Universal Dynamics of a Soliton after a Quantum Quenchffranchi/presentations... · Universal...

46
Universal Dynamics of a Soliton after a Quantum Quench Collaborators: A. Gromov (Stony Brook), M. Kulkarni (Princeton), A. Trombettoni (CNR-SISSA) Fabio Franchini arXiv:1408.3618

Transcript of Universal Dynamics of a Soliton after a Quantum Quenchffranchi/presentations... · Universal...

  • Universal Dynamics

    of a Soliton

    after a

    Quantum Quench

    Collaborators:

    A. Gromov (Stony Brook), M. Kulkarni (Princeton),

    A. Trombettoni (CNR-SISSA)

    Fabio Franchini

    arXiv:1408.3618

  • • Introduction & Motivations:

    Out of equilibrium & Quantum Quenches

    • Our Quench Protocol

    • Hydrodynamis & KdV Reduction

    • Results: Universal splitting

    • Conclusions

    Outline

    Universal Dynamics of Soliton after a Quantum Quench n. 2 Fabio Franchini

  • • Experimental progresses challenge us with new questions:

    Out-of-Equilibrium

    Universal Dynamics of Soliton after a Quantum Quench n. 3 Fabio Franchini

    Transition from Superfluid

    to Mott Insulator

    Greiner, Mandel, Esslinger, Haensch & Bloch,

    Nature 415 (2002)

    Quantum Newton’s Cradle

    Kinoshita, Wenger, & Weiss, Nature 440 (2006)

  • • Quest for recurring structures in out-of-equilibrium

    systems:

    Aging

    (Dynamical) Quantum Phase Transitions

    Work Statistics

    Preaching to the Choir…

    Universal Dynamics of Soliton after a Quantum Quench n. 4 Fabio Franchini

    Equilibration?

    Thermalization?

    Pre-Thermalization?

    GGE?

    Non-equilibrium State?

    GGE?

    Yes

    No

  • • Reductionist Approach (universalities?)

    • Different Set-ups to be considered

    • Typical protocol: Quantum Quench

    Initial condition: ground state of local Hamiltonian

    Evolution: different Hamiltonian

    • Extended excited states also considered

    (free fermions)

    Out-of-Equilibrium Stat. Mech.?

    Universal Dynamics of Soliton after a Quantum Quench n. 5 Fabio Franchini

    Bucciantini, Kormos, Calabrese, JPA 47 (2014)

  • Our question:

    What happens if you change the

    interaction strength

    in a system prepared

    in a (moving) localized excitation?

    Our Answer:

    Short time dynamics is Universal !

    Quenching a Soliton

    Universal Dynamics of Soliton after a Quantum Quench n. 6 Fabio Franchini

  • • Take a system in its Ground State

    • Let it evolve according to different Hamiltonian

    • Unitary evolution:

    Quantum Quenches

    Universal Dynamics of Soliton after a Quantum Quench n. 7 Fabio Franchini

    jª(t)i =X

    j

    hjjª0i eiEjt jji

    jª0i

    H 6= H0

    Hjji = Ej jji

    Does the system reach a

    stationary state, in some sense?

  • • Restricted to local observables, most quantum

    quenches result in an effective stationary mixed state

    • Moreover, generally:

    (Gibbs distribution consequence of

    Eigenstate Thermalization Hypothesis)

    Gibbs Ensemble

    Universal Dynamics of Soliton after a Quantum Quench n. 8 Fabio Franchini

    jª(t)i =X

    j

    cj eiEjt jji

    ½e® =e¡¯effH

    Z

    limt!1

    hª(t)jOjª(t)i = Tr [½e®: O]

    Deutsch, PRA 43 (1991); Srednicki, PRE 50 (1994); Rigol, Dunjko, & Olshanii, Nature 452 (2009)

  • • If system has local conservation laws (f.i. integrabilty),

    these should be included → G.G.E.

    • Open problem: find all local charges

    Generalized Gibbs Ensemble

    Universal Dynamics of Soliton after a Quantum Quench n. 9 Fabio Franchini

    ½e® =e¡P

    l¯lIl

    Z

    limt!1

    hª(t)jOjª(t)i = Tr [½e®: O]

    Countless efforts from • SISSA (Mussardo, Silva, Gambassi & collaborators); • Pisa (Calabrese & collaborators); • Oxford (Cardy, Essler & collaborators); • Amsterdam (Caux & collaborators); • Many more (Polkovnikov, Mitra, Kehrein, Andrei, Prosen)…

  • • Quantum dynamics → Unitary Evolution

    • A pure sate evolve into a pure state

    • However, locally, the asymptotic state can be

    approximated by a mixed one:

    • Out-of-equilibrium quantum systems act as their own bath

    • Locality allows transition from quantum to classical

    Unitary Dynamics

    Universal Dynamics of Soliton after a Quantum Quench n. 10 Fabio Franchini

    limt!1

    hª(t)jOjª(t)i = Tr [½e®: O]

  • • Instead of a ground state, let’s start with a

    localized excited state in interacting system

    • Let it evolve with a different Hamiltonian

    • Previously: local quenches or extended excited

    states (in free systems)

    • Universality emerges for short times!

    Our Protocol

    Universal Dynamics of Soliton after a Quantum Quench n. 11 Fabio Franchini

  • • Consider a cold-atom system

    • Prepare a single solitonic state

    Our Set-Up

    Universal Dynamics of Soliton after a Quantum Quench n. 12 Fabio Franchini

    x

    x

    ½(x¡ v t)

    v

    ½0

    ½0

    v

    ½(x¡ v t)

    Bright Soliton (v > c)

    Dark (gray) Soliton (v < c)

  • • A localized excitation cannot be eigenstate of translational invariant Hamiltonian

    • Nonetheless, long-lived localized excitations are observed in cold atom systems:

    Solitons?

    Universal Dynamics of Soliton after a Quantum Quench n. 13 Fabio Franchini

    Strecker, Partridge, Truscott, & Hulet, Nature 417 (2002)

  • • Soliton: “Localized excitation that propagates at

    constant velocity while maintaining its shape”

    • Stable solutions of certain PDE

    → balancing of dispersive and non-linear terms

    • Multi-soliton solutions exist only for integrable systems

    • Solitonic states are ubiquitous

    Solitons

    Universal Dynamics of Soliton after a Quantum Quench n. 14 Fabio Franchini

    nonlinearity

    dispersion Courtesy of A. Abanov

  • Soliton on Scott Russell Aqueduct

    Universal Dynamics of Soliton after a Quantum Quench n. 15 Fabio Franchini

    Dugald Duncan/Heriot-Watt University, Edinburgh

    https://www.youtube.com/watch?v=SknvLa8qEu0

  • Morning Glory

    Universal Dynamics of Soliton after a Quantum Quench n. 16 Fabio Franchini

    •300 m

    •2000 m

    40-60 km/h

    Rolling Clouds in the Gulf of Carpentaria,

    Northern Australia

  • Morning Glory: solitons

    Universal Dynamics of Soliton after a Quantum Quench n. 17 Fabio Franchini

    Mick Petroff - Wikimedia Commons

  • Soliton Dynamics

    Universal Dynamics of Soliton after a Quantum Quench n. 18 Fabio Franchini

    • Soliton-like solutions evolve without deformation

    Courtesy of A. Abanov

  • Soliton Dynamics

    Universal Dynamics of Soliton after a Quantum Quench n. 19 Fabio Franchini

    D.R. Christie (1988)

    Courtesy of A. Abanov

    Courtesy of A. Abanov

    Multi-solitons exist only

    in integrable dynamics

  • • Generated from ground state applying phase mask

    • It is not clear how to describe them as quantum states

    → Probably some sort of coherent state

    for interacting systems

    • Emerge naturally from semi-classical hydrodyamic

    description

    → Low-entanglement excitations!

    Solitons in cold atoms

    Universal Dynamics of Soliton after a Quantum Quench n. 20 Fabio Franchini

  • Solitons in cold atoms

    Universal Dynamics of Soliton after a Quantum Quench n. 21 Fabio Franchini

  • Solitons in cold atoms

    Universal Dynamics of Soliton after a Quantum Quench n. 22 Fabio Franchini

  • • Existence of solitons (and many more experimental

    probes) indicates the validity of hydrodynamic

    description for cold atoms (f.i. Gross-Pitaevskii Eq.)

    • Semi-classical description: only density & velocity

    → single-body reduced

    • Valid for superfluids, weakly interacting systems…

    → low entanglement states

    Hydrodynamic Approach

    Universal Dynamics of Soliton after a Quantum Quench n. 23 Fabio Franchini

  • 1. Excite a solitonic state & let it evolve

    2. At some point, change interaction strength of

    underlying quantum Hamiltonian (change scattering

    length, sound velocity…)

    3. Follow evolution immediately after the quench

    • Use effective (semi-classical) hydrodynamics,

    not unitary evolution

    Our proposal

    Universal Dynamics of Soliton after a Quantum Quench n. 24 Fabio Franchini

  • • We consider a one-component, Galilean

    invariant, isentropic, inviscid fluid:

    Hydrodynamcis

    Universal Dynamics of Soliton after a Quantum Quench n. 25 Fabio Franchini

    H =

    Zdx

    ·½v2

    2+ ½²(½) + A(½)

    (@x½)2

    ¸

    _½ + @(½v) = 0

    _v + @

    µv2

    2+ !(½)¡ A0(½)(@p½)2 ¡A(½)

    @2p

    ½p

    ½

    ¶= 0 Euler

    Continuity

    ! = @½ [½²(½)]Enthalpy: Quantum pressure

  • • Short times (qualitatively like wave equation):

    • Quench acts as external perturbation: soliton

    splits into transmitted and reflected component

    • Longer Times: different scenarios

    (soliton trains + dispersive waves

    vs. dissipation)

    What to expect

    Universal Dynamics of Soliton after a Quantum Quench n. 26 Fabio Franchini

    Vc ! c0

    suddenlyVtVr

  • • Linearizing non-linear PDE: Bogolioubov modes

    (phonons, Luttinger Liquid…)

    Linearization

    Universal Dynamics of Soliton after a Quantum Quench n. 27 Fabio Franchini

    H =

    Zdx

    ·½v2

    2+ ½²(½) + A(½)

    (@x½)2

    ¸

    _½ + @(½v) = 0

    _v + @

    µv2

    2+ !(½)¡ A0(½)(@p½)2 ¡A(½)

    @2p

    ½p

    ½

    ¶= 0 Euler

    Continuity

  • • Non-linear behavior for small perturbations:

    • Particular scaling of density, velocity, space & time

    → Korteweg-de Vries equation (KdV)

    (non-linear fixed point for local interactions) •

    • KdV: wave on shallow water surfaces, chiral equation

    KdV Reduction

    Universal Dynamics of Soliton after a Quantum Quench n. 28 Fabio Franchini

    H =

    Zdx

    ·½v2

    2+ ½²(½) + A(½)

    (@x½)2

    ¸

    ½(x; t) = ½0 + ² ½(1)(x; t) + ²2 ½(2)(x; t) + : : :

    v(x; t) = ² v(1)(x; t) + ²2 v(2)(x; t) + : : :

    Kulkarni & Abanov, PRA 86 (2012)

  • • KdV scaling:

    KdV Reduction

    Universal Dynamics of Soliton after a Quantum Quench n. 29 Fabio Franchini

    ½(x; t) = ½0 + ² ½(1)(x; t) + ²2 ½(2)(x; t) + : : :

    v(x; t) = ² v(1)(x; t) + ²2 v(2)(x; t) + : : :

    _u§ ¨ @x·cu§ +

    ³

    2u2§ ¡ ®@2xu§

    ¸= 0

    u§ = ½(1) =

    c

    !00v(1)

    c ´p

    ½0!00

    ³ ´ c½0

    +@c

    @½0

    ® ´ A(½0)4c

    Kulkarni, & Abanov, PRA 86 (2012)

    _½ + @(½v) = 0

    _v + @

    µv2

    2+ !(½)¡ A0(½)(@p½)2 ¡A(½)

    @2p

    ½p

    ½

    ¶= 0 Euler

    Continuity

  • • Lieb-Liniger:

    • For weak interaction collective

    description by Non-Linear Schrödinger Equation

    • Reduce to canonical hydrodynamic form with ansatz

    Example: Lieb-Liniger NLSE

    Universal Dynamics of Soliton after a Quantum Quench n. 30 Fabio Franchini

    Hmicro(c) = ¡NX

    j=1

    @2

    @x2j+ 2g

    X

    j

  • KdV Reduction:

    Example: NLSE

    Universal Dynamics of Soliton after a Quantum Quench n. 31 Fabio Franchini

    i¹h@tª(x; t) =

    ½¡ ¹h

    2

    2m@xx + c jÃ(x; t)j2

    ¾Ã(x; t)

    c =

    rg½0m

    ; ³ =3

    2

    c

    ½0; ® =

    ¹h2

    8m2 c

    !(½) =g

    A =¹h2

    2m2_½ + @(½v) = 0

    _v + @

    µv2

    2+ !(½)¡ A0(½)(@p½)2 ¡A(½)

    @2p

    ½p

    ½

    ¶= 0

    ª =p

    ½ eim¹h

    R xv(x0)dx0

    _u§ ¨ @x·cu§ +

    ³

    2u2§ ¡ ®@2xu§

    ¸= 0 ; u§ = ±½ =

    c

    !00±v

    ±½(x; t) = ½0 ¡ ½(x; t) ¿ ½0

  • 1. Excite a shallow solitonic state & let it evolve

    → Dynamic described by KdV

    2. Change interaction strength of underlying quantum

    Hamiltonian

    3. Describe post quench dynamics by new Kdv,

    with parameters modified by quench

    • Universality for short time from KdV!

    Our approach

    Universal Dynamics of Soliton after a Quantum Quench n. 32 Fabio Franchini

  • • Quantum Quench:

    • Initial KdV Soliton:

    Quench

    Universal Dynamics of Soliton after a Quantum Quench n. 33 Fabio Franchini

    H0 = H(c0) ! H = H(c)

    s(x; t) = ¡U cosh¡2·

    x§ V tW

    ¸

    W = 2

    c¡ V

    U = 3c¡ V

    ³

    NLSE: Gray Soliton

  • • Quantum Quench:

    Quench

    Universal Dynamics of Soliton after a Quantum Quench n. 34 Fabio Franchini

    H0 = H(c0) ! H = H(c)

    Harmonic Calogero: Bright Soliton

  • Soliton Splitting

    Universal Dynamics of Soliton after a Quantum Quench n. 35 Fabio Franchini

  • • Quench acts as external perturbation: soliton splits

    into transmitted and reflected components

    • Continuity and momentum conservation yield

    • Here: just kinematics. Need (KdV) dynamics to fix

    Soliton Splitting

    Universal Dynamics of Soliton after a Quantum Quench n. 36 Fabio Franchini

    u(x; t) = R s(x¡ Vrt) + T s(x¡ Vtt)

    R(V; Vr; Vt) =Vt ¡ VVt ¡ Vr

    T (V; Vr; Vt) =V ¡ VrVt ¡ Vr

    Vr;t

  • • Using KdV we determined

    • Completely UNIVERSAL !

    Chiral Profiles

    Universal Dynamics of Soliton after a Quantum Quench n. 37 Fabio Franchini

    u(x; t) = R s(x¡ Vrt) + T s(x¡ Vtt)

    Vr = ¡ [c¡ ´ R (c¡ V )]c0

    c

    Vt = [c¡ ´ T (c¡ V )]c0

    c

    ´ ´1 + ½0

    c0@c0

    @½0

    1 + ½0c@c@½0

    R =1

    2

    ·1¡ c

    c0V

    ´ V + (1¡ ´) c

    ¸

    T =1

    2

    ·1 +

    c

    c0V

    ´ V + (1¡ ´) c

    ¸

    Vr = ¡ (T c + R V )c0

    c

    Vt = (R c + T V )c0

    c

    R =1

    2

    h1¡ c

    c0

    i

    T =1

    2

    h1 +

    c

    c0

    i

    Same as linear problem, but non-trivial velocities!

    c / ½µ0)

    ´ = 1

  • Numerical Checks: Amplitudes

    Universal Dynamics of Soliton after a Quantum Quench n. 38 Fabio Franchini

    R =1

    2

    h1¡ c

    c0

    i

    T =1

    2

    h1 +

    c

    c0

    i

  • Numerical Checks: Velocities

    Universal Dynamics of Soliton after a Quantum Quench n. 39 Fabio Franchini

    Black: V = 0:96cRed: V = 0:90c

    Circles & Squares: NLSEAsteriscs: Con¯ned NLSETriangles: Power-Law NLSE

    Vr = ¡ (T c + R V )c0

    c

    Vt = (R c + T V )c0

    c

  • • Integrable in harmonic confinement!

    • Long(ish)-range model: hydrodynamics in Benjamin-Ono

    class (not KdV, different dispersion)

    • Solitons have longer tails, but

    quench prediction still holds

    • Microscopic Classical Newtonian evolution

    Harmonic Calogero

    Universal Dynamics of Soliton after a Quantum Quench n. 40 Fabio Franchini

    H =1

    2m

    NX

    j=1

    p2j +¹h2

    2m

    X

    j 6=k

    ¸2

    (xj ¡ xk)2+ !

    NX

    j=1

    x2j ;

  • Harmonic Calogero

    Universal Dynamics of Soliton after a Quantum Quench n. 41 Fabio Franchini

  • • Gamayun & al. considered same set-up

    • Large time using integrability of NLSE (ISM)

    • If integer ⇒ solitons (no dispersive waves)

    Large time asymptotics for NLSE

    Universal Dynamics of Soliton after a Quantum Quench n. 42 Fabio Franchini

    c0

    c= · 2·¡ 1

    Gamayun, Bezvershenko, and Cheianov, arXiv:1408.3312

  • • We studied a quantum quench on localized excited state

    using an effective semi-classical hydrodynamics

    • Universal dynamics for short time after quench:

    predicted shape and velocities of chiral profiles

    • Great agreement with numerical simulations

    • Experimentally feasible!

    • Open questions: quantum nature of a soliton, microscopic

    unitary evolution, large time behavior

    Conclusions

    Universal Dynamics of Soliton after a Quantum Quench n. 43 Fabio Franchini

    Thank you!

  • …but wait, there is more!

  • Spontaneous Breaking

    of U(N) Symmetry

    in Invariant Matrix Models

    Fabio Franchini

    arXiv:1412.xxxx

    Really done now,

    Thank you!

  • Further Splitting

    Universal Dynamics of Soliton after a Quantum Quench n. 46 Fabio Franchini

    Universal Dynamics �of a Soliton �after a �Quantum QuenchOutlineOut-of-EquilibriumPreaching to the Choir…Out-of-Equilibrium Stat. Mech.?Quenching a SolitonQuantum QuenchesGibbs EnsembleGeneralized Gibbs EnsembleUnitary DynamicsOur ProtocolOur Set-UpSolitons?SolitonsSoliton on Scott Russell AqueductMorning GloryMorning Glory: solitonsSoliton DynamicsSoliton DynamicsSolitons in cold atomsSolitons in cold atomsSolitons in cold atomsHydrodynamic ApproachOur proposalHydrodynamcisWhat to expectLinearizationKdV ReductionKdV ReductionExample: Lieb-Liniger NLSEExample: NLSEOur approachQuenchQuenchSoliton SplittingSoliton SplittingChiral ProfilesNumerical Checks: AmplitudesNumerical Checks: VelocitiesHarmonic CalogeroHarmonic CalogeroLarge time asymptotics for NLSEConclusions…but wait, there is more!Spontaneous Breaking �of U(N) Symmetry �in Invariant Matrix ModelsFurther Splitting