University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech....

17
Fraunhofer ICT University of Coimbra, Dept. Mech. Engineering Assoc. for ICT Development of Industrial Aerodynamics Lab of Energetic & Detonics Exploring the HMXbased PBXs with the TATB Shock Sensitivity TATB Shock Sensitivity ¹Igor Plaksin, ¹Jose Ribeiro, ¹Ricardo Mendes, ¹Svyatoslav Plaksin, ¹Luis Rodrigues, ¹ ² ² ² ¹Jose Campos, ²Michal Herrmann, ²Irma Mikonsaari, and ²Horst Krause Paper #14113, [email protected] ¹ADAI & LEDAP – Assoc. for Development of Industrial Aerodynamics & Lab of Energetic and Detonics, Dept. Mech. Engineering, * D Ch E i i Ui i fC i b * Dept. Chem. Engineering, University ofCoimbra, 3030788 Coimbra PORTUGAL ² ICT Fraunhofer Institute of Chem. Technology, 76327 Pfinztal GERMANY 2012 INSENSITIVE MUNITIONS AND ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM PLANET HOLLYWOOD, LAS VEGAS, NV MAY 14th17th, 2012

Transcript of University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech....

Page 1: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Fraunhofer ICT

University of Coimbra, Dept. Mech.

Engineering

Assoc. for ICTDevelopment of Industrial

Aerodynamics

Lab of Energetic & Detonics

Exploring the HMX‐based PBXs with the TATB Shock SensitivityTATB Shock Sensitivity

¹Igor Plaksin, ¹Jose Ribeiro, ¹Ricardo Mendes, ¹Svyatoslav Plaksin, ¹Luis Rodrigues, ¹ ² ² ²¹Jose Campos, ²Michal Herrmann, ²Irma Mikonsaari, and ²Horst Krause

Paper #14113,  [email protected]

¹ADAI & LEDAP – Assoc. for Development of Industrial Aerodynamics & Lab of Energetic and Detonics, Dept. Mech. Engineering, *D Ch E i i U i i f C i b*Dept. Chem. Engineering, University of Coimbra, 

3030‐788 Coimbra PORTUGAL² ICT ‐ Fraunhofer Institute of Chem. Technology, 76327 Pfinztal GERMANY

2012 INSENSITIVE MUNITIONS AND ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUMPLANET HOLLYWOOD, LAS VEGAS, NV

MAY 14th‐17th, 2012

Page 2: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

ACKNOWLEDGEMENT

Work supported by Office of Naval Research under the ONR Grants N 00014‐08‐1‐0096 d N 0014 12 1 0477 i h D Cliff d B df d P Diand N 0014‐12‐1‐0477 with Dr. Clifford Bedford as a Program Director. 

Characterization of the LS‐PBXs conducted in terms of the WEAG Research Program ERG‐114.009 “Particles Processing and Characterization” g

Prof. Pedro Simoes & Eng. Vitor Redondo, Dept. Chem. Engineering: help in characterization of particles’ density, PSD

Prof. Amilcar Romalho, Dept. Mech. Engineering of University of Coimbra: SEM particles’ morphology. 

Page 3: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Objective & Technical Concept

•Major challenge: to find a way for improving insensitivity characteristics of the HMX‐based PBX ingredients ‐‐coarse‐grained HMX particles, and “dirty binder”, • and then to apply LS ingredients for elaboration of the HMX based PBXs with the shock• and then to apply LS‐ingredients for elaboration of the HMX‐based PBXs with the shock sensitivity comparable to TATB [1], while keeping or even improving a detonation performance in comparison with the reference HMX‐based PBXs

• Exploring novel, physically justified concept for designing the high performance LS‐PBXs and RS‐PBXs containing the HMX‐filler in total amount 77 and 82 wt. %

Variety technological aspects on fabrication of the LS‐HMX components are analyzed in a concept of novel morphological properties of β‐HMX particles:β‐HMX seed has a maximum packed molecular structure: ρ0 = 1.95 – 1.96 g/cm³ (ICT, β p ρ g/ ( ,TNO, Un. Coimbra: ρ0 = 1.951 g/cm³;  W.H. Rinkenbach (1951) ρ0 = 1.96 g/cm³ )Outer layer represent a continuum the cluster‐type substructures spaced by dislocation pits, cracks and fissures. The surface layer has the average density = 1.86 cm³.

Eliminating  the nano‐porous  (defective and sensitive) layer provides a way for decreasing shock reactivity & initiation sensitivity  Idea for Chemical etching & Light‐reflective coating of HMX grains

Page 4: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

β‐HMX Coarse Particles applied for PBX fabrication: Morphology & Density

Particles P01: “Ref. HMX(114µm)” “Ref HMX(114 µm)” “RC HMX(130 9 µm)”Particles P01:  Ref. HMX(114µm)  Ref. HMX Class‐1 military grade (Dyno Nobel)Mono‐modal (PSD): 

Ref. HMX(114 µm) RC‐HMX(130.9 µm)

( )d 50 =114,408 µmρ0 = 1.881±0.006 g/cm³

Particles P03: “RC‐HMX(130.9µm)”fabricated (Fraunhofer ICT) through re‐crystallization of the P01‐material in the propylene‐carbonate solution [5]Mono‐modal PSD: dd50 =130,925 µmρ0 = 1.892±0.006 g/cm³ 

Density measured with application of standard helium and liquid pycnometry. 

Outer layer represent a continuum the cluster‐type substructures spaced by dislocation pits, cracks and fissures Clusters are max concentrated in vertexes & edgescracks and fissures. Clusters are max. concentrated in vertexes & edges. Surface layer: the average density = 1.86 cm³

Page 5: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

β‐HMX Fine & UF‐Particles applied for PBX fabrication: Morphology and Density

Particles P04: ”F‐HMX (11.1 µm)” obtained at Fraunhofer ICT with application of the “Rotor‐Stator Milling” technology [6], particles P01 used as a row materialMono‐modal PSD: d 50 = 11.06 µmρ0 = 1.874±0.008 g/cm³ 

UF‐particles P05: “UF‐HMX (1.6)” obtained by comminuting the water slurry of P04‐grains on “A l G B ll Mill” h l (F h f ICT [6])“Annular Gap Ball‐Mill” technology (Fraunhofer ICT [6])Mono‐modal PSD: d50 =1.64 µm ρ0 = 1.933±0.005 g/cm³ “UF HMX (0 6)” ρ 1 951±0 005 g/cm³“UF‐HMX (0.6)”: ρ0 = 1.951±0.005 g/cm³ 

1) surface clusters ≈ P05 particles “UF‐HMX (0.6 µm)” ) p ( µ )2) P05‐particles are almost free of substructures3) P05‐particles have a maximal density 1.951 g/cm³

Particles P05 represent themselves clusters separated from the crystal’s body at milling 

Page 6: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

β‐HMX Coarse Particles applied for PBX fabrication: Morphology & Density

β‐HMX (507.5 µm, ρ0 =1.893±0.012 g/cm³ ) crystal was splitted in median zone of the (0‐1‐0)‐β ( µ , ρ g/ ) y p ( )facet

Thickness of the outer cluster‐Thickness of the outer cluster‐shell, in which the surface‐defects are concentrated, attains ≈20% of crystal’s cross‐section, or occupiescrystal s cross section, or occupies roughly ≈ 64% of its volume

The defects‐less “seed” has 1 95 g/cm³ densit and occ pies1.95 g/cm³‐density and occupies ≈ 36% of crystal’s volume 

mean density of the surface defect zone can be roughly estimated by value ≈1.86 g/cm³

Relative volume of submicron‐porosity υμpor of particles determined with respect to the voids‐

free UF‐HMX(0.6 µm)‐particles: υμpor = 100 %×(1‐ρ0/1.951).

“Ref. HMX(114 µm)” “RC‐HMX(130.9 µm)” ” F‐HMX (11.1 µm)” “UF‐HMX (1.6 µm)”

P01: υμpor ≡ 1 P03: υμpor =0.6 P04: υμpor =1.7 P05: υμpor =0.4

Page 7: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Shock Reactivity vs. Morphology and Density: Kinetics Rate/Reaction Radiance Test

HMX particles P01, P03, P04  detonator

and P05 bonded with epoxy binder in HMX/Epoxy 90/10 mass‐ratio.  Brass, 1.5

0

KSA, 4x125+6 µm 

Gap filled with HGMB 

Voids‐free PBX‐charges of 99%TMD & Ǿ4x1.04mm–size fabricated with use of slurry i i l i

PE‐4AØ25

Ø40,steelKSA 510 µm

60

Water gap,470 µm

PBX, 1040 µm

Z

mixing, low pressure pressing, vacuum casting, & pressure curing in PMMA holder.  R id l i id

PBX b,Ø30 x10

KSA, 510 µm 

Water gap,470 µm

PMMAholder

470 µm

KSM, 7x50+7 µm

Optic fibersØ250 µm

PMMAholder Residual micro‐voids were 

eliminated via filling interstitial space between particles with the gelatinized water under 10‐3mm

KSM, 390 µm

MFOP, to  ESC Thomson TSN 506 N  

Test samples ø4 x 1.04

holder  Ø250 µmholder

Calibrated booster P = 18 7 GPa in HMX particlesgelatinized water under 10 3mm Hg‐vacuum. 

  time, 40 ns Input to PBX-1

Calibrated booster P 0 = 18.7 GPa in HMX particles

PBX-1

PMMA

PMMA

Input KSM output Water gapInput to PBX-2KSA125 µm/22.5 ns

PBX-2

Page 8: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Kinetics Rate/Reaction Radiance Test

Kinetics and dynamic parameters of the reaction growth are recorded simultaneously:1‐ reaction light transferred through the PBX‐acceptor, 2 – spatially‐resolved scenario of shock field formation in the optical monitor after the output from the reacted sample. 

( )

80%

90%

100%

Shock Reactivity: PBX-1

F1.4

F1.3

F1.2

F1.1

Rear Front output Back Front input to water

R = (ΔI/Δt)OD /(ΔI / Δt)OA = 9.89   

C D

Stress‐field in optic monitor P(t)Reaction light inensity growth I(t)

40%

50%

60%

70%

Radi

atio

n In

tens

ity [%

]

Water‐KSM: 170 ns

ΔI / Δt (OD) = 0.87

0%

10%

20%

30%

0 20 40 60 80 100 120 140 160 180 200 220

ΔI / Δt (OA) = 0.09  

O

B

A

0 20 40 60 80 100 120 140 160 180 200 220

time [ns]

Absolute shock reactivity value R at P0‐initiation pressure: determined for each i‐acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth: R [(I fi l I i iti l)/(t fi l t i iti l)] /( ΔI0/Δt0)R = [(I final – I initial)/(t final – t initial)]mean/( ΔI0/Δt0)mean. 

Relative Shock Sensitivity: S = R(PBXi)/R(PBXref )Ref vs. nano‐porosity of HMX particles

“Ref. HMX(114 µm)” “RC‐HMX(130.9 µm)” ” F‐HMX (11.1 µm)” “UF‐HMX (1.6 µm)”( µ ) ( µ ) ( µ ) ( µ )

P01: υμpor ≡ 3.6%S ≡  1

P03: υμpor = 3.0%S = 0.6 

P04: υμpor = 3.9%S = 1.7

P05: υμpor = 0.9%S = 0.4

Page 9: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Low‐Sensitive HMX‐based PBXs: Shock Sensitivity determined in the Wedge Test

Wedge Test of four PBX comp. “HMX 82/18 wt.%  HTPB”:  F01, F02, F03 & F04; 0.97‐0.99 TMD

F01 = reference PBX, prototype of the PBXC‐121 F01: 01/P04/HTPB 65.6/16.4/18 wt.% 

F02: P03/P04/HTPB 65.6/16.4/18 wt.% “LS2‐‐PBXC*‐121”

/ / / / Calibrated booster P 0 = 18.7 GPa in HMX particles

time, 40 nsSDT

F03: P01/P05/HTPB 65.6/16.4/18 wt.% “LS1‐‐PBXC*‐121”

F04 P03/P05/HTPB 65 6/16 4/18 t %F04: P03/P05/HTPB 65.6/16.4/18 wt.% “RS‐‐PBXC*‐121”  

F02: P03/P04/HTPB

SDTSDT‐parameters t* and Z* were obtained with the accuracy better than 10 ns and 50 µm

F04: P03/P05/HTPB

accuracy better than 10 ns and 50 µm.

Page 10: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

5

Low‐Sensitive HMX‐based PBXs: Shock Sensitivity determined via the Wedge Test,   Z*

y = 21173x‐3,083R² = 0 9462

5m]

y = 3453,3x‐2,5R² = 0 9983

R  = 0,94624

tion, Z*[m

m

R    0,99833

Purified TATB(30 um), 0.968 TMDce to

 deton

at

1,614

2TATB(65um) 94/6 Estane, 0.988 TMDTATB bi‐modal 96/4 Estane, 0.981 TMDTATB 96/4 Estane, 0.988 TMDTATB/PS/DOP 92/6/2, 0.992 TMDTATB/PS/DOP 94/4.5/1.5, 0.987 TMDTATB/PS/DOP 94/4.5/1.5, 0.991 TMD100%HMX, solvent pressing

Run distanc

0,545

1,2491,0761

100% HMX, solvent pressingPBX 9404, 0.986 TMDPBX 9011, 0.997 TMDLX‐04: HMX 85/ VitonPBX 9501, 0.994 TMDPBX 9502, 0.976 TMDF01F02

02 4 6 8 10 12 14 16 18 20 22 24 26 28

F02F03F04

Input shock pressure, P0 [GPa]

Page 11: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Low‐Sensitive HMX‐based PBXs: Shock Sensitivity determined via the Wedge Test,   t*

1,6 Purified TATB(30 um), 0.968 TMDTATB(65um) 94/6 Estane, 0.988 TMD

y = 8413,1x‐3,409R² = 0,95841 2

1,4

( ) / ,TATB bi‐modal 96/4 Estane, 0.981 TMDTATB 96/4 Estane, 0.988 TMDTATB/PS/DOP 92/6/2, 0.992 TMDTATB/PS/DOP 94/4.5/1.5, 0.987 TMDTATB/PS/DOP 94/4.5/1.5, 0.991 TMDPBX 9404, 0.986 TMDPBX 9011, 0.997 TMDPBX 9501, 0.994 TMD

y = 1336,5x‐2,813

,

1

1,2 PBX 9502, 0.976 TMDF01F02F03F04

ion, t*

 [µs]

F04 demonstratesyR² = 0,9976

0,6

0,8

me to deton

ati F04 demonstrates 

Shock Sensitivity  on the level of purified TATB of 

0,233

0,4Run tim 0.97 TMD

0,088

0,210,143

0

0,2

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Input shock pressure, P0 [GPa]

1‐ F01 vs. F03: substitution of “F‐HMX(11.1 µm)” (P04) for the “UF‐HMX(1.6 µm)” (P05)  increase of t* and Z* in 1.6 and 2 times respectively; 2 – F01 vs F02: changing the ingredient “Ref HMX (114 µm)” (P01) to “RC‐HMX (130 9 µm)” (P03) increase of both t*2 – F01 vs. F02:  changing the ingredient  Ref. HMX (114 µm)  (P01) to  RC‐HMX (130.9 µm)  (P03)  increase of both t  and Z* in 2.3 times; 3 – F01 vs. F04: replacing both constituents  “Ref. HMX (114 µm)” and “F‐HMX (11.1 µm)” by “RC‐HMX (130.9 µm)” and “UF‐HMX(1.6 µm)” offers increasing t* and Z* in 2.6 and 2.9 times respectively.

Page 12: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Shock Sensitivity of PBXs F01‐F04 determined via the Detonation Failure Cone Test

Detonation Failure Diameter is a measure of Shock Sensitivity of crystalline HE [Dremin, 1997]

( ) 2 ( )z L z tg (1)

Detonation Failure Cone Test instrumented with multi‐fiber probe MFOP and electronic streak camera Thomson TSN 506 N

00( ) 2.( ).2MFOPz L z tg

(1)

ø00

Z

MFOP

F04: P03/P05/HTPB

65.6/16.4/18 wt. % Local speed of detonation front is obtained from the run time through the space between two 

f il

g padjacent fibers: Di = 250 µm /Δt i. Measurements of Di ‐values were conducted with the 6% accuracy. Detonation Failure Diameter df was determined 

time,   200 ns

DW failure with the accuracy better than ±0.04 mm.  

Page 13: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Shock Sensitivity of PBXs F01‐F04 determined via the Detonation Failure Cone Test9,0

6,0

7,0

8,0

1,822,48

4,0

5,0

6,0

D, m

m/m

s

F04: P03/P05/HTPB

4,003,30

1 0

2,0

3,0F04: P03/P05/HTPB

F02: P03/P04/HTPB

F01: P01/P04/HTPB

F03: P01/P05/HTPB1,0

1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5Local diameter ø, mm

Detonation failure diameters, d f (measured with the accuracy better than ±0.04 mm) 

PBX F01 F02 F03 F04 PBX‐9404[1]

Purified TATB [1],   100 wt. %

PBX‐9502[1]

f

df, mm 1.82 3.30 2.48 4.00 1.18 ±0.2 4.0mm (ρ0= 1,860 g/cm³)

< (8 – 10) (0.97 TMD)

The RS‐PBX F04 “P03/P05/HTPB 65.6/16.4/18 wt.%” is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 0.97 TMD

Page 14: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Detonation Reaction Zone (DRZ) Test of long PBX charges

The DRZ‐Test is instrumented with the MFOP‐probes (connected to the electronic streak cameraThe DRZ Test is instrumented with the MFOP probes (connected to the electronic streak camera Thomson TSN 506 N), Kapton stacked optic monitor (KSM), and calibrated booster  PE‐4A.

The test PBX‐materials were soft (non‐cured) formulations: 1 PBAN 128 “HMX 77/23 HTPB” 1 452 g/cm3 (0 954 TMD) &1 ‐ PBAN‐128  HMXClass‐277/23 HTPB , 1.452 g/cm3 (0.954 TMD) & 2 ‐ RS—PBAN‐128 “P03/P05/HTPB 60.8/15.2/24” 1.459 g/cm3 (0.971 TMD). The HMXClass‐2 particles have a density 1.917 g/cm3 and a bi‐modal PSD, with the mass‐median size of coarse fraction d = 56 0 µmsize of coarse fraction d 50 “C” = 56.0 µm.  Local values Usi in optic monitor were 

measured with the 6%‐accuracy

Page 15: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Spatially‐resolved histories Us (t) of the DRZ‐driven shock field in the KSM‐optical monitor: 9‐channel Probing  in central area 0.25x2.25 mm of shock front surface in the KSM.

8

10

/µs

PBAN-128 L-4

L-3

L-2

DRZ: 28 ± 2 ns

Us(t)‐profiles describe a meso‐scale structure of the DRZ, namely the initial region of the Von Neumann (VN) spike and beginning of its fall

4

6

Us,

mm

/

L-1

L0

L1

L2

beginning of its fall. Steady drop in the Us(t)‐histories indicates the onset of the active phase of detonation products formation and this

0

2

290 300 310 320 330 340 350 360 370

time, ns

L2

L3

L4

Us*d (average) = 6.472 mm/µs detonation products formation, and this instant is applied as a measure of the DRZ‐duration, t DRZ & DRZ‐width Z DRZ ≈ D • t DRZ

290 300 310 320 330 340 350 360 370

10

12L-4

L-3DRZ: 44 ± 2 nsactive phase of Det. 

products formation

Von Neumann spike

6

8

Us,

mm

/µs RS--PBAN-128 L-2

L-1

L0

L1essure C‐J state

products formation

Ideal DRZ

0

2

4U

time, ns

L1

L2

L3

L4

Us*d (average) = 6.48 mm/µs Pre

time

realistic DRZ

110 120 130 140 150 160 170time

Partial reaction

Page 16: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

DRZ Performance :     PBAN‐128  vs.  RS—PBAN‐128

D t ti P ½ P * (( D) ( U * ) )/( U * ) (GDetonation pressure: Pd  = ½ Pd*KSM • ((ρ0•D)PBX + (ρ0•Us*d)KSM)/(ρ0•Us*d)KSM  (Goransonformula [1 & 10])Us*d is the maximum speed in the VN‐region of the Us(t)‐history (averaged value), P * (Us* ) is a corresponding pressure of the shock front in the KSMPd*KSM(Us*d) is a corresponding pressure of the shock front in the KSM

Parameters of the DRZ‐structure in the PBAN‐128 and RS—PBAN‐128

PBX  TMD  ρ0, g/cm3  ρ0/TMD 

D, mm/µs 

Us*d KSM 

mm/µs Pd* KSM, GPa 

Pd, GPa 

t DRZ, µs  Z DRZ, µm  Z DRZ/d 50 C 

PBAN‐128 HMXPBAN 128 HMX 77/23 HTPB  1.522  1.452 0.954 8.177 6.472 28.23 32.81 28 228 4.1 

RS‐PBAN‐128P03/P05/HTPB 1.503  1.459 0.971 8.200 6,480 28.34 32.67 44 361 3.4 / /60.8/15.2/24 

,

RS PBAN 128 i id ti l i d t ti f (D & Pd) t R f PBAN 128RS—PBAN‐128 is identical in detonation performance (D & Pd) to Ref. PBAN‐128. Basic difference implies that the width of the DRZ is in 1.6 times greater than in PBAN‐128. Nevertheless, for both PBXs, a width of the VN spike‐zone is estimated by 3‐4 rows of d50‐size particles of coarse constituentsize‐particles of coarse constituent. 

Page 17: University of Coimbra, Dept. Mech. Engineering Fraunhofer ......Energetic and Detonics, Dept. Mech. Engineering, *Dept.Chem. Ei iEng ineer ng,Ui iUn vers ty of Ci bCmbra, 3030‐788

Conclusive RemarksWe’ve presented a new physically‐justified approach to link between the morphology of particles’ surface structure and shock reactivityPBX‐formulations composed with the re‐crystallized particles P03 and a micron‐size particles P05 (such as RS‐‐PBXC‐121 “P03/P05/HTPB 65.6/16.4/18” and RS—PBAN‐128 “P03/P05/HTPB 

/ / ”) h h l l f h l l60.8/15.2/24”) are possessing the insensitivity on the level of the TATB and simultaneously demonstrate improved detonation performance characteristics.When β‐HMX crystal is subjected to strong shock (~20 GPa), the intense reactions are dominated in the surface zones‐‐vertexes and edges‐‐with max. concentration of cluster‐structuresIn this context, results on shock reactivity of the defects‐less HMX particles (KR/RR Test and 

d f d i l i bi d ) l h id i i i hWedge Test of P03 and P05 particles‐in‐binder) strongly support the idea to minimize the amount of the surface micro‐defects via the re‐crystallization / or comminuting particles up to the 0.5‐1 µm‐size. 

We also suggest that chemical etching of coarse particles up to full dissolving of the surface layer in which the crystal’s defects are concentrated, will provide a further decreasing the initiation sensitivity. Chemically etched particles become close to a “seed” of the original HMX crystals in size and in density (1.95 g/cm3) and consequently will be more insensitive and more powerful in energetic density. Depositing the micro‐ and nano‐layers of the LS‐energetic lubrificants will sufficiently decrease a role of shear‐driven plastic deformation in reaction initiation scenario of HMX grains, improving shock insensitivity