3)  

14  

•  Let’s  introduce  a  new  quan@ty,  Iyz,  called  “Product  Moment  of  Area”  

–  Defined  as:  

•  If  and  only  if  Iyz  =0,  a  bending  moment  ac@ng  on  one  of  these  two  axes  will  cause  the  beam  to  bend  about  the  same  axis  only,  not  about  the  orthogonal  axis  (symmetric  bending)  –  I.e.  a  ver@cal  transverse  load  will  not  induce  any  lateral  sway  and  a  lateral  transverse  will  not  cause  any  ver@cal  movement  

= ∫ dyzA

I y z A

Page 15: Unsymmetrical bending (2nd year)

Product  Moment  of  Area  (2/3)  

15  

•  The  product  moment  of  area  is  defined  mathema@cally  as  the  integral  of  the  product  of  the  coordinates  y  and  z  over  the  cross  sec@onal  area  

•  Similarly  the  second  moments  of  area  Iyy  and  Izz  are  the  integrals  of  the  second  power  of  the  other  coordinate,  z2  and  y2  

•  G  is  the  centroid  of  the  cross  sec@on  

Iyy = z2 dAA∫

Izz = y2 dA

A∫

Iyz = y zdA

A∫

Page 16: Unsymmetrical bending (2nd year)

Product  Moment  of  Area  (3/3)  

16  

•  The  “Parallel  Axis  Theorem”  (also  known  as  Huygens-­‐Steiner  Theorem)  can  be  used  to  determine  the  product  moment  of  area  Iyz,  as  well  as  the  second  moments  of  area  Iyy  and  Izz,  provided  that:  –  The  cross  sec@on  can  be  split  into  simple  blocks,  e.g.  rectangular  blocks  –  The  corresponding  quan@@es  for  the  central  axes  η  (eta)  and  ζ  (zeta),  parallel  

to  y  and  z,  are  known  

 

Iyy = Iηη

(i ) + zi2 A(i )

i∑

Izz = Iζζ(i ) + yi

2 A(i )i∑

Iyz = Iηζ(i ) + yi zi A

(i )

i∑z

yG

ηi

ζ i

Γ i

A(i)

yi (< 0)

zi (> 0)

Page 17: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (1/5)  

17  

1.  Split  the  cross  sec@on  in  rectangular  blocks  

2.  Calculate  the  area  of  each  block  

3.  If  the  posi@on  of  the  centroid  G  is  unknown  –  Calculate  the  first  moment  of  each  block  

about  two  arbitrary  references  axes  

       

A(1) =30×30 = 900A(2) =30×50 =1,500

Qm(1) = A(1) ×15 =13,500 Qn

(1) = A(1) ×15 =13,500Qm(2) = A(2) ×45 =67,500 Qn

(2) = A(2) ×25 =37,500

?  

?  

m mn

n

Page 18: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (2/5)  

18  

–  Calculate  the  posi@on  of  the  centroid  

4.  Calculate  the  two  second  moments  of  area  (and  the  product  moment  of  area,  if  needed)  for  each  block          

 

dm =Qm(i )

i∑A(i )

i∑ = 81,0002,400

=33.75

dn =Qn(i )

i∑A(i )

i∑ = 51,0002,400

=21.25

Iηη(1) = 30×303

12= 67,500 Iζζ

(1) = 30×303

12= 67,500 Iηζ

(1) = 0

Iηη(2) = 50×303

12=112,500 Iζζ

(2) = 30×503

12=312,500 Iηζ

(2) = 0

m mn

n

?  

?  

Page 19: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (3/5)  

19  

5.  Calculate  the  coordinates  of  the  centroid  Γi  of  each  block…        

 

y1 =21.25−302

=6.25 >0

z1 = − 33.75− 302

⎛⎝⎜

⎞⎠⎟

= −18.75 <0

y2 = − 502

−21.25⎛⎝⎜

⎞⎠⎟

= −3.75 <0

z2 =30+302

−33.75

=11.25 >0

Page 20: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (4/5)  

20  

6.  Apply  the  Parallel  Axis  Theorem  for  the  two  second  moments  of  area…        

 

Iyy = Iηη(i ) + A(i )zi

2( )i∑= 67,500+900× −18.75( )2

+112,500+1,500× 11.25( )2

= 686,250

Izz = Iζζ(i ) + A(i )yi

2( )i∑= 67,500+900× 6.25( )2

+312,500+1,500× −3.75( )2

= 436,250

Page 21: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (5/5)  

21  

7.  …  And  the  product  moment  of  area          

 

Iyz = Iηζ(i ) + A(i )yizi( )i∑

= 0+900×6.25× −18.75( )+0+1,500× −3.75( )×11.25= −168,750

Page 22: Unsymmetrical bending (2nd year)

Rota@ng  the  Central  Axes  

22  

QuesBon:  What  happens  to  second  moment  of  area  (Imm)  and  product  moment  of  area  (Imn)  if  we  rotate  the  central  axes  of  reference  for  a  given  cross  sec@on?  

m

n

m

nm

n

m

n

m

n

m

n

Imm  

Imn  

Y  

Z  

Product  moment  of  area  (+ve,  -­‐ve  or  null)  

 

Second  moment  of  area  (always  +ve)  

 

Iyy  

Iyz  

-­‐Iyz  

Izz  

Mohr’s  Circle    

Gy  ≡

 ≡

z

Answer:  The  points  of  coordinates  {Imm,Imn}  will  describe  a  circle  

Page 23: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (1/6)  

23  

•  Named  aser  the  German  civil  engineer  Chris@an  Oio  Mohr  (1835-­‐1918),  the  Mohr’s  circle  allows  determining  the  extreme  values  of  many  quan@@es  useful  in  the  stress  analysis  of  structural  members,  including  minimum  and  maximum  values  of  stress,  strain  and  second  moment  of  area  

m

n

m

nm

n

m

n

m

n

m

n

Imm  

Imn  

Y  

Z  

Product  moment  of  area  (+ve,  -­‐ve  or  null)  

 

Second  moment  of  area  (always  +ve)  

 

Iyy  

Iyz  

-­‐Iyz  

Izz  

Mohr’s  Circle    

Gy  ≡

 ≡

z

Page 24: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (2/6)  

24  

•  We  can  draw  the  Mohr’s  circle,  once  its  centre  CI  and  its  radius  Ri  are  known:  –  The  centre  is  always  on  the  

horizontal  axis,  whose  posi@on  is  the  average  of  the  second  moments  of  area  about  two  orthogonal  axes,  e.g.  Iyy  and  Izz  

 –  From  simple  geometrical  

considera@ons  (Pythagoras’  theorem),  the  radius  requires  the  product  moment  of  area  as  well  

   

Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

m

n CI ≡ Iave,0{ }

Iave =Iyy + Izz2

RI =Iyy − Izz

2⎛⎝⎜

⎞⎠⎟

2

+ Iyz2

CI  Iave  

RI  

=561,250  

=210,004  

Page 25: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (3/6)  

25  

•  Points  Y  and  Z  in  the  Mohr’s  circle,  representa@ve  of  the  central  axes  y  and  z  in  the  cross  sec@on,  are  the  extreme  points  of  a  diameter  

•  A  rota@on  of  an  angle  α  of  the  central  axes  in  the  cross  sec@on  corresponds  to  an  angle  2α  in  the  Mohr’s  circle  (in  the  same  direc@on),  i.e.  twice  the  angle  in  the  Mohr’s  plane  

Imm  

Imn  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

m

n

Y  

Z  

CI  Iave  

RI  

α  

2α  

M  

Page 26: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (4/6)  

26  

•  We  can  determine  the  maximum  and  minimum  values  of  the  second  moment  of  area  for  a  given  cross  sec@on:  

•  The  axes  p  and  q  associated  with  the  extreme  value  of  I  are  called  “principal  axes  of  iner@a”  –  They  are  orthogonal  each  other  –  In  this  example:  

 Ipp=  Imax  è  p-­‐p  is  the  strong(est)  axis  in  bending    Iqq=  Imin  è  q-­‐q  is  the  weak(est)  axis  in  bending,  e.g.  to  be  used  when  calcula@ng  the  Euler’s  buckling  load  

Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

CI  Iave  

RI  

Imin = Iave −RI

Imax = Iave +RI

Q  

Imin   P  Imax  

=771,254  

=351,246  

Page 27: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (5/6)  

27  

•  We  can  also  evaluate  the  inclina@on  of  the  principal  axes  p  and  q  with  respect  to  reference  axes  y  and  z  

•  In  this  example:  

–  In  general,  you  don’t  know  whether  p  is  the  strong  axis  or  the  weak  axis,  but  it’s  for  sure  one  of  the  two  extreme  values    

Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

CI  Iave  

RI  

αyp =α zq =12sin−1 Iyz

RI

⎝⎜⎜

⎠⎟⎟

Q  

Imin   P  Imax  

αyp  αzq=αyp  

2αyp  

2αzq  

=26.7°  

Page 28: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (6/6)  

28  

•  For  any  beam’s  cross  sec@on,  the  principal  axes  p  and  q  always  sa@sfy  the  mathema@cal  condi@on  

–  That  is,  their  representa@ve  points  P  and  Q  in  the  Mohr’s  circle  belong  to  the  horizontal  axis  

•  An  axis  of  symmetry  is  always  a  principal  axis  of  the  area  Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

CI  Iave  

RI  

Q  

Imin   P  Imax  

αyp  αzq=αyp  

2αyp  

2αzq  

Ipq =0

Page 29: Unsymmetrical bending (2nd year)

Mohr’s  Circle:  Par@cular  Cases  •  If  for  a  given  cross  sec@on  

Imin=Imax,  then  all  the  central  axes  m  will  have  the  same  second  moment  of  area,  i.e.  Imm=Imin=Imax,  and  all  the  central  axes  m  will  be  principal  axes  of  area,  i.e.  Imn=0  

–  This  is  the  case,  for  instance,  of  both  circular  and  square  shapes  

–  The  neutral  axis  (where  σx=0)  will  always  coincide  with  the  axis  about  which  the  bending  moment  is  applied  

29  

z

y G

x

Mm

m

m

z

y G

x

Mm

m

m

Page 30: Unsymmetrical bending (2nd year)

Bending  about  Principal  Axes  •  In  general,  a  bending  

moment  Mp  ac@ng  about  the  principal  axis  p  will  cause  the  beam  to  bend  in  the  orthogonal  Gxq  plane  

•  The  simple  formula  of  direct  stress  σx  due  to  pure  bending  can  be  resorted  to:  

–  Similar  to  Eq.  (1)     30  

x

beam

’s axis

G

q

p

Mp

principal axis

σ x > 0

σ x < 0

tensilestress

compressivestress

σ x =MpqIpp

Eq.  (2)  

Distance  (with  sign)  to  the  neutral  axis  

Page 31: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (1/4)  

•  If  the  bending  does  not  act  along  one  of  the  principal  axis  (p  and  q),  then  the  bending  moment  can  be  decomposed  along  the  principal  axes  

•  In  the  figure,  My  is  the  bending  moment  about  the  horizontal  axis  (due,  for  instance,  to  the  dead  load):  

 

   31  

My

z

yG

q

pααyp  

Mp = My cos(α )Mq = −My sin(α )

⎧⎨⎪

⎩⎪

My(> 0)

M p(>0)

M q(<0)

ααyp  

Page 32: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (2/4)  

•  If  the  bending  does  not  act  along  one  of  the  principal  axis  (p  and  q),  then  the  bending  moment  can  be  decomposed  along  the  principal  axes  

•  Similarly  for  the  case  of  the  bending  moment  Mz  (due,  for  instance,  to  some  lateral  forces):  

 

   32  

My

z

yG

q

pααyp  

Mp = Mz sin(α )Mq = Mz cos(α )

⎧⎨⎪

⎩⎪

M p(>0)

α

Mz (> 0)

M q(>0)αzq  

Page 33: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (3/4)  

•  Once  Mp  and  Mq  are  known,  the  normal  stress  σx  (+ve  in  tension)  can  be  computed  with  the  expression:  

33  

My

z

yG

q

pααyp  

p  and  q  here  are  the  distances  from  the  principal  axes  of  the  point  where  the  stress  σx  is  sought  q

p

G

σ x

q

p

x

σ x =

Mp qIpp

−Mq pIqq

Eq.  (3)  

Page 34: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (4/4)  

•  As  an  alterna@ve,  the  following  binomial  formula  can  be  used  

–  where  the  coefficients  beta  (β)  and  gamma  (γ)  are  given  by:  

Mzz

G

My

y

x

σ x = β y + γ z

β = −Mz Iyy +My IyzIyy Izz − Iyz

2

γ =My Izz +Mz IyzIyy Izz − Iyz

2

⎨⎪⎪

⎩⎪⎪

34  

Eq.  (4)  

Page 35: Unsymmetrical bending (2nd year)

Neutral  Axis  (1/2)  •  Along  the  neutral  axis  the  normal  stress  

σx  is  zero,  that  is:      –  The  centroid  G≡{0,0}  belongs  to  the  neutral  axis,  and  indeed  yG=0  and  zG=0  sa@sfies  the  above  equa@ons  

–  We  need  a  second  point  N≡{yN,zN}  to  draw  the  straight  line  GN  represen@ng  the  neutral  axis:  we  can  choose  a  convenient  value  for  the  coordinate  zN,  e.g.  the  boiom  edge  of  the  cross  sec@on,  and  the  associated  value  of  yN  is  given  by:  

   

z

Gy

x

Mz

N

zN

yN

elastic neutral axis

σ x = β y + γ z =0

β yN + γ zN = 0 ⇒ yN = − γ zN

β35  

Page 36: Unsymmetrical bending (2nd year)

Neutral  Axis  (2/2)  

z

Gy

x

Mz

N

zN

yN

elastic neutral axis

•  Although  the  bending  

acBon  is  about  the  verBcal  

axis  z,  the  neutral  axis  is  

not  verBcal  

•  The  two  flanges  are  parBally  

in  tension,  parBally  in  

compression    tension  

compression  

36  

Page 37: Unsymmetrical bending (2nd year)

Normal  Stress  Calcula@ons:  Worked  Example  (1/3)  

37  37  

y

z

Gαyp  

A≡{-­‐8.75,-­‐33.75}  

B≡{21.25,    26.25}  

 

My  

My =106

Mz =0⎧⎨⎪

⎩⎪

Iyy =686,250 Ipp =771,254Izz = 436,250 Iqq =351,246Iyz = −168,750 αyp =26.7°

β = −Mz Iyy +My Iyz

Iyy Izz − Iyz2 = 0.623

γ =My Izz +Mz Iyz

Iyy Izz − Iyz2 =1.610

⎨⎪⎪

⎩⎪⎪

σ x (A) = β yA + γ zA= −0.623×8.75−1.610×33.75= −59.80

σ x (B) = β yB + γ zB = +55.51

Page 38: Unsymmetrical bending (2nd year)

Normal  Stress  Calcula@ons:  Worked  Example  (2/3)  

38  38  

y

z

Gαyp  

My  

Iyy =686,250 Ipp =771,254Izz = 436,250 Iqq =351,246Iyz = −168,750 αyp =26.7°

Mp = My cos(αyp ) = 893,092Mz = −My sin(αyp ) = −449,874⎧⎨⎪

⎩⎪

σ x (A) =Mp qA

Ipp

−Mq pA

Iqq

= 894,092× (−23.00)771,254

− (−449,874)× (−26.21)351,246

= −59.80

σ x (B) =

Mp qB

Ipp

−Mq pB

Iqq

= +55.51

Page 39: Unsymmetrical bending (2nd year)

Normal  Stress  Calcula@ons:  Worked  Example  (2/3)  

39  39  

y

z

GMy  

Iyy =686,250 Ipp =771,254Izz = 436,250 Iqq =351,246Iyz = −168,750 αyp =26.7°

yN = dn =21.25

σ x (N) = β yN + γ zN

= 0.623×21.25+1.610× zN = 0

⇒ zN = −13.241.610

= −8.22

N  

tension  

compression  

point  of  max  tensile  stress  

point  of  max  compressive  stress  

Assume:    Calculate:  

(which  gives  the  neutral  axis  GN)    

elas0c  neutral  axis  

Page 40: Unsymmetrical bending (2nd year)

Key  Learning  Points  (1/2)  1.  The  simple  formula  of  bending  stress,  σx=Myz/Iyy,  is  valid  if  

and  only  if  y  is  a  principal  axis  for  the  cross  sec@on  –  That  is,  if  and  only  if  the  product  moment  of  iner@a  is  Iyz=0  –  This  is  the  case,  for  instance,  when  y  and/or  z  are  axis  of  symmetry  

2.  To  calculate  Iyz  one  can  split  the  cross  sec@on  in  elementary  blocks,  sum  the  contribu@on  from  each  block  and  use  the  parallel  axis  theorem  –  Important:  Iyz  can  be  nega@ve,  posi@ve  or  null  

40  

Page 41: Unsymmetrical bending (2nd year)

Key  Learning  Points  (2/2)  3.  Knowing  Iyy,  Izz  and  Iyz  ,  one  can  draw  the  Mohr’s  circle  for  the  

second  moment  of  area,  which  allows  determining  the  extreme  values  (Imin  and  Imax)  and  their  direc@ons  

4.  In  the  general  case  of  unsymmetrical  bending,  the  normal  stress  is  given  by  the  formula  –  σx=  β y  +  γ z  

•  where  β  and  γ  depend  on  the  components  of  the  bending  moments  (My  and  Mz)  as  well  as  on  Iyy,  Izz  and  Iyz  

5.  The  above  formula  allows  determining  the  inclina@on  of  the  neutral  axis    

41