UNIVERSITI PUTRA MALAYSIA STUDIES ON …psasir.upm.edu.my/10417/1/FP_1998_7_A.pdf · universiti...

25
UNIVERSITI PUTRA MALAYSIA STUDIES ON INCOMPATIBILITY POLLINATION AND FLORAL MORPHOLOGICAL POLYMORPHISM OF CARAMBOLA (AVERRHOA CORAMBOLA L) NOBUHIKO FUSHIMI FP 1998 7

Transcript of UNIVERSITI PUTRA MALAYSIA STUDIES ON …psasir.upm.edu.my/10417/1/FP_1998_7_A.pdf · universiti...

    

UNIVERSITI PUTRA MALAYSIA

STUDIES ON INCOMPATIBILITY POLLINATION AND FLORAL

MORPHOLOGICAL POLYMORPHISM OF CARAMBOLA (AVERRHOA CORAMBOLA L)

NOBUHIKO FUSHIMI

FP 1998 7

STUDIES ON INCOMPATIBILITY POLLINATION AND AND FLORAL MORPHOLOGICAL POLYMORPHIS M OF CARAMBOLA

(Averrhoa coramlJola L)

By

NOBUHIKO FUSHIMI

Thesis submitted in fulfilment of the Requirements for Degree of Master of Agricultural Science

in the Faculty of Agricultural Scien ce Universiti Putra Malaysia

January 1998

ACKOWLEDGEMENTS

I am grateful to Professor Dr. Wong Kai Choo, Chainnan of supervisory

committee, Dr. Sayed Mohd Zain Sayed Hasan and Dr. Awang Soh Mamat,

members of SupetVisory Committee, Universiti Putra Malaysia (UPM), for their

valuable guidance, encouragement and support throughout the research and

preparation of the thesis.

I particularly would like to thank Dr. Yasuo Ota, Professor of the

Department of International Agricultural Development Science, Tokyo University of

Agriculture, for his approva� support and encouragement on these studies.

I would like to thank Dr. Hitoshi Uematsu, Senior lecturer of the Department

of Agricultural Science, Tokyo University of Agriculture, Junior College, for his

approval, encouragement and support on these studies.

I would like to thank Mr. Hoe Oi Kuan, Ms.Aminah Jusoh and Ms Agilah

Abdul Salil in Electron Microscopy Unit, Faculty of Veterinary and Animal Science,

UPM, for their guidance, encouragement and support throughout this research.

I am grateful to Dr. Naohiro Ikeda, Associate Professor of the Department of

Agronomy, Tokyo University of Agriculture, for critical reading of manuscript and

making valuable suggestions throughout this research.

11

I would like to thank Dr. Kiyomi Kosaka, Resident Representative of Japan

International Research Centre for Agricultural Sciences (JIRCAS) Malaysia Office,

for encouragement and financial support on this research.

I would like to express my sincere gratitude to the Supporting Organisation of

Japan Overseas Cooperation Volunteers for the scholarship award and support.

Finally, I am indebted to my mother, brother and sister for their infinite love,

encouragement and support.

iii

TABLE OF CONTENTS

Page

ACKOWLEGE.MENTS. .......... .......... ...... ...... ............ ........ .................... ....... 11

LIST OF CF TABLES.................................................................................... vi

LIST OF PI...ATES...................................................................................... . .. IX

LIST OF FIGtJRES ................ ....... . .. ............ ........ ................................ . . . . . .. , xiv

ABSTRACT..................................................................................................... xv

ABSTRAK.......................... ........................................................................... . . XVl1

CHAPTER

I

II

INTRODUCTION .............................................................................. .. 1

REVIEW OF LITERATtJRE ........................................................... . 5

The Carantbola................................... ........ . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 5 General....................................................................................... 5 Tree Characteristics............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flower Characteristics... .. .............. ........ . . . . . . . . . . . . .. . . . . .. . . .. . . . . . . . . . . . . 6 Fruit Characteristics................................................................... 7 Oones....................................................................................... 8 Flowering and Pollination...... . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. .. 10 Nutritive Value and Uses... ......... . . .. .. . . . . . . . . . . . . . . . . .. . . .. . . . . .. . . . . . . . . . . . . . 1 1

Self-incompatibility Systent.......... . . . . . . . . . . . . . . . . . . . . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Definition................................................................................. . . 12 Oassification of Self-incompatibility System... ................... . . . . . . 13

Heteromorphic Incompatibility.............................................................. 14 Introduction.................... . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. .. .. . . . . . . . . . . . 14 Style and Stanten I..ength.................. ........ . . .. . . . . . . .. . . .. .. .. . . . . . . . . . . . . . 15 Pollen Characteristics............................................................... . 16 Stigma Characteristics... .... . . . . . . . . . . . . .. . . . . . . . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Patterns of Heteromorphic Incompatibility................................ 19 Pollen-pistil Interaction Associated with Heteromorphic Incompatibility........................................................................... 20

Previous Experimental Methodology for Self-incompatibility Study.... 23 Field Pollination Study.................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Fluorescence Microscopy........................................................... 24 Scanning Electron Microscopy........... . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv

III MATERIALS AND METIIODS.......................................................... 26

Plant Materials........................................................................................ 26 Study 1. Florescence and Scanning Electron Microscopic Studies

on Compatible and Incompatible Pollinations of Pin and Thnun Morphs........................................................................... 31

Study 2. Field Pollination Studies on Compatible and Incompatible Pollinations of Pin and Thnun Morphs........................ ..... . . . . . . . .. 33

Study 3. Studies on Morphological Polymorphism of Pin and Thrum Morphs.................................................................................... . .. 34

Statistical Analysis and Experimental Designs......... .................. . .. . . . . . ... 36

IV RESULTS........................................................................................... . . 38

V

VI

Study 1. Florescence and Scanning Electron Microscopic Studies on Compatible and Incompatible Pollinations of Pin and Thnun Morphs.......................................................................... 38

Study 2. Field Pollination Studies on Compatible and Incompatible Pollinations of Pin and Thnun Morphs............ ........ .... .. .. .. . ... .. 52

Study 3. Studies on Morphological Polymorphism of Pin and Thrum Morphs...................................................................................... 64

DISCUSSION ...................................................................................... . 84

Floral Dimorphism Associated with Heteromorphic Incompatibility... 84 Pollen-pistil Interaction Associated with Heteromorphic Incompatibility. 86

Pollen Adhesion and Gennination... .......... . ...... . . .. . . . ..... ...... ...... 86 Inhibition Site of Pollen-tube Growth....................................... 87 Fruit Set Associated with Self-incompatibility Response........ 89 Fruit Parameters Associated with Self-incompatibility Response 90

SUl\fMARY AND CONCLUSION .................................................. .. 92

REFEREN"CES....................... . . . ..... . .. . . . . . ... . . . .. .. . . . . ........ . . . ... .. ...... . . . . .. . . .... . .. . ..... 95

APPENDICES

A Additional Tables.............................................................................. .... 102 B Additional Figures..... ................ .... . . . . . . . . . . . . ...... ... . ........ . . . . . . . . . . . . . . .. .. . . .... . . . 121

VITA.............................................................................................................. . . . . 123

v

LIST OF TABLES

Table Page

1 Characteristics of Carambola Clones in Florida, USA. .. . . . . . . . . . . . .. . . . . .... . . . . . 9

2 List of Registered Carambola Clones in DOA, Serdang, Malaysia .. . . . . . .. . . . . 9

3 Sites of Inhibition of Male Gametophyte in lntramorph Pollinations of Some Heterostylous Plants. . . . . . . . . . . . . . . .. .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 List of Carambola Clones Used in Study 1 . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 List of Carambola Clones Used in Study 2................. .... . ....... . . . . . . . . . . . . . . . 27

6 List of Carambola Clones Used in Study 3.. . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Mean Value of Percentage Pollination Success for Six Pollination Treatments . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 52

8 Percentage of Nonnal Fruit in Four Pollination Treatments. . . . . . . . . . . . . . . . . . . . . . . 55

9 General Characteristics of Nonnal Fruit in Four Pollination Treatments . . . 56

10 Mean Values of Fruits Characteristics obtained from Intennoxph Pollination in Pin Morph .......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" 59

1 1 Mean Values of Fruits Characteristics obtained from Self Pollination in Pin Morph . ...... ... . .... . . . ..... .... . . . . . . . . . . . ... ...... . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . 59

12 Mean Values of Fruits Characteristics obtained from Intramorph Pollination in Pin Morph . ... .. .. .. . . .. .. ....... . . ..... .. .. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . 60

13 Mean Values of Fruits Characteristics obtained from Abnonnal Form in Pin Morph. . . ... . .. .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14 Mean Values of Fruits Characteristics obtained from Intermorph Pollination in Thrum Morph. ...... .. ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1 5 Mean Values of Fruits Characteristics obtained from Abnonnal Form in Thrum Intermorph Pollination. . . . ... . ... . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

16 Measurements of Floral Parts in Two Floral Morphs of Averrhoa carambola L. .. .. . . . . . . . . . . . . . . . . .. . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

17 Measurements of Pistil and Stamen Length among Clones of Averrhoa carambola L. . .. .... . ... . . ........ . ....... .... .. . . .. . . . . .... . . ....... . . . . ... ..... .. . 67

vi

1 8 Measurements of Pollen Diameter among Clones of Averrhoa carambola L.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

19 Measurements of Stigma among Clones of Averrhoa carambola L. . . . . . . . . 72

20 Measurements of Stigmatic Vesicle among Clones of Averrhoa carambola L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

21 Percentage of Pollination Success in Intennorph Pollination in Pin Morph ... ... . .. . . ... . . . . . .. . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . ... . ... ..... . . . . . . . . . . . . . 102

22 Percentage of Pollination Success in Self-Pollination in Pin Morph . . . . . . 103

23 Percentage of Pollination Success in Intramorph Pollination in Pin Morph . . . . . .. .. . . . . . . . ....... . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . .. . ..... . . . .. . . . . . . .. . . 103

24 Percentage of Pollination Success in Intennorph Pollination in Thrum Morph . .. . . . . .. . . . . . . . .. . . . . . . . . . . . . . .. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. 104

25 Percentage of Pollination Success in Self-Pollination in Thrum Morph .... 105

26 Percentage of Pollination Success in Intramorph Pollination in Thrum Morph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

27 Results of Analysis of Variance from Mean Values of Pollination Percentage for Six TreatInents ...... . ................ . ............. ...... .......... ....... . . . . . 107

28 Results of Analysis of Variance from Mean Values of Fruit Parameters (Nonnal Formed) ................... ........................................................ . . . . . . . . . . 108

29 Results of Analysis of Variance from Mean Seed Number per Fruit. . .. . . . . 109

30 Results of Analysis of Variance from Mean Fruit Weight.. . .. .................. . 1 10

3 1 Results of Analysis of Variance from Mean Fruit Length....... .... .. . . . . .. . . . . . 1 1 1

32 Results of Analysis of Variance :from Mean Fruit Width . . . . . . . . . . . . . . . . . . . .. . . . . . 1 12

33 Results of T -test on Pistil and Stamen Length......................... . . . . . . . . . . . . . . . . . 1 13

34 Results of T -test on Pollen Size........................................................... . . . . . 1 14

35 Results of T-test on Stigma Size.......................................................... . . ... 1 15

36 Results of T -test on Stigmatic Vesicle Size............................................ . . 1 16

37 Results of Analysis of Variance on Pistil and Stamen Length.................. 1 17

38 Results of Analysis of Variance on Pollen S ize.................................... .... 118

vii

39 Results of Analysis of Variance on Stigma Size....................... .......... . . ... 119

40 Results of Analysis of Variance on Stigmatic Vesicle Size...................... 120

viii

LIST OF PLATES

Plate Page

1 Source of Plant Material in Study 1 (Field 2, UPM, Serdang). . . . . . . . . ... . . . . . . . 29

2 Source of plant material in Study 2 (Horticultural unit, UPM, Serdang).. . . . 30

3 Source of plant material in Study 3 (DOA, Serdang).. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 30

4

5

6

Scanning Electron Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 0.5 h after Thrum Intennorph Pollination (BI0 xB2) . ....... ........ ........................................ .......... ........................... .

Scanning Electron lvlicrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 1 h after Thrum Intennorph Pollination (BI0 x B2) . . .. . . . . .... .. ..... ... . . ...... .... .... .. .. . . . ... ... . .. ... . .......... .... . . . ... . . .. .. .. . . . . .. . .

Scanning Electron Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 2 h after Thrum Intermorph Pollination (BI0 xB2) . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . .

39

39

40

7 Fluorescence Micrograph of Pollen-tube Behaviour of Ave"hoa carambola L. at 2 h after Pin Intermorph Pollination (B2 x BlO) (X 100) . . . . . . . . . . . . . . 41

8 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 4 h after Pin Intennorph Pollination (B2 x BI0) (X 100). .. . . .. . . . . . . . . . . . 41

9 Fluorescence Micrograph of Pollen-tube Behaviour of Ave"hoa carambola L. at 8 h after Pin Intermorph Pollination (B2 x BI0) (X 100) . . . . . . . . . . . . . . . . . 42

10 Fluorescence Micrograph of Pollen-tube Behaviour of Ave"hoa carambola L. at 2 h after Pin SeltPollination (B2 x B2) (X 100) . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 43

11 Fluorescence Micrograph of Pollen-tube Behaviour of Ave"hoa carambola L. at 4 h after Pin self Pollination (B2 x B2) (X 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12 Fluorescence Micrograph of Pollen-tube Behaviour ofAverrhoa carambola L. at 8 h after Pin SeltPollination (B2 x B2) (X 100).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 24 h after Pin SeltPollination (B12 x B12) (X 100).. . . . . . . . . . . . . . . . . . . . . . . . . 45

14 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 2 h after Thrum Intennorph Pollination (BI0 x B2) (X 100). . . . . . . . . . . . 47

15 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 4 h after Thrwn Intermorph Pollination (BI0 x B2) (X 100). . . . . . . . . . . . . 47

ix

16 Fluorescence Micrograph of Pollen-tube Behaviour ofAverrhoa carambola L. at 8 h after Thrum Intennorph Pollination (BI0 x B2) (X 100). .. . . . . . . . . . 48

1 7 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 2 h after Thrum Self Pollination (BlO x BlO) (X 100). . . . . . . . . . . .. . . . . . . . . . 49

1 8 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 4 h after Thrum Self Pollination (BI0 x B10) (X 100). . . . . . . . . . . . . . . . . . . . . . . 49

19 Fluorescence Micrograph of Pollen-tube Behaviour ofAverrhoa carambola L. at 8 h after Thrum Self Pollination (B lOx B 10) (X 100). . .. . . . . . . . . . . . . . .. . . . 50

20 Fluorescence Micrograph of Pollen-tube Behaviour ofAverrhoa carambola L. at 4 h after Thrum Intramorph Pollination (B10 x B17) (X 100). . . . . . . . . . . 50

21 Fluorescence Micrograph of Pollen-tube Behaviour of Averrhoa carambola L. at 8 h after Thrum Intramorph Pollination (B10 x B17) (X 100) . . . . . . . . . . . . 5 1

22 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (x 3000) Clone B 1 (Pin). . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 75

23 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 3 (Thrum).. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

24 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 2 (Pin). . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 75

25 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 4 (Thrum). . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 75

26 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 5 (Pin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

27 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 8 (Thrum)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

28 Scanning electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 6 ( Pin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

29 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 9 (Thnun)... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

30 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 7 (Pin) . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 76

3 1 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 10 (Thrum). . . . .. . .. . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 76

x

32 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 1 1 (Pin) . . .. . .. . .. . . . . .. ... . .. . . .. .. . .... . .. . . .. .... . . . .. ... .. . . . . . . . .. . '" 76

33 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 12 ( Pin) . . .. . .. . .. . ........ . .. ... . .. . . .. ........... . . .... ... ... . . .... . . .. ... 77

34 Scanning Electron micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 13 ('Thrum)... ... ... . ... .. . . . .. . .. ... . .. .. . . . . . . .. . ... . . .. . . . . .. . . . . . . .. .. 77

35 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 16 (Pin) . . .. . . .... .. .. .. . . .... . . . .. . . ... ... . . . . . . . . ... .... ..... . ..... . . . . . .. 77

36 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone B 17 (Thrum)......... . . . . . ... . .. . . . . . .. . . .. . . ... . .... .... . . . . .... . .. . . . .. . 77

37 Scanning Electron Micrograph of Averrhoa carambola L. Pollen (X 3000) Clone BP 1 (Pin).......... ... . . . . . .. .. ... .. . .. . . . . . . . . . ... . . .. .. . . . .. . . .. . . . . . . . . .. . 77

38 Scanning Electron Micrograph of Averrhoa carambola L. Pollen eX 3000) Clone BP 2 (pin). . .. .. . ... . . . .. . . .. . .. .. . . . . . .... ... . . .... . . .. .... .. . . . . . . .. . . . . . .. . 77

39 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 1 (Pin)...... .. . . . . .. . . . ..... . .. . . ... .. . .. . . . . .. . . . .. . . . . .. . . . . . . . . .. .... ..... . .. . 78

40 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 3 (Thrum)..... .. ... ... . . . . . . .... .. . . . . . . .. ...... ... . .. . .. . . . . . . . ... . .. .. . . . . . . 78

41 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 2 (Pin).. . .. . . . . . . . . . .. . . . ... .... . . . . . . . .. . . . . . .. .. .. . . . . . . .. .. . .. . . . . . . . . . .. . . . . 78

42 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 4 (1brum)..................... . ... .. .. . . . . . . .. ...... ..... . . . . . . . . ... . .. . .. . . .. 78

43 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 5 ( Pin). . . . . . . . . . . . . . .... .. .. . ... . . .. . . .. ..... .. . .. . . . . . ... .. . . . . . .... . . .. . . .. . . . 78

44 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 8 ('Thrum). .. ... . . ... . . . . . . . .. . . . . . . . . ... . . . . .. . ... . . .... ..... . ... . . . .. . .. .. . .. 78

45 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 6 (Pin).. . . . . . . . . .. . . . . .. ... . . . . . . . .. . ... .. .. . .. .. . .. . . . . .. . . ..... ... .. . . .. . . .. . .. 79

46 Scanning Electron Micrograph of Averrhoa caramboJa L. Stigma (X 80) Clone B 9 (lbrum)..................................................................... 79

47 Scanning Electron Micrograph of Averrhoa caramboJa L. Stigma (X 80) Clone B 7 (Pin). . ... . .. . . . . .. . . . . . ...... . . .. .. . . . . ... .. . . .. . ... ....... ... .. ..... . . . . . . . .. . 79

48 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 10 (Thrum)..... . .. ... . . .. .. . .. . .. . . . . .. . . . . . . . . . .. . .. . . . . .. . . . . .. . .. . . .. . . . . 79

xi

49 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 11 (Pin)...... . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ... . . . 79

50 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 12 (Pin)......................................................................... 80

5 1 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 13 (Thrunt)................................................................... 80

52 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 16 (Pin).......................................................................... 80

53 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone B 17 ('fhrurn)..................... .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80

54 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone BP 1 (Pin.).................... .. ............ . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . 80

55 Scanning Electron Micrograph of Averrhoa carambola L. Stigma (X 80) Clone BP 2 (Pin). ............... . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 80

56 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 1 (Pin).. .......... .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 8 1

57 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 3 eThrum)...................................................... . . . . . . . ... 81

58 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 2 (Pin)............................................................ . . . . . . . ... 8 1

59 Scanning Electron Micrograph of Aver rho a carambola L. Stigmatic Vesicles (X 1000) Clone B 4 (Thnun) ... ........ .................................. .......... . . .. . . . ... 8 1

60 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1 000) Clone B 5 (Pin)............................................................. . .... ... 8 1

61 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 10(0) Clone B 8 (Thrum)............................................. ................... 8 1

62 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 10(0) Clone B 6 (Pin)................................................................. . . .. 82

63 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 9 (Thrurn)....................................................... . . ....... 82

64 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 7 (Pin).......................... .................... ................. ....... 82

xii

65 Scanning Electron Micrograph ofAverrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 10 (fhrwn)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . 82

66 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 1 1 (Pin).... .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . .. . . . . . .. . . . . . . 82

67 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 12 ( Pin). . . . .. . .. . . . . .. . .. . . . . .. . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . 83

68 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 13 (I1ll1lm).. . . . . .. . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

69 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 16 (Pin).......................................................... . . . . . ... 83

70 Scanning Electron Micrograph ofAverrhoa carambola L. Stigmatic Vesicles (X 1000) Clone B 17 (l1u11m)... . . .. .. . . .. .. ... . .. .. . . . . .. . . . . . . . . . . . .. . . .. . . . . . . . . .. . . . . . . . 83

71 Scanning Electron Micrograph ofAverrhoa carambola L. Stigmatic Vesicles (X 1000) Clone BP 1 (Pin).............. ........ .... . . ... . . . . .. . ... ..... . . .. . . . . . . . . . . . . .. . . . 83

72 Scanning Electron Micrograph of Averrhoa carambola L. Stigmatic Vesicles (X 1000) Clone BP 2 (Pin).......................................................... ... ....... 83

xiii

LIST OF FIGURES

Figures

1 Diagram Showing the Measurement of Pistil and Stamen of

Page

Avverhoa carambola L.. .. ....... ... . ..... ...................................................... 121

2 Diagram Showing the Measurement of Stigma of Avverhoa carambola L.......................................................................... 121

3 Diagram Showing the Measurement of Vesicle of Avverhoa carambola L..... . . . . . . . ...... . . . .. . .. ................. . ... . .. ...... ... . . . ........ 122

4 Diagram Showing the Measurement of Pollen grains of Avverhoa carambola L.. . . .. . . . . . . . . . ... . . . ... ................ . . . ....... .... ..... ......... ....... 122

xiv

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfIlment of the requirements

for Degree of Master of Agricultural Science

STUDIES ON COMP ATffiLE AND INCOMP ATmLE POLLINATIONS AND FLORAL MORPHOLOGICAL POLYMORPffiS M OF PIN AND TIIRUM

MORPHS OF CARAMBOLA (Al'errhoa clD'ambolll L)

By

NOBUlllKO FUS HIMI

January 1 998

Chairman: Professor Dr. Wong Kai Choo

Faculty : Agriculture

The objectives of this study were to elucidate the physiological basis of self-

incompatibility system and the floral morphological polymorphism in carambola

(Averrhoa carambola L.).

Within 30 minutes after pollination, pollen degradation and hydration

commenced on the stigma surface. Pollen tubes subsequently emerged from colpal

furrow and crawled into apertures of vesicles. The pollen tubes reached the base of

the transmitting tract of the style on legitimate pollinations in pin and thrum morphs

xv

at 8.0 h after pollinations. Pollen tubes were Wlifonnly inhibited at the middle of the

style in pin illegitimate pollinations, however, tubes occasionally penetrated to the

base of the transmitting tract of the style. fu thrum illegitimate pollinations, tubes

were inhibited at the junction between stigmatic and stylar tissues. Result of

illegitimate pollination confinned the partial loss of incompatibility in pin as

opposed to the strong incompatibility in thrum as shown by both fluorescence

microscopic observation and the field controlled pollinations study. Ripen fruits

from pin illegitimate pollinations were significantly smaller and contained less seed

compared to legitimate pollinations.

Carambola flower consisted of 5 rose-pink sepals, a pistil, 5 stamens and 5

staminoids. Pistil length was significantly longer in pin than in thrum morphs. On

the other hand, the stamen length was significantly longer in thrum than in pin

morphs. Pollen grain shape of pin and thrum morphs was oblate spherical and

tricolporate. Pollen diameter was significantly larger in thrum than in pin mOl-phs.

Foveolate pattern of pollen exine sculpturing was more intense in pin than in thrum

morphs. Each of the five stylar tissues tenninated in a capitate stigma. The stigma

receptive surface surrounded the stylar tip, except for a strip along the abaxial part

between the middle and base of stylar tissues. Vesicle was a dewdrop-shaped cell.

Stigma and vesicles sizes were significantly greater in pin than in thrum morphs.

Result of measurements of the various floral morphological parts revealed highly

significant variations even among the various clones within the same mOl-phs.

xvi

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia wttuk memenuhi keperluan untuk Ijazah Master Sains

KAJIAN KEATAS KETIDAK SERASIAN PENDEBUNGAAN DAN POLIMOFISMA BUNGA BELIMBING (Averrhoa caramiJoia L.)

Oleh

NOBUIllKO FUSlllMI

Januari 1998

Pengerusi: Professor Dr. Wong Kai Choo

Faculti : Pertanian

Objektif kajian ini ialah untuk memahami asas flSiologi dari sistem

ketidakserasian sendiri dan polimorfisma morfologi bWlga dalam belimbing

(Averrhoa carambola L.).

Dalam masa tiga putoh minit selepas pendebungaan, penghidratan dan

degradasi debwtga bermula diatas permukaan stigma, dan diikuti dengan

kemunculan tiub-tiub dari kerutan colpal yang kemudianya merayap masuk kedalam

bukaan vesikel. Tiub-tiub debunga tersebut kemudianya sampai kekawasan

penghantar dipangkal stit dalam rnasa Japan jam selepas pendebungaan berbantu.

Tiub debunga secara seragam disekat dipertengahan stit bunga pada pokok pin yang

xvii

didebungakan seeara terbuka, walau bagaimanapun, maseh ada diantara tiub-tiub

tersebut yang menyerap masuk kekawasan perhantaran dipangkal stil. Dalam pokok

thrum yang didebunga seeara terbuka, tiub-tiub debunga tersekat ditisu yang

menyambungkan diantara stigma dan stil. Hasil dati pendebungaan terbuka

mengesahkan bahawa kehilangan separuh dari ketidakserasian berlaku dalam pokok

pin, manakala ketidakserasian yang penuh terjadi dalam pokok thrwn, dan ini juga

telah diperjelaskan lagi dari kedua-dua permerhatian mikroskop fluoresen dan

pendebungaan terkawal diladang. Buah matang yang terjadi pada pokok pin yang

didebungakan seeara terbuka lebih keeil dan mengandungi kurang biji berbanding

dengan buah dari pokok yang didebungakan seeara terkawal.

Bunga belimbing mempunyai 5 sepal berwarna jingga-ros, 5 stamen, 5

staminoda dan satu pistil. Stil pokok pin seeara bennakna lebih panjang dari stil

pokok thrum. Disebaliknya pula stamen pokok thrum lebih panjang dari stamen

pokok pin. Bentuk butir debunga dari kedua-dua pokok pin dan thrum adalah bulat

oblate dan trieolporate. Garispusat butir debunga adalah seeara bermakna lebih

panjang dalam pokok thrum dari pokok pin. Corak 'foveolate' dari ukiran eksin

dipermukaan butir debunga adalah lebih halus dalam pokok pin berbanding dengan

pokok thrum. Semua kelima-lima stit berakhir dengan hujung yang reseptif dalam

kesemua jenis morfs. Permukaan stigma yang sempurna adalah besar dan melingkugi

hujung stil. Vesikel adalah satu sel yang berbentuk titisan embun. Saiz stigma dan

vesikel secara bermakna lebih besar dalam pokok pin berbanding pokok thrum. Hasil

ukuran dari berbagai bahagian-bahagian bunga menunjukan terdapatnya variasi

sangat bererti diantara pelbagai klon-klon belimbing.

xviii

CHAPTER I

INTRODUCTION

Carambola (Averrhoa carambola L.) belongs to the family Oxalidaceae. It is

believed to have been originated from Indonesia (Purseglove, 1968). It is a non­

seasonal crop. As it is flowering throughout the year, fruit set may be found at any

time and at different stages of development on the tree. The fleshy, five-angled fruit

has sweet to sour taste and is eaten fresh or used for drinks. It is now found growing in

the region of sub-tropics and tropics. In Malaysia, carambola is popular fruit, and is

found growing in almost every part of the country. The crop is cultivated extensively

with a total area of more than 1,900 ha in 1993 (Anon, 1994). It has become an

important fruit crop in Malaysia, where it is now grown commercially for export. In

1994, Malaysia exported carambola to the amount of 8,218 tonnes, which was

equivalent to RM$ 23.82 million. This values were equal to 11.6 % of fruit export in

Malaysia (Anon, 1997). In recent years carambola fruits are becoming more popular

in many countries especially in developed countries such as Japan, USA and Europe

(Watson et at., 1988).

Carambola is a heterostylous species, with individual trees having either the

long styled (pin) or the short styled (thrum) flowers which are compatible with each

other but are self- and intramorph incompatible (Wong et at., 1994). Carambola

2

produces as many as 4,760-1 3,781 flowers per tree per month. Despite the production

of large number of flowers, matured fruit set is considerably low, with only 5 - 198

flowers setting fruits (Saad et al., 1993). For satisfactory fruit production, it is

necessary to plant a mixture of the two morphs, one of which acts as a pollenizer. The

presence of pollenizer is sometimes achieved by bud grafting to a branch of an existing

established commercial clone grown in the field. Such a practice can be an extra

burden to the grower (Wong et al., 1994).

Heterostyly is a genetically-controlled floral polymorphism that is known in

1 55 genera under 24 families of flowering plants (Gander, 1979). The floral morphs

differ reciprocally in style and stamen lengths. The flowers also differ in pollen size

and production, and may differ in pollen exine sculpturing, pollen colour and presence

of starch in pollen, stigma size, stigmatic papillae or corolla size or morphology

(Dulberger, 1992). There are two morphs in distylous plants (distyly) and three

mOlphs in tristylous plants (tristyly). The floral polymorphism is usually genetically

linked with diallelic, sporophytic self-incompatibility system (Gander, 1979). In

distylous plants the supergene determining floral morphology also controls a diallelic,

sporophytic self-incompatibility system associated with floral polymorphism, so that

pollinations between different morphs are compatible. Tristylous plants usually

possess a two-locus diallelic, sporophytic self-incompatibility system associated with

floral polymorphism, but whether or not a supergene is involved has not been

demonstrated genetically (Gander, 1 979).

The physiological fimction of various morphological components of the

heterostylous syndrome is not well understood. Darwin (1 877) suggested that the

3

complementary placing of stigmas and anthers in the floral morphs is a mechanical

device for promoting insect-mediated pollinations between the morphs, which is

reinforced by a distinct physiological mechanism of illegitimacy. Alternatively, Mather

and De Winton (1941) suggested that the real significance of the morphological

differences in pistils and stamens shown by heterostylous flowers was that they were

causally and developmentally related to physiologically self-incompatibility system.

Furthermore, Dulberger (1975a) has argued that heteromorphic characters of stigma

and pollen grains participate in the physiological mechanism of incompatibility. She

has hypothesized that the differential growth of styles and stamens in the morphs

mediated the production of the incompatibility substances, and that metabolism related

to cell wall extension played an important role in incompatibility. However, the

significance of this association has been unclear (Dulberger, 1975a).

Richards(1986) has suggested that incompatibility in some heterostylous

species, i.e., Primula sp, Linum sp, Armeria sp is controlled by factors, perhaps

glycoproteins, which arise from the tapetum on the male side, and are located on the

stigma surface on the female side. Furthermore, Dulberger (1992) has recently

concluded that if the association between pollen size heteromorphism and differing

inhibition sites has a functional basis, then neither the pollen storage product nor the

pollen grain size proper are likely to be involved, although it must be strongly linked

with pollen morph-specific size or pollen dry weight. She has suggested that a protein

or growth factor deriving from an early premeiotic stage of microsporogenesis, during

differential growth of the sporogenous cells or the pollen mother cell, may be involved.

4

Since the earliest report of Darwin (1862), the phenomenon of heterostylous

syndrome has attracted considerable attention to many biologists (Gander, 1979).

Most of researches on heteromorphic incompatibility have been devoted to studies on

the genetics and ecology of natural populations in an effect to understand the

evolution, adaptive, significance and breakdown of heterostylous syndrome. Very little

is known about the physiological basis of incompatibility in heterostylous plants.

The present study is, therefore, carried out to provide a comprehensive

understanding of the incompatibility system of the distylous carambola. Floral

morphological polymorphisms are investigated in an attempt to relate their

participation in the physiological mechanism of the in compatibility system.

Objectives

The objectives of this present study are :

1. To study the compatibility relationship among different morphs of carambola,

2. To study floral morphological polymorphisms with objectives of relating their

participation in the physiological mechanism of the self-incompatibility system

in carambola.

Hypothesis

Self-incompatibility in heterostylous species is closely associated with floral

morphological differences between mating types. These morphological polymorphisms

play an important role in the mechanism of self-incompatibility in the carambola.

General

CHAPTER II

REVIEW OF LITERATURE

The Carambola

Averrhoa carambola, locally known as "beJimbing besi" or starfruit or

carambola has been grown in Malaysia for more than 100 years. It is believed to have

been originated from Indonesia (Purseglove, 1968). It is now found growing in the

region of sub-tropics and tropics. It has been reported to be cultivated in Taiwan

(Green, 1977), Australia (Watson et aI., 1988), USA (Campbell et aI., 1985, Crane,

1992), Brazil (Donadio, 1990), Guyana (Ramsammy, 1989), Trinidad, Canary Island

(Galan-Sauco et aI., 1989), Tabago (Andrew, 1989) and Surinam (Lewis and

Groeizam, 1989).

In Malaysia, carambola is a popular fruit. It is found growing in almost every

part of the countIy. The crop is cultivated extensively with a total area of more than

1,900 ha in 1993 (Anon, 1994). The main carambola cultivation areas include Sungai

5

6

Besi - Serdang - Seri Kembangan - Kajang (Se1angor region), Seremban - Port Dikson

(Negri Sembilan region), Muara - Batu Pahat (Johore region) and Kuching (Sarawak

region) (Bong, 1984).

In recent years carambola is becoming more popular as a tropical fruit

especially in developed countries such as Japan, USA and Europe (Watson et al.,

1988). It has become an increasingly important fruit crop in some tropical countries, in

particular Malaysia, where it is now grown commercially for export. In 1994, Malaysia

exported carambola amounting to 8,218 tonnes, which was equivalent to RM$ 23. 181

million. This value was equivalent to 1 1 .6 % of fruit export in Malaysia (Anon, 1997).

Tree Characteristics

Carambola belongs to the OxaJidaceae family. The Oxalidaceae family contains

primarily herbaceous genera. It is pyramidal in shape when young but rounded at the

tops with an open canopy when mature (Watson et al., 1988). Carambola is a low tree

or arborescent shrub, 5-12 m height, with a short or crooked, low branched trunk, 20-

35 cm in diameter (Ochese et aI. , 1961). Carambola is normally vegetatively

propagated by bud-grafting but tissue culture technique was also investigated as an

alternative propagation method (Litz and Conover, 1980).

Flower Characteristics

Oxalidaceae is known as one of the families in heterostylous species for having

both distyly and tristyly (Ganders, 1979). Carambola is a distylous species, with