Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la...

270
Multiplicatively semiprime algebras Juan Carlos Cabello Píñar VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 1 / 27

Transcript of Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la...

Page 1: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Multiplicatively semiprimealgebras

Juan Carlos Cabello PíñarVIII Encuentro de la Red de Análisis Funcional 2012.

La Manga, 19-21 abril 2012

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 1 / 27

Page 2: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained in

Structure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).with M. Cabreraε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 3: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)

Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).

with M. Cabreraε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 4: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).

with M. Cabrera

ε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 5: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).

with M. Cabrera

ε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 6: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).with M. Cabrera

ε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 7: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).with M. Cabrera

ε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 8: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).with M. Cabreraε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 9: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Results are contained inStructure theory for multiplicatively semiprime algebras. J. of Algebra

(2004)Algebras whose multiplication algebra is semiprime. A decompositiontheorem. J. of Algebra (2008).with M. Cabreraε-complemented algebras. J. of algebra (2012),with M. Cabrera and E. Nieto

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 2 / 27

Page 10: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

Definition

An algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 11: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

Definition

An algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 12: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 13: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 14: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 15: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 16: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 17: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 18: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic concepts

DefinitionAn algebra A is a vector space equipped with a product (a bilinear mapA× A −→ A).

S1, S2 subspaces of an algebra A, S1S2 is the subspace of A generated byall the products xy , for x ∈ S1 and y ∈ S2.

A subspace I of A is said to be an ideal (two-sided) if

IA, AI ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 3 / 27

Page 19: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 20: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebras

J. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 21: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).

P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 22: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).

S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 23: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)

The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 24: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 25: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 26: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra.

L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 27: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A),

the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 28: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionAn algebra A is associative if (xy)x = x(yz) ∀x , y , z ∈ A.

Examplenot associative algebrasJ. Graves and A. Cayley discovered octonion algebra (-not associative-extension of quaternion algebra).P. Pascal, J. V. Newman y E.Wigner (1934).S. Okubo "Introduction to Octonion and other Non-associative algebras inPhysics" (1995)The algebra of observables (self-adjoints operators) forms a Jordan algebra(nearly associative)

non-associative= not necessarily associative

DefinitionA non-associative algebra. L(A), the algebra of all linear operators on A, isan associative algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 4 / 27

Page 29: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 30: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?

The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 31: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?

The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 32: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 33: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 34: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 35: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras?

The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 36: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras?

The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 37: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes.

The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 38: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Are there any subalgebra of L(A) whose structure is closely related to thealgebra structure of A?The answer is yes. The multiplication algebra

Definitiona ∈ A,The operators of left and right multiplication La and Ra by a on A,La, Ra : A −→ A are defined by

La(x) = ax and Ra(x) = xa.

The multiplication algebra M(A) of A is defined as the subalgebra of L(A)generated by the identity operator IdA and the set La, Ra : a ∈ A.

Is there a vehicle of information back and forth between the twoalgebras? The answer is yes. The ε-closure.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 5 / 27

Page 39: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

ExampleX vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 40: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

ExampleX vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 41: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

Example

X vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 42: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

ExampleX vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 43: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

ExampleX vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 44: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

ExampleX vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.

IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 45: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA complete lattice is a partially ordered set L in which all its subsetsxi ; i ∈ Λ have both a supremum, ∨i xi , and an infimum, ∧i xi ).

Every complete lattice has a greatest,1L, and a least element, 0L.

ExampleX vector space,SX = subspaces of X is a complete lattice with

∨ =

, ∧ = ∩, and 1SX= X and 0SX

= 0.

ExampleA algebra, IA = ideals ofA.IA, is also a complete lattice with the same operations.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 6 / 27

Page 46: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 47: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

Definition

A map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 48: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 49: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2,

x ≤ x , ∀x , x1, x2 ∈ L,

(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 50: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2,

x ≤ x , ∀x , x1, x2 ∈ L,

(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 51: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,

(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 52: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,

(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 53: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 54: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 55: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 56: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

Example

X normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 57: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space,

The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 58: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .

The set of all ||.||-closed subspaces of X , S||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 59: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice

for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 60: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 61: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Closure Operations

DefinitionA map x → x from a complete lattice L into itself is called a closureoperation if:

x1 ≤ x2 ⇒ x1 ≤ x2, x ≤ x , ∀x , x1, x2 ∈ L,(∧xi)∼ = ∧xi , for every subset xi of L.

x ∈ L, x is ∼-closed (resp, ∼-dense) whenever x = x , (resp. x = 1L).

The set L∼ of all ∼-closed elements of L is a complete lattice for thesupremum and infimum given by xi = (∨xi)∼ and xi = ∧xi .

ExampleX normed space, The norm-closure is a closure operation in SX .The set of all ||.||-closed subspaces of X , S

||.||X

, is a complete lattice for the

supremum and infimum given by ∨Si = (

Si)||.||

and ∧ Si = ∩Si

X and 0 are respectively the largest and the smallest elements in S||.||X

.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 7 / 27

Page 62: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:

x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 63: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

Definition

A Galois connexion between two complete lattices L and M is a pair of mapsL

M,

satisfying:

x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 64: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M

is a pair of mapsL

M,

satisfying:

x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 65: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:

x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 66: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:

x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 67: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.

x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.

(∨xi)∗ = ∧x∗i

and (∨yi) = ∧yi

, for all subsets xi ⊆ L, yi ⊆ M.(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 68: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.

(∨xi)∗ = ∧x∗i

and (∨yi) = ∧yi

, for all subsets xi ⊆ L, yi ⊆ M.(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 69: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.

(∨xi)∗ = ∧x∗i

and (∨yi) = ∧yi

, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 70: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.

(∨xi)∗ = ∧x∗i

and (∨yi) = ∧yi

, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 71: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 72: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 73: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 74: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 75: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 76: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 77: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Galois connexions

DefinitionA Galois connexion between two complete lattices L and M is a pair of maps

L

M,

satisfying:x1 ≤ x2 ⇒ x∗2 ≤ x∗1 and y1 ≤ y2 ⇒ y2 ≤ y1 , for all x1, x2 ∈ L, y1, y2 ∈ M.x ≤ x∗ and y ≤ y∗, for all x ∈ L, y ∈ M.(∨xi)∗ = ∧x∗

iand (∨yi) = ∧y

i, for all subsets xi ⊆ L, yi ⊆ M.

(0L)∗ = 1M and (0M) = 1L.

L

M Galois connexion.

The maps ε : x → x∗ and ε : y → y∗ are closure operations in L and M.

Lε = ε-closed ideals of L) and Mε = ε-closed ideals of M are complete

lattice, and Lε

Mε is an order-reversing bijection pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 8 / 27

Page 78: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

H Hilbert space,

the pairing SH

⊥⊥

SH , where

S⊥ := x ∈ H : < x , S >= 0, ∀S ∈ SH

is a Galois connexion. The ||.||-closure is the closure operation determined bythis Galois connexion:

S||.||

= (S⊥)⊥ ∀S ∈ SH

The map S → S⊥ is an order-reversing bijection from SH

||.|| onto itself.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 9 / 27

Page 79: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

H Hilbert space, the pairing SH

⊥⊥

SH , where

S⊥ := x ∈ H : < x , S >= 0, ∀S ∈ SH

is a Galois connexion. The ||.||-closure is the closure operation determined bythis Galois connexion:

S||.||

= (S⊥)⊥ ∀S ∈ SH

The map S → S⊥ is an order-reversing bijection from SH

||.|| onto itself.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 9 / 27

Page 80: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

H Hilbert space, the pairing SH

⊥⊥

SH , where

S⊥ := x ∈ H : < x , S >= 0, ∀S ∈ SH

is a Galois connexion.

The ||.||-closure is the closure operation determined bythis Galois connexion:

S||.||

= (S⊥)⊥ ∀S ∈ SH

The map S → S⊥ is an order-reversing bijection from SH

||.|| onto itself.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 9 / 27

Page 81: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

H Hilbert space, the pairing SH

⊥⊥

SH , where

S⊥ := x ∈ H : < x , S >= 0, ∀S ∈ SH

is a Galois connexion. The ||.||-closure is the closure operation determined bythis Galois connexion:

S||.||

= (S⊥)⊥ ∀S ∈ SH

The map S → S⊥ is an order-reversing bijection from SH

||.|| onto itself.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 9 / 27

Page 82: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

H Hilbert space, the pairing SH

⊥⊥

SH , where

S⊥ := x ∈ H : < x , S >= 0, ∀S ∈ SH

is a Galois connexion. The ||.||-closure is the closure operation determined bythis Galois connexion:

S||.||

= (S⊥)⊥ ∀S ∈ SH

The map S → S⊥ is an order-reversing bijection from SH

||.|| onto itself.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 9 / 27

Page 83: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

H Hilbert space, the pairing SH

⊥⊥

SH , where

S⊥ := x ∈ H : < x , S >= 0, ∀S ∈ SH

is a Galois connexion. The ||.||-closure is the closure operation determined bythis Galois connexion:

S||.||

= (S⊥)⊥ ∀S ∈ SH

The map S → S⊥ is an order-reversing bijection from SH

||.|| onto itself.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 9 / 27

Page 84: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Example

X normed space and X ∗ its topological dual space.

The pairing SX

(.)0

(.)0

SX∗ defined by

S → S0 := x∗ ∈ X ∗ : x∗(S) = 0 and V → V0 := x ∈ X : V (x) = 0is a Galois connexion and the closure operations in SX and SX∗ are

ε(S) = (S0)0 = Sσ(X ,X∗)

and ε(V ) = (V0)0 = Vσ(X∗,X)

.

Sσ(X ,X∗)X

and Sσ(X∗,X)X∗ are complete lattice, and

Sσ(X ,X∗)X

(.)0

(.)0

Sσ(X∗,X)X∗

is an order-reversing bijective pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 10 / 27

Page 85: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ExampleX normed space and X ∗ its topological dual space.

The pairing SX

(.)0

(.)0

SX∗ defined by

S → S0 := x∗ ∈ X ∗ : x∗(S) = 0 and V → V0 := x ∈ X : V (x) = 0is a Galois connexion and the closure operations in SX and SX∗ are

ε(S) = (S0)0 = Sσ(X ,X∗)

and ε(V ) = (V0)0 = Vσ(X∗,X)

.

Sσ(X ,X∗)X

and Sσ(X∗,X)X∗ are complete lattice, and

Sσ(X ,X∗)X

(.)0

(.)0

Sσ(X∗,X)X∗

is an order-reversing bijective pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 10 / 27

Page 86: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ExampleX normed space and X ∗ its topological dual space.

The pairing SX

(.)0

(.)0

SX∗ defined by

S → S0 := x∗ ∈ X ∗ : x∗(S) = 0 and V → V0 := x ∈ X : V (x) = 0is a Galois connexion

and the closure operations in SX and SX∗ areε(S) = (S0)0 = S

σ(X ,X∗)and ε(V ) = (V0)0 = V

σ(X∗,X).

Sσ(X ,X∗)X

and Sσ(X∗,X)X∗ are complete lattice, and

Sσ(X ,X∗)X

(.)0

(.)0

Sσ(X∗,X)X∗

is an order-reversing bijective pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 10 / 27

Page 87: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ExampleX normed space and X ∗ its topological dual space.

The pairing SX

(.)0

(.)0

SX∗ defined by

S → S0 := x∗ ∈ X ∗ : x∗(S) = 0 and V → V0 := x ∈ X : V (x) = 0is a Galois connexion and the closure operations in SX and SX∗ are

ε(S) = (S0)0 = Sσ(X ,X∗)

and ε(V ) = (V0)0 = Vσ(X∗,X)

.

Sσ(X ,X∗)X

and Sσ(X∗,X)X∗ are complete lattice, and

Sσ(X ,X∗)X

(.)0

(.)0

Sσ(X∗,X)X∗

is an order-reversing bijective pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 10 / 27

Page 88: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ExampleX normed space and X ∗ its topological dual space.

The pairing SX

(.)0

(.)0

SX∗ defined by

S → S0 := x∗ ∈ X ∗ : x∗(S) = 0 and V → V0 := x ∈ X : V (x) = 0is a Galois connexion and the closure operations in SX and SX∗ are

ε(S) = (S0)0 = Sσ(X ,X∗)

and ε(V ) = (V0)0 = Vσ(X∗,X)

.

Sσ(X ,X∗)X

and Sσ(X∗,X)X∗ are complete lattice, and

Sσ(X ,X∗)X

(.)0

(.)0

Sσ(X∗,X)X∗

is an order-reversing bijective pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 10 / 27

Page 89: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ExampleX normed space and X ∗ its topological dual space.

The pairing SX

(.)0

(.)0

SX∗ defined by

S → S0 := x∗ ∈ X ∗ : x∗(S) = 0 and V → V0 := x ∈ X : V (x) = 0is a Galois connexion and the closure operations in SX and SX∗ are

ε(S) = (S0)0 = Sσ(X ,X∗)

and ε(V ) = (V0)0 = Vσ(X∗,X)

.

Sσ(X ,X∗)X

and Sσ(X∗,X)X∗ are complete lattice, and

Sσ(X ,X∗)X

(.)0

(.)0

Sσ(X∗,X)X∗

is an order-reversing bijective pairing.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 10 / 27

Page 90: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 91: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A,

the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 92: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 93: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 94: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 95: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,

I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 96: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 97: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 98: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 99: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures:

π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 100: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

algebraic closures: π-closure and ε-closure

I ideal of an algebra A, the annihilator of I in A, Ann(I), is the largest ideal J

of A satisfying the conditions IJ = JI = 0.

Definition

The pairing IA

Ann(.)

Ann(.)IA is a Galois connexion.

The π-closure is the closure associated to this Galois connexion, that is,I = Ann(Ann(I)).

IπA

= π-closed ideals of A is a complete lattice.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 11 / 27

Page 101: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 102: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 103: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

Proposition

A algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 104: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)

A is prime ⇐⇒ IπA

= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 105: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 106: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 107: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

Proposition

A semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 108: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 109: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The π-closure determine some algebraic properties.

DefinitionAn algebra A is said to be prime if, for ideals I and J of A, the condition IJ = 0implies either I = 0 or J = 0.

PropositionA algebra, A2 = 0. (non null)A is prime ⇐⇒ Iπ

A= 0, A.

DefinitionA is semiprime if 0 is the unique ideal I of A with I2 = 0.

PropositionA semiprime ⇐⇒ A = I ⊕ Ann(I) (∀I ∈ IA)

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 12 / 27

Page 110: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 111: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 112: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 113: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 114: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 115: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

Definition

A algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 116: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra.

The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 117: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 118: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion.

The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 119: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 120: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-closure

A algebra, S subspace of A.

Sann = F ∈ M(A) : F (x) = 0 for each x ∈ S.

N subspace of M(A),

Nann = a ∈ A : F (a) = 0 for each F ∈ N.

DefinitionA algebra. The pairing

IA

(.)ann

(.)ann

IM(A)

is a Galois connexion. The ε-closure is the closure in IA associated to thisGalois connexion,

I∧ = (Iann)ann I ∈ IA.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 13 / 27

Page 121: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 122: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 123: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 124: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 125: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 126: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 127: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 128: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;

Ann(I)∧ = Ann(I ∧) = Ann(I);

If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 129: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);

If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 130: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);

If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 131: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 132: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 133: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Properties of the ε-closure

PropositionM(A) semiprime =⇒ A = (I + Ann(I))∧ (∀I ∈ IA)

Continuity property

F ∈ M(A), I ∈ IA =⇒ F (I ∧) ⊆ F (I)∧.

Relationships between closuresA algebra, I ideal de A.

I ⊆ I;Ann(I)∧ = Ann(I ∧) = Ann(I);If A is normed (endowed with a norm ||.|| satisfying ||ab|| ≤ ||a||||b||, forall a, b ∈ A) then

I ⊆ I||.|| ⊆ I ⊆ I.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 14 / 27

Page 134: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprime

Example: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 135: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprime

Example: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 136: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)

The algebra generated by 1, u, v, whose product is defined by:u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 137: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 138: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprime

Example: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 139: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprime

Example: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 140: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 141: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

Definition

An algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 142: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Relationships between the semiprimeness of A andM(A)

A semiprime ⇒ M(A) semiprimeExample: Algebra of Albert (three-dimensional)The algebra generated by 1, u, v, whose product is defined by:

u2 = 1, uv = v2 = v , vu = 0.

M(A) semiprime ⇒ A semiprimeExample: A quotient algebra of the associative free algebra

DefinitionAn algebra A is multiplicatively semiprime ( m.s.p.) whenever both A andM(A) are semiprime algebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 15 / 27

Page 143: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Example

nondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 144: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras

(semiprime associative algebras)

nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 145: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras

(semiprime associative algebras)

nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 146: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)

nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 147: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebras

free nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 148: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 149: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 150: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

Theorem

A algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 151: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.

A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 152: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π

⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 153: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 154: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

Theorem

A algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 155: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 156: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.

A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 157: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

The class of multiplicatively semiprime algebras is quite large

Examplenondegenerate alternative algebras (semiprime associative algebras)nondegenerate Jordan algebrasfree nonassociative algebra generated by a nonempty set

TheoremA algebra.A m.s.p. ⇔ A semiprime and ε = π ⇔ A = (I ⊕ Ann(I))∧ (∀I ∈ IA).

TheoremA algebra, I ∈ IA.

A m.s.p. =⇒ I m.s.p.A/I m.s.p.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 16 / 27

Page 158: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 159: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

Definition

X Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 160: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.

A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 161: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X

if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 162: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X

such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 163: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 164: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, Tzafriri

X Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 165: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.

Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 166: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X

if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 167: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 168: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

subspaces complemented

DefinitionX Banach space.A ||.||-closed subspace Y of X is said to be complemented in X if there is a||.||-closed subspace Z of X such that

X = Y ⊕ Z .

Theorem of Lindenstrauss, TzafririX Banach space.Every ||.||-closed subspace of X is complemented in X if, and only if, X isisomorphic to a Hilbert space.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 17 / 27

Page 169: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 170: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.

I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 171: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 172: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 173: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 174: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

Definition

A non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 175: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 176: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

Theorem

A normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 177: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.

A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 178: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒

A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 179: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Complemented algebra

A algebra, I ∈ IA.I is complemented if there exists J ∈ IA such that

A = I ⊕ J.

A is a complemented algebra if, every ideal I of A is complemented.

DefinitionA non null algebra A is simple lacks proper ideals.

TheoremA normed algebra with zero annihilator.A is complemented ⇐⇒ A is an algebra isomorphic to a direct sum of simplealgebras.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 18 / 27

Page 180: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra,

∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 181: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.

A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 182: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A

such thatA = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 183: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 184: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 185: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.

∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 186: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 187: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementation

Every ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 188: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 189: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

∼-Complemented algebra

A algebra, ∼ closure operation on IA.A ∼-closed ideal I of A is ∼-complemented in A if there exists an ∼-closedideal J of A such that

A = I ⊕ J.

A is a ∼-complemented algebra when every ∼-closed ideal of A is∼-complemented.∼ is additive if I + J = I + J (I, J ∈ IA)

minimal caracter of the π-complementationEvery ∼-complemented algebra is π-complemented.

PropositionA algebra with Ann(A) = 0.A complemented =⇒ A ε-complemented =⇒ A π-complemented =⇒ A

semiprime

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 19 / 27

Page 190: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 191: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complemented

The algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 192: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 193: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complemented

Algebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 194: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 195: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.

A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 196: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 197: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 198: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.

A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 199: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 200: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

ε-complemented algebra not complementedThe algebra ∞ of all bounded complex sequences.

π-complemented algebra not ε-complementedAlgebra of Albert

PropositionA algebra with Ann(A) = 0.A ε-complementend ⇐⇒ A m.s.p. and π-complemented.

theoremA algebraA is π-complemented ⇐⇒ A is semiprime and the π-closure is additive

corollaryA algebra with zero annihilator.A ε-complemented ⇐⇒ A m.s.p. and the ε-closure is additive

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 20 / 27

Page 201: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 202: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 203: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 204: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 205: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 206: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 207: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 208: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.

A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 209: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Decomposable algebras

DefinitionA algebra, ∼ closure operation on IA, m∼

A= minimal elements of I∼

A.

A is a ∼-decomposable algebra whenever A = B∈m∼

A

B

M∼A

= maximal elements ofI∼A,

A is a ∼-radical algebra whenever M∼A

= ∅.

TheoremA algebra. T.F.A.E.

A is m.s.p.A = A0 ⊕ A1, where A0 is a π-radical m.s.p. algebra and a A1 is aπ-decomposable m.s.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 21 / 27

Page 210: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.A algebra with zero annihilator,

A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 211: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.A algebra with zero annihilator,

A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 212: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.

A algebra with zero annihilator,A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.

Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 213: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.A algebra with zero annihilator,

A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 214: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.A algebra with zero annihilator,

A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.

Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 215: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.A algebra with zero annihilator,

A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 216: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

DefinitionA is ∼-atomic if each nonzero ∼-closed ideal of A contains a minimal∼-closed ideal.

DefinitionA is m.p. ⇐⇒ both A and M(A) are prime algebras

Theorem.A algebra with zero annihilator,

A ε-decomposable ⇐⇒ A ε-atomic m.s.p. algebra.Moreover, in the case, every minimal ε-closed ideal of A is an m.p. algebra.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 22 / 27

Page 217: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

A normed m.s.p. algebra

||.||-atomic =⇒ ε-atomic

The converse is not true

ExampleThe algebra P of all polynomials is an (ε-atomic) m.p. commutativeassociative algebra, but if P is endowed with the norm

||p|| = Max|p(t)|; t ∈ [0, 1],

then lacks minimal ||.||-closed ideals.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 23 / 27

Page 218: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

A normed m.s.p. algebra||.||-atomic =⇒ ε-atomic

The converse is not true

ExampleThe algebra P of all polynomials is an (ε-atomic) m.p. commutativeassociative algebra, but if P is endowed with the norm

||p|| = Max|p(t)|; t ∈ [0, 1],

then lacks minimal ||.||-closed ideals.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 23 / 27

Page 219: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

A normed m.s.p. algebra||.||-atomic =⇒ ε-atomic

The converse is not true

ExampleThe algebra P of all polynomials is an (ε-atomic) m.p. commutativeassociative algebra, but if P is endowed with the norm

||p|| = Max|p(t)|; t ∈ [0, 1],

then lacks minimal ||.||-closed ideals.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 23 / 27

Page 220: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

A normed m.s.p. algebra||.||-atomic =⇒ ε-atomic

The converse is not true

ExampleThe algebra P of all polynomials is an (ε-atomic) m.p. commutativeassociative algebra, but

if P is endowed with the norm

||p|| = Max|p(t)|; t ∈ [0, 1],

then lacks minimal ||.||-closed ideals.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 23 / 27

Page 221: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

A normed m.s.p. algebra||.||-atomic =⇒ ε-atomic

The converse is not true

ExampleThe algebra P of all polynomials is an (ε-atomic) m.p. commutativeassociative algebra, but if P is endowed with the norm

||p|| = Max|p(t)|; t ∈ [0, 1],

then lacks minimal ||.||-closed ideals.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 23 / 27

Page 222: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

A normed m.s.p. algebra||.||-atomic =⇒ ε-atomic

The converse is not true

ExampleThe algebra P of all polynomials is an (ε-atomic) m.p. commutativeassociative algebra, but if P is endowed with the norm

||p|| = Max|p(t)|; t ∈ [0, 1],

then lacks minimal ||.||-closed ideals.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 23 / 27

Page 223: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 224: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 225: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 226: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 227: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

Theorem

A normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 228: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 229: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 230: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 231: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

TheoremA normed m.s.p. algebra.

A ||.||-atomic.

A ε-atomic and mεA

= I; I ∈ m||.||A

TheoremA normed algebra with zero annihilator. T.F.A.E.

A ||.||-decomposable

A ||.||-atomic and A = I ⊕ Ann(I)||.||

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 24 / 27

Page 232: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Proposition

Ω locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

Corollary

The algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 233: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.

C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

Corollary

The algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 234: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic

⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

Corollary

The algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 235: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic

⇐⇒ The set of all isolated points ofΩ is dense in Ω.

Corollary

The algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 236: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

Corollary

The algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 237: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

Corollary

The algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 238: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1]

is a non-ε-atomic m.s.p. algebra.

The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 239: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1]

is a non-ε-atomic m.s.p. algebra.

The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 240: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences,

and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.

The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 241: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences,

and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.

The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 242: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences

are ε-decomposable algebras.

The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 243: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.

The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 244: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

PropositionΩ locally compact topological space.C0(Ω) is ||.||-atomic ⇐⇒ C0(Ω) is ε-atomic ⇐⇒ The set of all isolated points ofΩ is dense in Ω.

CorollaryThe algebra C([0, 1]) of all complex-valued continuous functions on theinterval [0, 1] is a non-ε-atomic m.s.p. algebra.The algebra c of all convergent complex sequences, and the algebra ∞of all bounded complex sequences are ε-decomposable algebras.The algebra c0 of all null complex sequences is ||.||-decomposable.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 25 / 27

Page 245: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 246: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s Theorem

A algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 247: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 248: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;

A = ⊕n

i=0Bi is a direct sum of ideals,

one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 249: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals,

one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 250: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals,

one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 251: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra

and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 252: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 253: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 254: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 255: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

Theorem

A finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 256: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra.

A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 257: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒

M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 258: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒

M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 259: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 260: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimension

Jacobson´s TheoremA algebra. T.F.A.E.

A is finite dimensional and M(A) is semiprime;A = ⊕n

i=0Bi is a direct sum of ideals, one of them, say B0, is a finitedimensional null algebra and the others are finite dimensional simplealgebras.

CorollaryA algebraA finite-dimensional m.s.p. algebra ⇐⇒ A is isomorphic to a direct sum offinitely many finite-dimensional simple algebras.

TheoremA finite dimensional algebra. A complemented ⇐⇒ A ε-complemented ⇐⇒M(A) semiprime ⇐⇒ M(A) π-complemented ⇐⇒ M(A) complemented.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 26 / 27

Page 261: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 262: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

Theorem

Every finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 263: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 264: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra.

A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 265: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal

is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 266: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 267: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

Theorem

A nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 268: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebra

If A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 269: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal,

then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27

Page 270: Universidad de Murcia - Multiplicatively semiprime algebras · 2012-04-19 · VIII Encuentro de la Red de Análisis Funcional 2012. La Manga, 19-21 abril 2012 Juan Carlos Cabello

Finite dimensional ideals

TheoremEvery finite dimensional ideal of an m.s.p. algebra is complemented.

Lee-WongA prime associative algebra. A prime associative algebra A possessing a finitedimensional nonzero right ideal is finite dimensional and simple.

TheoremA nonzero m.p. algebraIf A has a nonzero finite dimensional ideal, then A is simple and finitedimensional.

Juan Carlos Cabello Píñar (Universidad de Granada) Multiplicatively semiprime algebras La Manga, 19-21 abril 2012 27 / 27