Unmanned Aircra, Systems (UAS) Integra5on in the Na5onal ...

33
Unmanned Aircra, Systems (UAS) Integra5on in the Na5onal Airspace System (NAS) Project Detect and Avoid UAS INTEGRATION IN THE NAS Jay Shively DAA Sub-Project Manager 1

Transcript of Unmanned Aircra, Systems (UAS) Integra5on in the Na5onal ...

UnmannedAircra,Systems(UAS)Integra5onintheNa5onalAirspace

System(NAS)Project

DetectandAvoid

UAS INTEGRATION IN THE NAS JayShivelyDAASub-ProjectManager 1

Present:•  UASIntegra6onintotheNAS•  RTCASC228MOPSandAutonomy•  ICAORPASPanelandAutonomyFuture:Singleoperatorcontrolofmul6pleA/CPlaybookHuman-AutonomyTeamingPaLernsHATModel

Outline

2

FullUASIntegra6onVisionoftheFuture

Mannedandunmannedaircra,willbeabletorou2nelyoperatethroughallphasesofflightintheNAS,basedonairspace

requirementsandsystemperformancecapabili2es.

3

UAS-NASPhase2ProjectOrganiza6onStructure

PRO

JEC

T O

FFIC

E LE

VEL

Project Support: TechnicalStaff Engineer Dan Roth, AFRCSystems Eng Lead TBD, TBD

Project LeadershipProject Manager (PM) Laurie Grindle, AFRCDeputy PM Robert Sakahara, AFRCDeputy PM, Integration Davis Hackenberg, AFRCChief Engineer William Johnson, LaRC

SUBP

RO

JEC

T LE

VEL

Command and Control (C2)

Subproject ManagerMike Jarrell, GRC

Subproject Technical LeadJim Griner, GRC

Detect and Avoid (DAA)

Subproject ManagerJay Shively, ARC

Subproject Technical LeadsConfesor Santiago, ARC; Lisa Fern,

ARC; Tod Lewis, LaRC

Integrated Test & Evaluation

Subproject ManagerHeather Maliska, AFRC

Subproject Technical LeadsJim Murphy, ARC; Sam Kim, AFRC

ELEM

NET

/TW

P LE

VEL

Technical Work Packages (TWP): Terrestrial Extensions, Ka-band Satcom, Ku-band Satcom, C-band Satcom

Technical Work Packages (TWP): Alternative Surveillance, Well Clear, ACAS Xu, External Collaboration, Integrated Events

Technical Work Packages (TWP):, Integration of Technologies into LVC-DE, Simulation Planning and Integration, Integrated Flight Test

Project Support: Project Planning & ControlLead Resource Analyst April Jungers, AFRCResource Analysts Winter Preciado, AFRC

Warcquel Frieson, ARCJulie Blackett, GRCPat O’Neal, LaRC

Scheduler Irma Ruiz, AFRCRisk Manager Jamie Turner, AFRCChange/Doc. Mgmt Lexie Brown, AFRCAdmin Sarah Strahan, AFRC

4

DAAOpera6onalEnvironments

5

60K’ MSL

18K’ MSL

10K’ MSL

500’ AGL

MINIMUM ENROUTE ALTITUDE

Cooperative Traffic

Non-cooperative Aircraft

HALE aircraft

Ground Based Radar

UAS Ground Control Station

GBSAA Data

Alternative DAA Sensors

ACAS Xu

Airborne Radar

Class 2 & 3 UAS DAA System for Transition

to Operational Altitude (> 10kft MSL)

C2 Datalink DAA System for

Operational Altitudes (> 500ft AGL)

Terminal Area Ops

LegendCurrentResearchAreas(FY14-FY16)ProposedResearchAreas(FY17–FY20)

•  PhaseIMOPSRTCASC-228completeandpublished(March,2017)

–  Transi6ontoClassAairspace–  DAAMOPS–  On-boardRADARMOPS–  C2TerrestrialRadioMOPS

•  Phase2(2021)

–  Opera6oninClassC,D–  TerminalAreaOpera6ons–  LowSWAPA/C,sensors–  GBSAA

Status

6

General.Whenweathercondi6onspermit,regardlessofwhetheranopera6onisconductedunderinstrumentflightrulesorvisualflightrules,vigilanceshallbemaintainedbyeachpersonopera6nganaircra`soastoseeandavoidotheraircra`.Whenaruleofthissec6ongivesanotheraircra`theright-of-way,thepilotshallgivewaytothataircra`andmaynotpassover,under,oraheadofitunlesswellclear.

Piloted“seeandavoid”=UAS“detectandavoid”Pilotsvisionreplacebysensors(on-oroff-boardorboth)Pilotjudgmentofwellclear=mathema6calexpressionofwellclearHorzMissDistance=4000`;VertMissDistance=450`;modTau=35sec;DMOD=4000`

SeeandAvoid:FARSec.91.113

7

TwoFunc6ons:1)  Maintainwellclear

1)  Seeandavoid2)  CollisionAvoidance

1)  TCAS2)  ACAS-Xu

DAA

8

Background

•  Anearlycri6calques6onforthePhaseIMOPSforDAAsystemswaswhat,ifany,levelofDAAmaneuverguidancewouldberequiredtosupportacceptableperformanceonmaintainingwellclear?•  PhaseIMOPSassump6onsspecifythatthepilotincommandwillexecutemaneuverstoremainwellclear–  i.e.,Noautoma6c/autonomousDAAcapability

•  Displaytypesgivenlevel/typeofmaneuverguidance:–  Informa2ve:Providesessen6alinforma6onofahazardthattheremote

pilotmayusetodevelopandexecuteanavoidancemaneuver.Nomaneuverguidanceautoma6onordecisionaidingisprovidedtothepilot

–  Sugges2ve:Automa6onprovidesarangeofpoten6alresolu6onmaneuverstoavoidahazardwithmanualexecu6on.Analgorithmprovidesthepilotwithmaneuverdecisionaidingregardingadvantageousordisadvantageousmaneuvers

–  Direc2ve:Automa6onprovidesspecificrecommendedresolu6onguidancetoavoidahazardwithmanualorautomatedexecu6on.Analgorithmprovidesthepilotwithspecificmaneuverguidanceonwhenandhowtoperformthemaneuver

9

Dra`MOPSInformedbyHITLs:SurveillanceRange

10

Timeun5lCPA

WellClearThreshold(~35sec)

Aircra,ManeuverTime

(~30sec)

~35sec~65sec

NMAC

0sec~80sec~90sec

PilotResponseTime

(~15sec)

ATCInterac5onTime

(~10sec)

Latency

TOTALRESPONSETIME:DetectIntruders

PilotsDetermineResolu5onNego5ateClearancewithATCanduplink

maneuvertoaircra,

Approximatedetec5onrange=8nm

Approximatedetec5onrange=6nm

Aler6ng

11

Symbol Name PilotAc6on BufferedWellClearCriteria

TimetoLossofWellClear

AuralAlertVerbiage

TCASRA

•  Immediateac2onrequired•  ComplywithRAsenseandver6calrate•  No6fyATCassoonasprac6cablea`er

takingac6on

*DMOD=0.55nmi*ZTHR=600`

*modTau=25sec

0sec(+/-5sec)(TCPAapproximate:

25sec)“Climb/Descend”

4 DAAWarningAlert

•  Immediateac2onrequired•  No6fyATCassoonasprac6cablea`er

takingac6on

DMOD=0.75nmiHMD=0.75nmiZTHR=450`

modTau=35sec

25sec(TCPAapproximate:

60sec)

“Traffic,ManeuverNow”

x2

3 Correc6veDAAAlert

•  Oncurrentcourse,correc2veac2onrequired

•  CoordinatewithATCtodetermineanappropriatemaneuver

DMOD=0.75nmiHMD=0.75nmiZTHR=450`

modTau=35sec

55sec(TCPAapproximate:

90sec)

“Traffic,Avoid”

2 Preven6veDAAAlert

•  Oncurrentcourse,correc6veac6onshouldnotberequired

•  Monitorforintrudercoursechanges•  TalkwithATCifdesired

DMOD=0.75nmiHMD=1.0nmiZTHR=700`

modTau=35sec

55sec(TCPAapproximate:

90sec)“Traffic,Monitor”

1 GuidanceTraffic•  Noac5onrequired•  Trafficgenera6ngguidancebands

outsideofcurrentcourse

Associatedw/bandsoutsidecurrentcourse

X N/A

0 None(Target) •  Noac5onrequired•  Nocoordina6onrequired

Withinsurveillancefieldofregard X N/A

*ThesevaluesshowtheProtec6onVolume(notwellclearvolume)atMSL5000-10000`(TCASSensi6vityLevel5)

AutonomousCAisop5onal.Manufacturerscan,ifdesired,automatecollisionavoidance–muchasAirbushasautomatedTCASintheA380.

AutopilotmodetoexecutetheResolu6onAdvisory.

Noac6onforatrafficadvisory.AutonomousMaintainWellClear(MWC)func6onisoutofscope.Partlybecausethesolu6onissugges5ve.Phase2–closureratesareslower,butA/Carecloser,aircra`arelessagile–6melinesmaydictateauto-DAA.Ini6alstudyofthetradespace(OSU-Woods).

DAAPhase1MOPS

12

RPASManualonRemotelyPilotedAircra`(RPAS)Doc10019Autonomousaircra`:Anunmannedaircra`thatdoesnotallowpilotinterven6oninthemanagementoftheflight.AutonomousOpera6on:Anopera6onduringwhicharemotelypilotedaircra`isopera6ngwithoutpilotinterven6oninthemanagementoftheflight.andtheRPASManualonRemotelyPilotedAircra6(RPAS)restrictsthescopetoexclude“autonomousaircra`andtheiropera6ons…”

ICAO

13

However,Lostlinkopera6ons,bydefini6on,areopera6ngwithoutpilotinterven6on(i.e.,pilotoutoftheloop,sec6on2.13).Therefore,basedonthedescrip6ons(sec6on2.1)andtherestric6oninscope,lostlinkopera6onsareexcludedfromtheRPASpanelscope.However,theseopera6onsarediscussedinchapters4,8,9,10,11and14oftheRPASManual.TheICAOdefini6onofautonomousopera6onsinadvertentlyexcludeslostlinkopera6ons.

ICAO

14

SystemCharacteris5c

Pilotcanintervene Pilotcan’tintervene(lostlink)

Pilotcan’tintervene(design)

Determinis6c Automa6on Automa6on* Automa6on

Stochas6c HAT Autonomy Autonomy

Automa6onTable

15

Abilityofpilottointervene

ICAO:Automa6onisinscope,Autonomyisoutofscope.*Currentlostlink.

•  LOA–  Sheridan–  Parasuraman,WickensandSheridan

•  Avia6onSystems–  Aviate–  Navigate–  Communicate

•  Phaseofflight–  T.O.–  Enroute–  Approach–  LandingWaypointNaviga6on:RPASxxisautomatedatlevelxx,innav,fortheenroutephase.

Mul6-dimensionalnature

16

Singleoperatorcontrolofmul6pleUASDoD–AFRL“Heterogeneous-UASIntegra6oninasingle-operatorVSCSEnvironment(HIVE)”UASEXCOMScienceandResearchPanel’s(SARP)-Workshoponmul6pleUAScontrolledbyasingle operator,June27&28.Boeing–“don’tseeabusinessmodelwithoutit.”Supervisorycontrol–astepbeforenetworkmanagement(UTM).

Future

17

Delega6onControl:Playbook®

•  Delega6on:onewayhumansmanagesupervisorycontrolwithheterogeneous,intelligentassets

•  Playbook®:onesmeansofdelega6on•  Plays:analogoustofootball–  Quickcommands–complex

ac6ons

•  APlayprovidesaframework–  Referencesanacceptablerangeof

plan/behavioralterna6ves–  Requiressharedknowledgeof

domainGoals,TasksandAc6ons–  Supervisorcanfurtherconstrain/

s6pulate•  Poten6allyfacilitatesintui6vecoopera6vecontrolofUnmannedSystems

ApagefromAlonzoStagg’s1927Playbook

Example:ProsecuteTarget

Tools:Armlaser➔Lasetarget➔SendcoordinatestoweaponizedUAV➔ToggleUAVs➔Armmissile➔Fire

Scripts:Select‘Lase’script➔ToggleUAVs➔Armweapons➔Fire

Plays:Select‘ProsecuteTarget’play➔Fire

0%

10%

20%

30%

40%

50%

60%

70%

80%

Plays Scripts Tools

% C

orre

ct

Control Mode

Secondary Task Performance (% Correct Hits)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Plays Scripts Tools

Ove

rall

Rat

ing

Control Mode

NASA-TLX Ratings

0

10

20

30

40

50

60

Plays Scripts Tools

Rea

ctio

n Ti

me

Control Mode

Primary Task Performance (RT)

Target Acquisition

Target Prosecution

ShorterReac6onTimeforPlays

PlayshadlowerworkloadHigherAccuracyforPlays

LevelsofAutoma5onSimula5on

Manned-UnmannedTeaming:MUM

Level IV Control: Control of Payload and Vehicle Excluding Take-off and Landing

Extend to simultaneous control of multiple heterogeneous UAS

Manned-UnmannedTeaming:MUM

Goals:•  ApplyPlaybook®methodologyandDelConlessonslearnedtohelicoptercockpit;Testinsimula6on

•  IncreasecapabilityandefficiencyofUAScontrolbyhelicopterpilots

•  Supervisorycontrolofmul6ple,heterogeneousUAS

•  Developinfrastructureandlayfounda6onforlaterefforts

Propor6onofTargetsMarkedbyControlMode(OutofTotalPossible)

0

0.2

0.4

0.6

0.8

1

NoUAV Manual Playbook

Prop

or5o

n

ControlMode

p < .05

0

5

10

15

20

25

Manual Playbook

Time(s)

ControlMode

UASRoutePlanningTimebyControlMode

Results

0

2

4

6

8

10

Temporal Frustra6on Performance Overall

AverageRa

5ng

WorkloadDimension

NoUAV Manual Playbook

NASA–TLXRa6ngs

p < .05 p < .05 p < .05

p < .05

HigherAccuracyPlaybook

LowerRoutePlanningTimeforPlaybook

LowerworkloadforPlaybookonseveraldimensions

FlightDemonstra6on2009

Ft.OrdCA,23APR2009

Goal:•  Demonstratesini6alproofofconceptof

Delega6onControl(Playbook)inflight–supervisorycontrolofmul6pleair/groundassetsinMOUTScenario

Method:•  Live/VirtualDemo–ControllingRMAX,CMU

MAXRoverand2virtualUASwithDelega6onControl

•  VoiceRGNControl(USAF)

Features:•  Delega6oncontrolhuman-machineinterface

supportscontrolandmonitoring4payloads•  Automa6onTransparency•  LiveUGV-UAVcoordina6onforslungloaddrop•  Reducedoperatorworkload/highsitua6on

awareness

Live RMAX Virtual Shadow

Virtual Sky Warrior

Live CMU

MAX Rover

FlightDemonstra6on2011

Ft.Hunter-LiggeECA,19May2011Purpose:•  Buildonprevioussimula6onsandflighttestexaminingsingleoperatorcontrolofmul6pleheterogeneousground/airunmannedsystemsthroughdelega6oncontrolemployment–  Operatorperformancedatacollec6on/workload

assessments–  Heterogeneousflightassets:BoeingScanEagleand

YamahaRMAX;twovirtualUAS–  Tes6nginopera6onallyrelevantmissionscenarios–  Mul6-sensorcross-cueinsupportofbothtarge6ng

andconvoysupport•  ArmyAFDD/BoeingCRADAKeyObjec6ve:•  DevelopandtestDelConTopPriorityPlays;routerecon,convoysupport,troopsincontact

Demonstratedinnumeroussimula6onsandflighttests(evenNOPE).

•  AFRL–Basesecurity,UASgroundsta6on

•  RCO–Dispatch,cockpit

•  HAT

SupervisoryControlSummary

25

HATAgent

HAT Agent

Operator

Interface

DisplayAudioVisual

Context - Time Pressure- User Info- more

Queries/Requests - A v. B- Why?- What If?

Automation

Plays- Goals- Risks to

achieving goals- Mitigations

AlertsContextResponses to Queries- Alternatives- Transparency info - Predicted Outcomes - Reasoning - Confidence level

Transparency Info

RequestsPolling for Risks

Etiquette Rules/C

ontextual S

ensitivity

Authority Info

Scratch Pad

26

ProblemswithAutoma6on

•  BriLle–  Automa6ono`enoperateswellforarangeofsitua6onsbutrequires

humaninterven6ontohandleboundarycondi6ons(Woods&Cook,2006)

•  Opaque–  Automa6oninterfaceso`endonotfacilitateunderstandingortracking

ofthesystem(Lyons,2013)

•  MiscalibratedTrust–  Disuseandmisuseofautoma6onhaveleadtoreal-worldmishapsand

tragedies(Lee&See,2004;Lyons&Stokes,2012)

•  Out–of-the-LoopLossofSitua6onAwareness–  Trade-off:automa6onhelpsmanualperformanceandworkloadbut

recoveringfromautoma6onfailureiso`enworse(Endsley,2016;Onnasch,Wickens,Li,Manzey,2014)

27

HATSolu6onstoProblemswithAutoma6on

•  BriLle–  Nego5ateddecisionsputsalayerofhumanflexibilityintosystem

behavior

•  Opaque–  Requiresthatsystemsbedesignedtobetransparent,presentra5onale

andconfidence–  Communica6onshouldbeintermstheoperatorcaneasilyunderstand

(sharedlanguage)

•  MiscalibratedTrust–  Automa6ondisplayofra5onalehelpshumanoperatorknowwhento

trustit

•  Out–of-the-LoopLossofSitua6onAwareness–  Userdirectedinterface;adaptable,notadap6veautoma6on–  Greaterinterac6on(e.g.,nego5a5on)withautoma6onreduces

likelihoodofbeingoutoftheloop

28

Legend

HumanOperator

Intelligent/Cogni2veAgent

AutomatedTools

Communica2onOnly

SupervisoryRela2onshipCoopera2veRela2onship

Co-loca2on(e.g.,onboardanairplane,ingroundstaJon)

Bothimplybi-direc2onalinforma2onflow,usuallyusingautomatedtools

RCOUse-Case

FLYSKY12isenroutefromSFOtoBOS.ThereisonePOBandadispatcherflightfollowing.•  Onboardautoma6ondetectsfuelimbalanceandalertsPOBanddispatcher.•  POBrequestsautoma6ondiagnosefuelimbalance.Automa6onreportstoPOBaleakinle`tank.

•  POBrequeststhatagentmanagefuel.Agentopensthecrossfeedandturnsoffthepumpsintherightsidetodrawfuelfromthele`.

•  POBcontactsdispatchaboutneedtodivert.•  Dispatcherrequestsdivertplanningfromdispatchautoma6on.•  DispatcheruplinksflightplantoPOB.POBinspectstheflightplanandagrees.

•  POBrequestsagentcoordinatedivertwithATC.Agentreportsdivertisapproved.POBtellsagenttoexecute.

Top-LevelActorRela6onships

31

WObj:Airline Flight

WObj:Ground

Operations

WO:Aircraft

WObj:ATC

Operations

Worker Tools

OnboardPilot

OnboardAgent

GroundAgent

Worker Tools

ATC

Worker Tools

Ground Operator

Top-LevelSystemWork

32

WObj:Airline Flight

Airline Flight

WObj:Ground

Operations

WO:Aircraft

WProc:Airline Operations

WObj:ATC

Operations

WPOut:Fly aircraft

WPOut:Telemetry data

Voice comm

WPOut:Telemetry data

Voice comm

WPOut:Direct traffic (e.g., clearances)Provide information (e.g., traffic)Voice comm

WPOut:Alerts (e.g., weather) Mitigations (e.g., reroutes)Voice comm

Ground Operations

ATC Operations

Worker Tools

OnboardPilot

OnboardAgent

Worker Tools

Ground Operator

Worker Tools

•  Autonomy–  Notintoday’s“approved”UAS–  WordsMaLer•  ICAO

•  Businesscaseforsingleoperatorsupervisorycontrolofmul6pleUAS–  Playbookdelega6onisonesuccessfulmethod

•  HAT–  Coopera6veagentwithknowledgeofworkdomain–  Sharedworldknowledge–  Canweextendedtonetworksupervision

Summary

33