UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework...

220
UNITE DANISH INTERNATIONAL DEVELOPMENT.-AGENCY * DANIDA 8 2 4 TZ.IR 82 LIBRARY :'•;•.; INTERNATIONAL REFERENCE CENTRE FOR-COMMUNITY WATER SUPPLY AND SANITATION (IRC) WATER MASTER PLANS FOR IRINGA. RUVUMA AND MBEYA REGIONS METHODS AND GEOPHYSICS VOLUME 10A .!!:•• '• •!• : : . ! GARL BRO - COWICONSULT ° KA'MfeAX-.KRUGER

Transcript of UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework...

Page 1: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

UNITEDANISH INTERNATIONAL DEVELOPMENT.-AGENCY * DANIDA

8 2 4

TZ.IR 82

L IBRARY : ' • ; • . ;INTERNATIONAL REFERENCE CENTREFOR-COMMUNITY WATER SUPPLY ANDSANITATION (IRC)

WATER MASTER PLANS FOR IRINGA.RUVUMA AND MBEYA REGIONS

METHODS AND GEOPHYSICSVOLUME 10A

. ! ! : • •

' • • ! •

: • : . !

GARL BRO - COWICONSULT ° KA'MfeAX-.KRUGER

Page 2: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

UNITED REPUBLIC OF TANZANIADANISH INTERNATIONAL DEVELOPMENT AGENCY • DANIDA

WATER MASTER PLANS FOR IRINGA,RUVUMA AND MBEYA REGIONS

HYDROGEOLOGIC DATA .TREATMENT,METHODS AND GEOPHYSICS

VOLUME 10 A

0

LIBRARY, I N T : V " ! \ ! A T ! C ; - . ! ' . L is-FECEr-.TR:^ i-'LAND CA,--;-:'.P.O. LJO:: C^

? Tsl. (070j Si-w^ l i ext. 141/142

j RN:I LO:

s|«;»fi|f*

CARL BRO • COWICONSULT • KAMPSAX - KRLJGER • CCKK 1982

Page 3: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

GUIDE TO WATER MASTER PLANS FOR 1RINGA.RUVUMA AND MBEYA

DEVELOPMENTFRAMEWORK

POPULATIONLIVESTOCKAGRICULTUREINDUSTRY

3/2,3/2,3/2,3/2

4A/2/4,4A/2/3/54A/3/5,

12/3, 12/211/3, 12/2

VILLAGES ANDEXISTINGWATER SUPPLY

INVENTORYDEVELOPMENTTRADITIONAL W.S.IMPROVED W.S.

5A/1,4A/44A/6,4A/6

12/4

12/5

WATERDESIGN

USE ANDCRITERIA

HUMAN CONSUMPTIONLIVESTOCK DEMANDTECHNICAL ASPECTS

3/5,3/5,3/5,

5A/4,5A/4,5A/4

12/812/9

DL.ft.3

atuH

Uo

WATER SUPPLYPLANNING CRITERIA

TECHNOLOGY OPTIONS 5A/5, 12/7WATER QUALITY 3/5, 4A/6, 4B/7, 5A/3, 12/5/10/11SOURCE SELECTION 3/6, 4B/7, 12/5PRIORITY CRITERIA 3/5, 5A/2, 12/12COST CRITERIA 5A/2/6, 12/12

PROPOSEDSUPPLIES

REHABILITATIONSINGLE VILLAGE SCHEMESGROUP VILLAGE SCHEMESSCHEME LAY-OUT AND DETAILSSCHEME LAY-OUT AMD DETAILSSCHEME LAY-OUT AMD DETAILS

4B/84B/84B/85B,5B,5B,

5C,5C,5C,

5D,5D51)

5E IRINGARUVUMAMBEYA

ECONOMICECONOMICECONOMICFINANCIAL

COSTCOSTCOSTCOST

3/6,3/6,3/6,3/6,

4B/9/10,4B/9/10,4B/9/10,4B/9/10

5B,5B,5B,

5C,5C,5C,

5D, 5F5D5D

IRINGARUVUMAMBEYA

IMPLEMENTATION

STRATEGIESPROGRAMMEORGANISATIONPARTICIPATION

3/6,3/6,3/6,3/6,

4B/104B/104B/11, 12/64B/10/11, 12/6

C/Juoa:§C/3

asId

I*

HYDROLOGY

RAINFALLEVAPORATIONRUNOFFMODELLINGBALANCES

3/3,3/3,3/3,3/3,3/3,

7/37/47/5/67/77/7/8

HYDROGEOLOGY

GEOLOGYGROUNDWATERGEOPHYSICSCHEMISTRYGROUNDWATERDRILLING

DOMAINS

DEVELOPMENT

3/43/43/43/43/43/4

9/59/79/89/99/129/11

WATER RELATEDPROJECTS

IRRIGATIONHYDROPOWER

11/4,11/4

12/9

NOTES

THE CHAPTERS REFERRED TO ARE THOSE WHERE THE MAIN DESCRIPTIONS APPEAR.

THE REFERENCE CODE 5A/6 MEANS, VOLUME 5A, CHAPTER 6.

Page 4: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

CONTENTS - HYDROGEOLOGIC DATA, METHODS, TREATMENT AND GEOPHYSICS

PageAPPENDIX 1. METHODS

1. INTRODUCTION ' 1.1

2. WELL RECORD SYSTEM 2.12.1 Introduction 2.12.2 Borehole Completion Record 2.12.3 Borehole Location Record 2.2

3. GEOPHYSICAL INVESTIGATIONS 3.13.1 Introduction 3.13.2 Geoelectrical Survey 3.1

3.2.1 Field Technique and Procedure 3.23.2.2 Interpretation Technique 3.33.2.3 The Measuring Equipment 3.U

3.3 Seismic Survey 3.53.3.1 Field Technique and Procedure 3.53.3.2 Interpretation Technique 3.63-3.3 The Measuring Equipment 3.7

3.*+ Down-the-Hole Logging 3-73.U.I Resistivity Logs 3.83.U.2 Self-potential Log 3-93.U.3 Fluid resistivity Logs 3.103.U.U Radiation Logs 3.103 • U . 5 Temperature Log 3.113.U.6 Caliper Log 3.123.U.7 The Measuring Equipment 3.12

U. PREPARATION OF DRAWINGS U.IU.I Geology (Drawing I1-8) U.IU.2 Geomorphology (Drawing II-9) U.2U.3 Darnbos, Springs and Main Faults (Drawing 11-12) U.3U.U Cyclogram Map (Drawing 11-10) U.UU.5 Groundwater Chemistry (Drawing 11-11) U.5

U.5.1 Data Treatment U.5U.5-2 Graphical Representation of Analyses U.6

U.6 Groundwater Development Potential (Drawing 11-13) U.7

5. DESCRIPTION OF HYDROGEOLOGICAL TERMS 5.15.1 Objective 5.15.2 Types of Aquifers 5.1

5.2.1 Perched Aquifers 5.15.2.2 Phreatic Aquifers 5.15.2.3 Artesian Aquifers 5.1

5.3 Hydraulic Properties of Aquifers 5.35.3.1 Transmissivity 5.35.3.2 Storage Coefficient 5.U5.3.3 Leakage Coefficient 5.5

5.U Recharge to Aquifers 5.65.U.I Recharge to Phreatic Aquifers 5.65.U.2 Recharge to Artesian Aquifers 5.6

5-5 Drainage 5.7

(cont'd)

Page 5: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

CONTENTS - HYDROGEOLOGIC DATA, METHODS, TREATMENT AND GEOPHYSICS

Page6. PUMPING TESTS _ 6.1

6.1 Objective 6.16.2 Types of Tests 6.1

6.2.1 Specific Capacity Test 6.16.2.2 Constant Discharge Test ' 6.16.2.3 Variable Discharge Test 6.2

6.3 Effects Influencing Pumping Test Data 6.26.3.1 Borehole Damage and Skin Effect 6.36.3.2 Borehole Storage 6.U6.3.3 Decrease of saturated Aquifer Thickness 6.1+

6.1+ Analysis and Interpretation of Pumping Test Data 6.56.U.I Flow in porous Media 6.56.1+.2 Constant Discharge Test ' 6.56.1+.3 Variable Discharge Test 6.86.U.U Theory 6.96.U.5 Well with exponentially decreasing

Discharge in a non-leaky Artesian Aquifer 6.96.U.6 Well with hyperbolically decreasing

Discharge in a non-leaky Artesian Aquifer 6.136.U.7 Well with linearly decreasing Discharge in

a non-leaky Artesian Aquifer 6.156.U.8 Well with exponentially decreasing

Discharge in a leaky Artesian Aquifer 6.IT6.1*.9 Interpretation Procedure 6.176.1*. 10 Discussion of Interpretation Procedure 6.206J1.ll Flow in Fractured Rock 6.21

6.5 Statistical Analysis of Pumping Test Results 6.236.6 Organisation of Pumping Tests 6.21+

6.6.1 Equipment 6.2U6.6.2 Field Work - 6.21+

7. GROUNDWATER CHEMISTRY 7-17.1 Introduction 7-17.2 The trilinear Piper-Diagram 7-1

8. DRILLING PROGRAMME 8.18.1 Introduction 8.18.2 Organisation 8.1

8.2.1 Staff 8.18.2.2 Transport 8.18.2.3 Communications 8.18.2.1+ Fuel 8.18.2.5 Planning 8.2

8.3 Equipment ' 8.28.3.1 Deep Boreholes - Schramm Rig 1*5 8.28.3.2 Shallow Boreholes - CME Rig 53 8.28.3.3 Operation and Maintenance of Rigs 8.3

8.1+ Drilling Methods and Well Construction 8.3

Page 6: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

CONTENTS - HYDROGEOLOGIC DATA, METHODS, TREATMENT AND GEOPHYSICS

APPENDIX 2. PUMPING TEST DATA

IringaRuvumaMbeya

APPENDIX 3. GEOPHYSICS

IringaRuvumaMbeya

APPENDIX k. SPRING RECORDS

IringaRuvumaMbeya

Page 7: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

1.1

1. INTRODUCTION

This volume describes the methods that have been used to collect,

treat, and analyse data. The geophysical methods are only very

briefly described, as these are standard methods well described in

the literature.

The principles and philosophy behind the construction of geological

and especially hydrogeological maps are elaborated upon in some

detail. The hydrogeological maps accompanying this Report in many

aspects differ from what has usually been done. This is partly

because the hydrogeology of the Iringa, Ruvuma, and Mbeya Regions

is influenced by Neogene rift faulting to such an extent that it

cannot be overlooked.

Therefore, it has been the prime objective of the Consultants to

let the description of groundwater conditions be controlled by a

framework defined by the geomorphological and geological set-up of

the regions.

Page 8: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Appendix 1

Methods.

Page 9: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

2.1

2. WELL RECORD SYSTEM

2.1 Introduction

A well record system has been set up for the boreholes drilled in the

regions, existing as well as the ones drilled by the Consultants. This

system enables any user to easily retrieve any existing information

pertaining to boreholes within the regions. The basic idea is that the

record should contain observed data without any degree of interpreta-

tion.

The well record system adopted here is a modification of a system that

has been widely used by the Consultants all over the world. It has

been revised and changed according to Tanzanian practice. For each

borehole two forms are made, a Borehole Completion Record and a Bore-

hole Location Record.

2.2 Borehole Completion Record

A Borehole Completion Record is shown in Figure 2.1. It is divided

into four sections, one describing the borehole location and the

drilling organisation, one describing the borehole construction with

details on drilled and completed depth, casing, and screening, one

describing data pertaining to water such as water struck, standing water

level, and hydraulic parameters, and finally one section giving a

description of penetrated strata. All numerical data are given in the

metric system.

The record sheet contains all the information usually recorded by the

drillers in Tanzania, plus some additional information. The sheet is

chiefly self-explanatory but some remarks are given below.

Location - Recorded as 'Region, District, Village/Estate'.

Coordinates - If topographical or geological maps are available

the exact coordinates are noted.

Test yield - If the pumping test is carried out by means of the

air-lift method the maximum (initial) discharge should

be given, and the test should be long enough to

establish the steady yield, preferably longer (cf.

Subsection 6.1+.10). If a borehole pump yielding a

constant discharge is used only the steady yield is

filled in.

Page 10: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

2.2

T and r, Sw

Method of

pumping

Suction/

Air outlet

Apparent

quality-

Water

analysis

Symbol

BH No.

CCKK No.

The Borehole

presented in

The hydraulic properties are' recorded if the test has

been analysed.

It is important to know what type of pumping device

has been used.

Is filled in so that it is possible to check that the

water level has not been lowered to the pump suction

level or close to the air outlet.

Driller's estimate based on tasting.

- P: physical analysis available, C: chemical analysis

available, B: bacteriological analysis available.

- The symbol adopted representing the rock type. -Used

by geologist or hydrogeologist in producing maps.

MAJI's Borehole number.

The Consultants' consecutive borehole number. Symbols

used are:

ID, Iringa (Region) Deep (borehole)

IS, Iringa (Region) Shallow (borehole)

RD, Ruvuma (Region) Deep (borehole)

RS, Ruvuma (Region) Shallow (borehole)

MD, Mbeya (Region) Deep (borehole)

MS, Mbeya (Region) Shallow (borehole)

The deep boreholes are drilled by Rig U5, the shallow

boreholes by Rig 53.

Completion Records from boreholes in the study regions are

Volume 10B, Appendix 1.

2.3 Borehole Location Record

The purpose of the Borehole Location Record is to make it easy to

locate the borehole at a later stage. Once the village/estate is

Page 11: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

2.3

LOCATION:

COORDINATES

COMPLETION

:

DATE

BOREHOLE

DRILLER/ORGANIZATION:

COMPLETION

ELEVATION:

DRILL. METHOD:

RECORD

m.asl

DRILL UNIT

BH NO.CCKK NO.

MAP

NO.

NO

CLIENT:

ZoEHft.

aVWuo

zoMH

Ob

x

<Q

X

j

W CD

33

o.:uQ

32wQZOH

6«CO

§

E

X

15

8X

XEH

ft.WQ

Q

l-l

aa

8

x

\ F

RO

•HaQ

w3H

aoXf.1

2on

H

oznCO<

ubO

3H<EH

U

a

QU

)RA

T

ub

Wft.

j -

0 .

M

at_3

5

wHM

8xg

8

[ FR

OM

]

COco3u

ozHzw

CR

E

to

8.X

FRO

wMco

SLO

•f^

H

a

52w uEH ft.Z >HH EH

X

8

X

X

FRO

uft.

wEH

O

S

u3aEHCO

auEH

o

2 VE

L

aauEH

OzHQ

05UbM

1

<EHCO

IMAX

KX

f t

X

awH

EHCOUH

zM

EHCO

H

szot-HEH

Q

.Q2

a

§XM

IMA

X

X

uw•v.

s

co

ss

zM

^Dft.

U-,

oQOXEH

X

EH

UCO

EH

EHDO

05M

^ ^

zoMHuw

AT

ER

bO

>>EHl-l

3D

a

2ft.a.

a

CJ

ft.

COHCO

«cawEH

azuE:Ha

»EH

Q

Uo

aDEH

H

XwEH

«UEH

*

Figure 2.1 Borehole Completion Record

Page 12: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

.2.U

found, the well site sketch is sufficient to find the borehole. A

Borehole Location Record is shown in Figure 2.2.

The record is divided into two main groups, one containing data obtained

from the Borehole Completion Record, and one containing data and sketch-

es from the site.

Most of the information is similar to the information discussed in the

previous section, so only a few points need explanation.

M.A.S.L. - Metres above sea level.

M.—.G. - Metres above/below ground level.

M.B.G. - Metres below ground level. If the water level is

above ground level the figure is negative.

M.P. - Measuring point.

The Borehole Location Records from the boreholes in the study regions

are presented in Volume 10B, Appendix 2.

Page 13: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

2.5

BOREHOLE LOCATION RECORD

LOCATION:

DATA COLLECTED

COMPLETION DATE

CASING DIA. MM

TYPE OF SCDIAMETER,

:REENMM

DRILLED DEPTH, M

STAND.WATER LEVEL,MBG

WATER STRUCK, MBG

STEADY YIELD, M3/HR

DRAWDOWN, M

METHOD OF PUMPING

WATER ANALYSIS

REMARKS

FROM WELL LOG

P. C. B.

SKETCH OF WELL SITE

BH NO.CCKK NO.

ON SITE

GROUND ELEV. MASL

MEASUR.POINT M|G

MP ELEVATION,MASL

WATER LEVEL, MBG

WATER LEVEL, MASL

SKETCH OF WELL TOP/ME

WELL POINT

MAP NO.:SCALE:

DISTANCE FROM EDGE OF MAP (MM)

LOCATED DATE:BY:

Figure 2.2 Borehole Location Record

Page 14: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.1

3. GEOPHYSICAL INVESTIGATIONS

3.1 Introduction

Geophysical investigations in connection with groundwater studies are

essentially the interpretation of the variations in measured response

at the surface or in boreholes to certain forces either naturally or

artificially generated within the crust of the earth. Such variations

result from differences in physical characteristics like density, ela-

sticity, magnetism, radioactivity, and electrical resistivity of the

underlying materials.

Geophysical investigations made in combination with reconnaissance, sur-

face geologic investigations, and exploratory drilling may provide a fast

and relatively low-cost evaluation of the subsurface geology and the

general groundwater conditions of an area.

To assure reliable interpretation the geophysical surveys should be cor-

related with the geologic conditions. Such correlations permit projec-

tion of geologic conditions to distant areas through analysis of the

geophysical measurements.

The accuracy and reliability of data obtained from a geophysical survey

depend in large parts on the control available with sources sending

disturbing signals to the measuring equipment (background noise) as well

as the geologic complexity of the area under investigation.

In many textbooks on geophysical prospecting full accounts of the geo-

physical methods applied here are given, so this description only gives

a few of the main principles of application.

3.2 Geoelectrical Survey

Of all surface geophysical methods the electrical resistivity method has

been applied most widely for groundwater investigations. The basis of

the method is that when a current is introduced into the ground through

electrodes any subsurface variation in conductivity alters the current

flow within the earth, and this in turn affects the distribution of

electric potential. The degree to which the potential at the surface is

affected depends upon the thickness, location, shape, and conductivity

of the material within the ground. It is, therefore, possible to obtain

information about the subsurface distribution of this material from

Page 15: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.2

measurements of the electric potential made at the surface. In the

electrical resistivity method an electrical current is introduced into

the earth by means of two current electrodes located at the surface,

and the electrical potential difference is measured between two other

electrodes. From the value of the potential difference, the current'

applied, and also the electrode separation a quantity termed "the appa-

rent resistivity" can be calculated. In a homogeneous ground this is

the true ground resistivity but usually it represents a weighted average

of the resistivities of all the formations through which the current

passes. It is the variation of this apparent resistivity with change in

electrode spacing and position that gives information about the varia-

tion in the subsurface layering.

3^2^ 1 ?i?i(i_Techni^ue_and_Procedure

Two different procedures have been used to determine the resistivity

variation with depth and with lateral extent.

Geoelectrical soundings are used to determine the variation of the

resistivity with depth at a fixed point at the surface. The Schlum-

berger electrode configuration has been used for this type of measure-

ment. Constant separation traverses have been used to measure the

variation of the resistivity along a line on the surface. The Wenner

electrode configuration has been used for this type of measurement.

In the Schlumberger configuration two current electrodes and two poten-

tial electrodes are arranged in a straight line on the surface, and the

distance between the current electrodes is large compared with the

distance between the potential electrodes. For this survey the elec-

trodes have been placed symmetrically about the centre of the spread.

In performing the geoelectrical sounding the potential electrodes remain

fixed while the current electrode spacing is expanded symmetrically

about the centre of the configuration. For large values of the current

electrode spacing (2 L) it becomes necessary to increase the potential

electrode spacing (2 l) to maintain a measurable potential. The follow-

ing electrode separations were used:

1 = 0.5 m, L = 1 .5 , 2 . 1 , 3 . 0 , U . l + , 6 . 3 , 9 . 1 , 1 3 . 2 , 19.0-, 2 7 - 5 , 1+0.0 m

1 = 5.0 m, L = 1 3 . 2 , 1 9 . 0 , 2 7 . 5 , ^ 0 . 0 , 58 .0 , 83 .0 , 120 .0 , 175.0 m

1 = 25.0 m, L = 5 8 . 0 , . 8 3 . 0 , 120 .0 , 175 .0 , 250.0 m.

Page 16: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.3

The constant separation traverses are performed by placing two current

and two potential electrodes at equal distances from each other along a

straight line and move the whole configuration along this line. The

actual electrode separation depends on the information on the subsurface

that is required. The larger the electrode separation, the deeper the

penetration.

3. 2^2

The field data for each geoelectrical sounding are represented in loga-

rithmic graphs in which the half length of the current electrode separa-

tion L is plotted on the abscissa and the corresponding apparent resis-

tivity is plotted on the ordinate.

The object of the interpretation of the geoelectrical sounding curves is

to determine the thicknesses and the true resistivities of the individual

layers in the ground.

The interpretation was carried out by means of master curves. These

curves are theoretical resistivity curves constructed for different com-

binations of homogeneous isotropic layers with different thicknesses and

resistivities. The master curves are drawn to the same logarithmic scale

as the field curves.

The main interpretation problem is that it is often possible to match

field curves with more than one master curve. Two slightly different

curves can correspond to very different resistivity distributions. For

instance it is difficult if not impossible to distinguish between two

layers of different thicknesses and resistivities if the products of the

thickness and resistivity are the same. This is called the principle of

equivalence.

Another aspect of the lack of uniqueness is referred to as the principle

of suppression. This relates to those layers whose resistivities are

intermediate between the resistivities of the enclosing layers. Such

layers as long as they do not have sufficient thickness have practically

no influence on the resistivity curve.

Finally, anisotropic ground will lead to errors in the interpretation, as

will the effect of rugged topography.

Page 17: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.k

To avoid interpretation problems, a geoelectrical sounding in the immediate

vicinity of most of the existing boreholes has been carried out, and by

comparison with the geological logs the soundings have been calibrated.

Constant Separation Traverses

The field data for each constant separation traverse is represented in

graphs- in which the positions of the centre of the electrode configura-

tion at each measurement are plotted along the abcissa in a linear scale

while the corresponding value of the apparent resistivity is plotted on

the ordinate in a linear scale as well.

The horizontal resistivity profiles have only been interpreted qualita-

tively. The geoelectrical trenchings were used to find where the bed-

rock was deepest or where the weathering profile was deepest, and this is

expected to be where the horizontal resistivity profiles have their

minimum points.

A total of 212 geoelectrical soundings and 12 constant separation

traverses have been carried out.

The final interpretation results, the geoelectrical sounding curves, and

constant separation traverses are represented in Volume 10 A, Appendix 3.

The measuring equipment consisted of two sets ABEM Terrameter SAS-300

Master Units and two sets ABEM Terrameter SAS-2000 Booster Units. The

terrameter reads the ratio between the voltage drop and the current (the

resistivity) directly.

Maximum performance of the instruments:

Terrameter SAS-300 alone:

20 mA at 150 V maximum current electrode potential.

Terrameter SAS-300 connected with Terrameter SAS-2000 Booster:

500 mA at 500 V maximum current electrode potential.

Page 18: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.5

3.3 Seismic Survey

The physical basis of the seismic exploration methods is the fact-that

differences occur between the velocity of seismic waves in different

geologic formations.

There are three different types of seismic waves, compressional (sound

waves), shear and surface waves (Rayleigh waves). Only the compres-

sional waves have been used in this survey.

Exploration seismology is an offspring of earthquake seismology and

involves basically the same type of measurements. However, the energy

sources are controlled and movable, and the distance between the source

and the recording points is relatively small.

The basic technique of seismic exploration consists of generating

seismic waves and measuring the time required for the waves to travel

from the source to a series of sensitive wave detectors, geophones,

usually placed along a straight line directed towards the source. From

a knowledge of travel times to various geophones and the velocity of

the waves it is possible to construct the paths of the seismic waves.

All the seismic surveys were performed as in-line refraction profiling

with 2h geophones placed along a straight line at equal distances from

each other and shot points at each end of the geophone spread.

In order to record both the direct wave through the top layer and the

refracted waves from all the other layers, the length of the geophone

spread needs to be at least 2-3 times as long as the depth to bedrock.

The geophone separation was, therefore, chosen in every case according

to the expected depth to bedrock. A geophone spacing varying from 3 to

10 m was used.

As energy source for generating seismic waves explosives were used.

The shots were fired in 0.5 to 0.7 m. deep hand-drilled holes. The

amount of explosives for each shot ranged from 100 to 500 grammes of

dynamite.

Page 19: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.6

To initiate the explosion electric blasting caps were used. Special

instant-fire seismic caps are required if the shot instant is to be

taken directly from the firing circuit, but these could not be provided

during the investigation period. To record the shot instant one of the

geophones was then used as "start geophone" and the shot hole was placed

near to this.

The seismic waves are in the geophones transformed to small electric

currents which are transmitted to an amplifier and from there to a re-

corder and printed on direct print-on paper (the seismogram). From the

seismogram the arrival times of the seismic waves at the individual

geophones are read from their traces, from the deflection that the first

impulse produces, the shot instant being zero time.

Based on the seismograms, travel time graphs for the first arrivals are

constructed with the distance from the shot point plotted along the

abscissa and the corresponding first arrival travel time plotted along

the ordinate at a linear scale.

The objective of the interpretation of the travel time graphs is to

determine the thicknesses and the seismic velocities of the individual

layers in the ground and especially the depth to bedrock using standard

formulas.

These formulas are based on certain assumptions which the actual condi-

tions do not always fulfil, several complicating factors can exist.

These originate in the seismic source, in the subsurface geology, and in

the seismic recording process itself.

If the seismic pulses generated by the seismic source have flat shapes

it may be difficult to read the timebreaks exactly on the seismograms.

This problem has been met by using explosives as source which generate

very steep pulses in comparison with other energy sources, and by making

the contact between the explosives and the ground as good as possible.

However, by travelling through the ground the seismic waves will gradual-

ly lose its higher frequencies, becoming smoother and more prolonged in

time, and the timebreaks will become less and less distinct as the

distance to the source is increased.

Page 20: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.7

If there was uncertainty in reading the timebreak, the condition of reci-

procity was used to draw the straight lines through the arrival time

points on the travel time graphs. The condition of reciprocity states

that the total travel time is the same for shots from both ends of the

same geophone spread. One of the two travel time graphs will usually be

better defined by the data points than will the other. The better

defined lines are drawn first and the other lines are then drawn as well

as possible through the data points to satisfy reciprocity.

Irregular surface and interface topography may also result in a scatter-

ing of the data points on the travel time graphs.

Problems sometimes result from a hidden zone, a layer whose velocity is

higher than those of the overlying beds but which never produces first

arrivals because the layer is too thin and/or its velocity is not suffi-

ciently greater than those of the overlying beds.

If the increase of velocity in the layers with depth is inversed and a

lower layer has a velocity less than that of the layer above it, then

critical refraction does not take place and there are no refracted arri-

vals through the layer. Such a layer is undetectable by the refraction

methods.

The total of 50 seismic profiles have been carried out. The final

interpretation results and the travel time graphs are presented in

Volume 10 A, Appendix 3.

3. 3j

The measuring equipment consisted of two sets ABEM Trio SX-2 4 portable

seismic refraction systems with 25 recording channels, 2k seismic traces

and 1 shot instant trace.

3.k Down-the-Hole Logging

Down-the-Hole logging includes all techniques of lowering sensing devices

into a borehole and recording some physical properties of the formation

penetrated by the borehole. The logs are in most cases used in a quali-

tative sense for identification of lithology, borehole construction and

conditions, and for stratigraphic correlation.

Page 21: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.8

The equipment used during the study was capable of, doing the following

logs: resistivity log, self-potential log, fluid resistivity log,

radiation log, temperature log and caliper log.

3 Jf^l 5f?:»istiyity__Logs

The principles of resistivity logging are similar to those used in

surface resistivity surveys. This type of logs can only be made where

the borehole has not been cased.

Current and potential electrodes are lowered into a borehole to measure

electrical resistvities of the surrounding media and to obtain a trace

of their variation with depth. The result is a resistivity log.

Several electrode configurations have been developed but they are all

affected by the fluid within the borehole, by changes in the diameter of

the borehole, and by the character of the surrounding strata.

In the normal electrode configuration two current electrodes and two

potential electrodes are used. One current and one potential electrode

on the logging probe are closely spaced downhole and the other two are

fixed at the top of the hole. Three different electrode separations

have been used: 0.25' (0.08 m ) , 2.5' (O.76 m ) , and 10' (3.05 m).

The apparent resistivity gives useful qualitative information regarding

the type of formations penetrated by the borehole and the depths of the

formation boundaries. The definition and sharpness of the normal logs

decrease with an increasing hole diameter and with a decreasing mud

resistivity. The effects of adjacent beds and the invasion of porous

zones by drilling mud are also significant.

With small electrode separations the measured apparent resistivity is

strongly influenced by the mud and invasion zones, but formation bound-

aries are indicated rather distinctly. As the electrode separation is

increased the influence of mud etc. decreases, and the apparent resist-

ivity will better approximate the true formation resistivities, but the

boundary indication will not be so distinct.

The effective penetration into the formation is about twice the electrode

spacing and varies inversely with the hole diameter.

Page 22: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.9

In the lateral electrode configuration two current electrodes and two

potential electrodes are used as well. Three electrodes, two potential

and one current electrode, on the logging probe are spaced downhole and

the last current electrode is fixed at the top of the hole. The follow-

ing electrode separations have teen used: 10' (3.05) with potential

electrode separation 0.25' (0.08 m) and 2.5' (0.76 m).

The prime objective of the lateral log is to measure the formation

resistivity by use of an electrode spacing large enough to ensure that

the mud invasion zone has little or no effect on the measurements.

The effective penetration is approximately equal to the electrode spac-

ing.

In the "single-point" electrode configuration only one electrode is

lowered in the borehole, and this has the combined function of current

and potential electrode. The apparent resistivity measured is consider-

able different from the true value because it is built up by cable

resistance, formation resistance, contact resistance between the ground-

ed electrodes at the top of the borehole and the soil, and contact

resistance between electrode in the borehole and the fluid within the

borehole.

The method gives only qualitative information regarding resistivity

changes caused by variation in lithology or the salinity of the pore

water.

The effective penetration into the formation is small, from five to

ten times the electrode diameter.

3 _;_2 §elf-p_otential_Log

Self-potential logs are records of the natural potentials developed

between mineralogically different formations and salinity differences

between formation liquids and drilling mud.

This type of logs can only be made where the borehole has not been cased.

Only one electrode is lowered into the borehole and one is fixed at the

top of the borehole. The natural potentials are measured in millivolts.

Page 23: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.10

The self-potential logs give qualitative information on the formations

penetrated by the borehole. It is possible to indicate thin clay lenses

which cannot be observed clearly in the resistivity logs, and it can be

used within salt water zones where the resistivity logs no longer make

differentiation possible between sand and clay beds.

The effective penetration into the formation is highly variable.

Fluid resistivity logs are continuous records of the conductivity of the

fluid in a borehole which may be related to the conductivity of fluids

in the adjacent formations.

Fluid resistivity logs are used to determine water quality in wells, in

particular to locate salt water and to help in the interpretation of

formation resistivity logs.

The fluid resistivity probe used consists of a non-conductive tube that

contains four electrodes, two current electrodes, and two potential

electrodes.

Radiation logs are continuous records of the radioactive radiation from

the formations penetrated by the borehole. Radiation logs may be

applied in either cased or uncased boreholes that are filled with any

type of fluid.

Some atomic nuclei emit natural radiation in the form of alpha, beta, and

gamma rays or neutrons. The most commonly used type of logs and the type

used in this survey is logs of the natural gamma radiation.

Gamma radiation is an electromagnetic radiation and is not electrically

charged. During nuclear disintegrations gamma rays are emitted.

Natural gamma radiation in the ground results from the presence of small

amounts of radioactive isotopes which mainly are potassium -Uo (K ),

uranium -238 (U ), thorium -232 (Th ), and daughter products of the

uranium and thorium decay series.

The amount of radioactive isotopes is roughly lowest in basic igneous

rocks, intermediate in metamorphic rocks, and highest in some sediments.

Page 24: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.11

In general, the natural gamma activity of clay-bearing sediments is much

higher than that of quartz, sands, and carbonates. It is, therefore,

possible to get useful qualitative information regarding the lithology

and stratification from a gamma log.

The gamma probe used consists of a detector and an amplifier. The

detector is a scintillation counter in which the incident gamma pulses

in an activated transparent crystal are transformed into light flashes.

These flashes cause electron emission from a photocathode, and the

corresponding current is amplified by means of electron multiplication

by secondary emission from a number of electrodes. The total current

amplification is appr. 10 . The current is further amplified in the

probe and then transmitted to the surface recording equipment.

The radius of investigation of a gamma probe depends on the borehole

fluid, the borehole diameter, size of casing, density of the rocks,

etc., but roughly 90% of the measured radiation originate within approx.

30 cm of the borehole wall.

^JK 5

Measurement of temperature in boreholes is the oldest logging technique.

The temperature logs can be used to detect fluid movements in uncased

boreholes or through screens or casing leaks. Further, they can provide

some qualitative information concerning the lithology.

Ordinarily temperatures will increase with depth in accordance with the

geothermal gradient amounting to approx. 3 C for each 100 m depth.

Departures from this normal gradient may provide information on fluid

circulation or geologic conditions. In general, the geothermal gradient

is larger in rocks with low permeability than in rocks with high perme-

ability, possibly because of groundwater flow. This fact makes it

possible to determine the relative magnitude of permeability of the

formations from a temperature log. The temperature probe used contains

a temperature sensitive element, a thermistor, whose internal electrical

resistance changes in response to temperature changes. A small electric

current is sent through the thermistor to measure changes in resistance.

Temperature logs should be run with downward moving probe to avoid tempe-

rature disturbance caused by fluid displacement in the borehole.

Page 25: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.12

3.^6 Calij>er_Log

Variations of the diameter in a borehole is measured by a caliper probe.

Changes in hole size are caused by a combination of drilling techniques

and lithology,e.g. change of drilling bits, circulation of drilling mud,

degree of cementation, compaction and porosity of the formations, and

size, spacing and orientation of fractures.

Caliper logs are utilised as a guide to well construction, to correct

the interpretation of other logs for hole diameter effects, for litho-

logy identification, and for location of fractures in hard rocks.

The caliper probe used is provided with three feeler arms the movements

of which are recorded by an electric circuit and then transmitted to the

surface recording equipment.

Caliper logs should be run with upward moving probe to prevent the probe

to stick in the borehole. The probe is lowered with the feeler arms

closed into the borehole. At "the desired depth an upward movement of

the probe releases the feeler arms to contact with the borehole wall.

The measuring equipment consisted of a Johnson-Keck Borehole Geophysical

Logging System Model SR-3000.

The equipment was provided with six logging modules:

• Two resistivity log modules

• One self-potential log module

• One temperature log module

• One gamma log module

• One caliper log module

and two strip-card recorders.

Two types of logs can be run simultaneously.

The following probes were used:

1. Resistivity/self-potential probe.

The probe can be used for normal resistivity, lateral resistivity,

single-point and self-potential measurements.

2. Fluid resistivity probe.

Page 26: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

3.13

3. Temperature probe.

h. Gamma/single-point/self-potential probe.

The probe can be used for natural gamma radiation, single-point

and self-potential measurements.

5. Caliper probe.

Page 27: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

U.I

h. PREPARATION OF DRAWINGS

U.I Geology (Drawing II-8)

The construction of the geological map and the accompanying descrip-

tion has been based on the following available information:

• Available literature, bulletins, and publications.

• Existing geological maps, mainly Quarter Degree Sheets 1:125,000.

These maps are available in three editions, preliminary and first

editions surveyed during the 19^0's to the mid 1950's, and a

corrected edition mapped during the 1960's.

Most of the regions as a whole is mapped to that scale except for the

northern part of Mbeya and Iringa Regions, and the eastern part of

Ruvuma Region. In these areas the geologic interpretation has been

based on:

• The general Geological Map of Tanganyika, 1:2,000,000.

• Satellite imageries comprising 1:500,000 colour composite,

1:500,000 Bands h and 5, and 1:250,000 Band 7. Full coverage at

the 1:500,000 scale and partial coverage at the 1:250,000 scale

was obtained.

• Airborne magnetic survey maps.

• The borehole files of MAJI, Dodoma, and the regional headquarters.

• Results of the present geological, geomorphological, geophysical,

and hydrogeological field surveys.

The geological map has been prepared in two editions, a detailed map

giving as much details on the rocks as deemed necessary for the purpose

of the hydrogeological study, and a general geological map delineating

the main rock groups. This map is used as an overlay for .the hydrogeo-

logical maps for easy cross reference.

It should be observed that the satellite imageries used have not been

geographically corrected, so slight inaccuracies are present on all maps

where satellite imageries have been employed to construct the map.

However, since the study regions are situated so close to the equator

the errors are small and cause no problems in using and interpreting

the maps.

Page 28: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

k.2

k.2 Geomorphology (Drawing II~9)

The construction of the geomorphological map has been based on the

following information:

• Available literature, bulletins, and publications.

• Existing geological maps and the geological map prepared by

the Consultants.

• Satellite imageries as above.

• Field surveys.

• Topographical maps of various scales.

The actual delineation of the geomorphological units is based pre-

dominantly on the satellite imageries, but the decision on which

plateaus belong to which erosion surface is made after an extensive

field survey supported by the explanation given on the Geological

Quarter Degree Sheets which in some cases comment on the erosion

features of the areas covered by the individual sheets.

King (1962) published a preliminary geomorphological map of Africa

and this map was used as a starting point. The final result of this

study in many areas differs considerably from Kings' suggestions.

The classical literature on the geomorphology of East and Central

Africa has been widely used as it mentions some specific areas within

the study regions.

The geomorphological map was constructed stepwise. First the charac-

teristic African erosion surface was delineated because it is easily

identified in the field. Then the aggradational surfaces were deline-

ated. .What was left could be only Gondwana or post-Gondwana erosion

surfaces (plateaus more elevated than the African Plateaus), or post-

African, or Coastal/Congo (plateaus situated at lower levels).

Once the basic information was assembled, necessary corrections were

made currently in order to more accurately locate the boundaries

between the erosion surfaces.

The geomorphological map has been prepared to meet the requirements

of the hydrogeological study. The situation is much more complex than

shown on the map. The Gondwana land surface for instance is much more

dissected by valleys belonging to the post-Gondwana erosion cycle than

Page 29: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

k.3

indicated, and along the edges of the African land surface a detailed

study may reveal many minor erosion features caused by the post-African

erosion cycle.

Nevertheless the geomorphological map is believed to represent the

actual erosion features to a degree that is satisfactory for its pur-

pose.

1*.3 Dambos, Springs and Main Faults (Drawing 11-12)

The main structures are drawn on basis of the geological map prepared

by the Consultants, and the same sources have been used. The main

structures in Ruvuma Region have been based mainly on the aeromagnetic

maps as far as the eastern Karroo basin is concerned, since there is

no available detailed geological mapping there.

General structural maps of Tanzania have been used to correlate the

structures with the overall structural pattern since it is believed

that the main structures in the regions form part of an overall pattern

in East Africa and, thus, cannot be treated separately. The wellknown

rift faulting is of course the major structural feature, but the main

structures in the eastern Karroo basin have been found to be a continu-

ation of the fault lines in the northern Tanzania which apparently has

not hitherto been recognised.

The dambos are outlined using air photos, photo mosaics, satellite

imageries, 1:250,000 topographical maps and geological maps. The

dambos are most easily recognised on the air photos and transferred

from these to the base map, which was at the 250,000 scale. Since the

regions were not fully covered by air photos geological maps have been

widely used, and on some 250,000 topographical maps dambos are shown

as swampy areas.

In the eastern Karroo basin dambos have not been mapped. The geology

and erosion of the Karroo is quite different from the Basement Complex,

and it is far from certain that the low-lying areas in the river

valleys can be regarded as dambos or they are more akin to classical

alluvial tracts.

The majority of the springs shown is recorded in the village invento-

ries.

Page 30: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

On some of the geological map sheets springs are mapped. Most of the

juvenile springs shown have been obtained from this source. Many more

spring than those shown on the map are believed to exist. No distinc-

tion is made between perennial and intermittent springs since this was

not possible as only spot gaugings have been available.

U.k Cyclogram Map (Drawing 11-10)

The cyclogram mapping technique was developed at the Geological Survey

of Denmark (Andersen, 1975) and is a very useful method of visualising

borehole data and spatial distribution of layers. In its original form

the cyclogram map provides a three-dimensional view of the distribution

of subsurface strata, together with all technical data from the bore-

holes.

However, this presumes an area of low topographical relief so that

boreholes show strata from more or less the same levels. This makes it

impossible to produce a cyclogram map in its original form covering the

whole study area because the differences in altitudes over short

distances result in boreholes drilled into completely different forma-

tions, and correlation in the usual sense becomes meaningless.

The cyclogram map presented here is consequently a modified version of

the original one but yet preserving the two most important features,

the borehole data and the stratigraphy.

The cyclograms are oriented in such a way that the ground level is

placed at 9 o'clock in the first ring (cf. legend, Drawing 11-10). The

depth of the borehole increases clockwise and each ring embraces 100 m

of penetration. The first ring embraces layers from ground level to

100 m below ground level. The second ring embraces layers from 100 m.b.

g.l. to 200 m.b.g.l. and so on. Across the Basement Complex which is

of main interest, the first section of the first ring, therefore, usually

represents the saprolite, and correlation of saprolite thicknesses from

borehole to borehole becomes immediately possible. This is very import-

ant since the saprolite is the most interesting layer from a groundwater

point of view.

Page 31: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

sent-ing the borehole site is divided into four sections indicating what

type of data is available: chemical analysis, water level data, location

record, or strata log.

In this way the cyclogram is a graphical and numerical representation

or reference to all available data pertaining to groundwater, and it can

be used without having to consult the original data records. For a

complete identification of the groundwater conditions as given by avail-

able data only the chemical map has to be consulted.

h. 5 Groundwater Chemistry (Drawing 11-11)

Data on the chemical quality are based on chemical analyses from exist-

ing wells and analyses from wells drilled by the Consultants. Data

from existing wells in most cases consist of partial analyses, or even

less than that. In some cases only the total dissolved solids (TDS)

are given.

The existing analyses have been collected from the borehole files of

MAJI, Dodoma, and Ubungo, and from the regional headquarters. Water

samples from the wells drilled by the Consultants have been analysed by

means of Hach Kits, and by using standard laboratory procedures at

MAJI,.Ubungo. Some samples were sent to Denmark for full analyses.

Selected chemical analyses are represented by a circular diagram (Pie-

diagram) on the Chemical Map.

The calculation and plotting of the diagrams were performed by the

Geological Survey of Denmark using EDP techniques.

The concentration of the respective ions was converted from ppm (mg/l)

to meq/1 (milliequivalents per litre). When the ion concentrations are

expressed as meq/1 the total number of meq/l anions is equal to the

total number of meq/l cations. It is thus possible to depict the per-

centagewise concentration of each cation on the upper semicircle and

of each anion on the lower semicircle.

The conversion from ppm (mg/l) to meq/l is performed according to the

following formula:

Page 32: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

U.6

/n ppmmeq/1 = : r*"—:—— r—.

equivalent weight of ion•

The equivalent weights of the respective ions are given in Table U.I.

The analyses to be illustrated were selected from an evaluation of the

reliability of each individual analysis and the balance of anions and

cations.

Anion

C 0 3 ~ "

H C 0 3 ~

sou~"

Cl"

NO

TTO

EquivalentWeight

30.01

61.02

U8.O3

35.U6

62.01

U6.01

Cation

Ca++

M g ^

Fe + +

Mn + +

*vNa+

K+

EquivalentWeight

20. OU

12.16

, 27.92

27. U7

18. oU

22.99

39.10

Table U.I Equivalent weights of anions and cations.

The selected analyses are represented by pie-diagrams in which the

distribution of the major ions (Ca , Mg , Na , K , HCO_ , SO. ,

Cl etc.) is shown by circle sectors.

In the upper semicircle the cations (pos. charge) are depicted, in the

lower semicircle the anions (neg. charge).

The smallest circle sector which can be illustrated in a normal pie-

diagram is appr. 5 , and consequently ion concentrations below 3% of

the total anion or cation concentration (corresponding to an angle of

5.U ) have not been plotted.

The area of the circle is proportional to the total ion concentration

in the water sample.

Page 33: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

The following dissolved components and elements which are of particu-

lar interest from a water treatment point of view are given "by figures

stating concentrations in ppm (mg/l) where applicable: pH, NH< , NO., ,

Cl , Fe , Mn , aggressive C0?, NaHCO_, temporary and total hardness-

and conductivity.

For identification purposes the 'borehole number is given together with

the date of sampling where the latter is known.

In Volume 10 B, Appendix 3, the chemical data are given for each bore-

hole.

U.6 Groundwater Development Potential (Drawing 11-13)

The map showing the groundwater development potential is based on the

other maps produced and on the findings of the hydrogeology study.

The basic sources of information are, therefore, those already mention-

ed.

The base for drawing the map has been the 1:500,000 satellite imageries

which not having been corrected causes slight deviations to occur

between the actual geographical position of major topographical features

and those depicted on the map. The deviations are small and have no

influence on the general use of the map.

As the main purpose of the study has been to evaluate the potential in

relation to village water supply, the groundwater abstraction potential

has been based on a handpump solution, and this means that the influence

of the walking distance has also been taken into consideration.

The depth to the water level is of paramount importance for the yield

of a hand pump, and the depth is largely depending on the local topo-

graphy. Therefore, the topography has had to be taken into considera-

tion too. The expected yields of wells are shown in the graphs on the

map as specific capacities. For a given drawdown the expected yield is

the specific capacity times the drawdown.

The general geological map is shown as an overlay. This makes it

possible for the user to determine the geology of the saprolite parent

rock at a proposed site, and from that differentiate the expected yields

over an area.

Page 34: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

U.8

The classes shown are based on the geomorphological units, and differen-

tiations within the units are based on the topography. Within the Base-

ment Complex groundwater is generally occurring, and the yields of wells

are statistically uniform. However, as the topography becomes more and

more undulating it becomes more and more difficult to place boreholes in

the villages or their immediate vicinity.

The class with the best groundwater potential in this sense covers

areas of low topographical relief, and siting of wells suitable to meet

requirements of walking distances can be generally done in such areas.

Page 35: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5.1

5. DESCRIPTION OF HYDROGEOLOGICAL TERMS

5.1 Objective

To avoid unnecessary repetition of the explanation of hydrogeological

terms the terms commonly used in this Report are described here. The

description will be general but does in some aspects pertain to African

conditions.

5.2 Types of Aquifers

^g^l P?rched_Aquifers

The first aquifer encountered in many areas is often a perched aquifer

(Figure 5.1). This aquifer is of phreatic type (see below) and is con-

trolled by structure or strathigraphy. Perched aquifers are usually of

limited areal extent and thickness and are, therefore, not suitable for

any large scale groundwater development.

If the perched aquifer is controlled by, say, a clay layer that out-

crops a spring might develop. Because of the comparatively small

storage capacity of the aquifer such springs are usually seasonal and

discharge small volumes of water only, and often shortly after heavy

rainfall.

5 .2 2 Phreatic_Aquifers

Aquifers being in direct contact with the atmosphere through open spaces

in permeable overburden are phreatic or water table aquifers. The water

table is defined as the surface at which the water pressure equals the

atmospheric pressure, and the zone above is-unsaturated.

A water table aquifer may in principle be found at any depth depending

on the local strathigraphy, usually the water table will be rather

shallow.

2±.2L3 Artesian_Aquifers

Artesian or confined aquifers are commonly deep-seated, and if water

table aquifers are existing in the area the artesian aquifer is

situated below these. In the artesian aquifer, water is under pressure,

Page 36: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5.2

and the water level in a well drilled to the aquifer will rise to a

level above the confining layer. This level is the piezometric sur-

face.

ARTESIANWELL

PHREATIC AQUIFER.'-.

•ARTESI'AN AQUIFER •

• IMPERVIOUS B E D r T ^

PERCHED A Q U I F E R ^ ^ * ~ »

SPRING ^ ^ ^ ^ f P f ^

H^* -WATER TABLE " '..:..':: •::;.

'"-^M-:] ""'""'* •'' |V*""** l ' t l• M H B V r\ T r""7nMC"XD TP LJC AH *' :.'*' • •j J . .* ™ r l t Z - U r l t 1 K1U n L.r\U iA itaML.

Figure 5-1 Schematic cross section through aquifers.

Artesian aquifers are divided into two groups, nonleaky and leaky

aquifers.

Nonleaky Artesian Aquifers

A nonleaky artesian aquifer is an aquifer to which there is no flow of

water through the confining beds, and no flow will be induced when

pumping takes place from the aquifer.

This type of aquifer is physically not very realistic because there is

no explanation to its existence except some sudden geological event

that has trapped and sealed off water between impermeable beds, or in

cases where the aquifer is partly exposed at the land surface allowing

for direct infiltration by rainfall.

However, from a mathematical point of view the nonleaky artesian

aquifer is very important because it provides, the physical background

Page 37: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5.3

for the basic solution of the problem of ground-water flow around a well

being pumped at a constant rate (the Theis solution, cf. Section 6.k).

Leaky Artesian Aquifers

The most common artesian aquifer is the leaky one. It occurs where the

confining beds are semi-permeable allowing flow of water to the aquifer

from surrounding water bearing strata having higher pressure. The flow

of water to the aquifer depends on the permeability of confining beds

and the pressure difference, and consequently obeys Darcy's law.

When a leaky artesian aquifer is pumped the pressure difference is in-

creased and the leakage becomes larger. During the initial stage of

pumping the aquifer behaves nonleaky. After some time (tens of minutes

to a few days) leakage flow starts to dominate, and a pseudo-steady

state may develop during which the volume of water extracted from the

aquifer is balanced by leakage flow. Unless the source bed has got an

extremely large storage capacity (e.g. a lake) drawdowns will occur in

the source bed. The leakage flow, therefore, can no longer balance the

volume pumped (after days to months) and the drawdown will increase in

the pumped aquifer. This state which describes the long-term behaviour

of the aquifer may continue for years until some independent source of

recharge is reached to yield the final steady state condition.

5.3 Hydraulic Properties of Aquifers

The hydraulic properties of aquifers are influenced by large-scale para-

meters like the thickness, width, and dip of the aquifer, and by small-

scale parameters like porosity, grain size, uniformity, etc. The main

properties, however, are best described by the following parameters:

transmissivity, storage coefficient, and leakage coefficient since these

reflect the influence of various other parameters some of which are

mentioned above.

The transmissivity T is a parameter which describes the gross hydraulic

conductivity of an aquifer. According to Darcy's law the discharge

from an aquifer with height h, width b, permeability or hydraulic con-

ductivity p, and hydraulic gradient I, i s Q = p x h x b x I . The

transmissivity is defined as the product of the permeability and thick-

Page 38: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

ness of the aquifers, i.e. T = p x h. Physically, therefore, the

transmissivity is the discharge through a.- cross section of unit width

and gradient extending through the full height of the aquifer (Figure

5.2). Similarly the permeability or hydraulic conductivity is defined

as the discharge through a cross section of unit area having unit

gradient.

CONFINING BED-

AQUIFERTHICKNESS-

TRANSMISSIVITY (T) =PERMEABILITY (P) xAQUIFER THICKNESS (m)

P = DISCHARGE THATOCCURS THROUGH UNITCROSS SECTION

J = DISCHARGE THAT OCCURS THROUGHUNIT WIDTH AND AQUIFER HEIGHT

Figure 5.2 Graphical concepts of the coefficients of permeability

and transmissivity. (After Johnson, 1966)

§torage_Coefficient

The storage coefficient S is a quantity which describes the ability of

an aquifer to store or release water. It is defined as the volume of

water released per volume of a column through the aquifer with unit

cross-sectional area and per unit decline of head.

There is a sharp distinction between the storage coefficient or speci-

fic yield S of a phreatic and that of an artesian aquifer. In a

phreatic aquifer the storage coefficient equals the effective porosity

which is approximately the volume of water released per unit volume of

the aquifer during gravity drainage. Therefore, the storage coefficient

is of the order of magnitude 0.01-0.2. The flow of water in a phreatic

aquifer is controlled by gravity, and accordingly the area of influence

Page 39: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5.5

due to pimping will be small compared to the area of influence in a

similar artesian aquifer.

In an artesian aquifer the water is released due to the elastic com-

pression of the intergranular skeleton, and the storage coefficient

accordingly is small, usually in the range 0.00001-0.001.

In an artesian aquifer the flow of water is controlled by the pressure

gradient. As the volume of water released per volume of aquifer is

very small the area of influence due to pumping rapidly becomes very

large. To obtain the same amount of information on an aquifer the

duration of test in an artesian aquifer will be considerably shorter

than in a phreatic aquifer. The difference between the storage

coefficients of phreatic and artesian aquifers is illustrated in

Figure 5.3.

WATER LEVELS -IN THE WATERTABLE AQUIFER

m

EQUALDECLINES IN-WATER LEVELS

-IIm

X

PIEZOMETRICSURFACES INTHE ARTESIAN AQUIFER

VOLUME OFWATER DRAINED

m= THICKNESS OF SATURATED STRATA

Figure 5-3 Unit prisms of water table and artesian aquifers, illustrat-

ing differences in storage coefficients. (After Heath and

Trainer, 1968)

5.3.3 Leakage Coefficient

The leakage coefficient P1/m' is associated with leaky artesian aquifers

only and is simply the ratio of the permeability and the thickness of

the confining layer through which leakage occurs.

Page 40: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5.6

The leakage is contolled by pressure differences between the aquifer

and the confining layer and may, therefore, originate from layers above

or below the aquifer, depending on pressure. The leakage coefficient

is a parameter derived from mathematical considerations and plays an

important role in the interpretation of pumping test results from leaky

artesian aquifers. Once determined it can be applied to calculate re-

charge to artesian aquifers when the hydrogeological set-up is known.

5.h Recharge to Aquifers

Because of the different physical background recharge to aquifers is

naturally divided into recharge to phreatic and recharge to artesian

aquifers.

Recharge to phreatic aquifers is established by the rather simple

mechanism of direct infiltration through the soil above the water table.

The net infiltration available for recharge is the rainfall reduced by

evaporation, evapo-transpiration, overland flow, and interflow, all of

which vary considerably according to local climatic, hydrogeological,

and geographical conditions.

Phreatic aquifers are very sensitive to longer periods of drought during

which they may discharge their water content completely to nearby rivers

or lakes. Unless the saturated zone of a phreatic aquifer is very thick

and thus contains a large volume of water, it cannot usually form the

base for a large-scale development of groundwater, especially in areas

with typical seasonal rainfall. Wells in such aquifers of relatively

small storage capacity may run dry during dry periods and may be opera-

tional again shortly after the rainy season has started.

Nonleaky artesian aquifers can be recharged only in cases where the

aquifer is exposed at the surface, and the recharge mechanism is direct

infiltration. Leaky artesian aquifers are recharged by the mechanism

of leakage flow from adjacent layers having a higher pressure head, as

described previously.

Page 41: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5-7

Artesian aquifers are much less sensitive to draught periods than

phreatic aquifers because they are always fully saturated with water.

Groundwater abstraction by wells can continue from artesian aquifers

through long periods of no recharge, and artesian wells are not liable

to run dry easily. This only happens as a result of mining of ground-

water during long periods in which case the well must be shut down for

a period of a year or more, depending on the recharge conditions,

before it is operational again.

5. 5 Drainage

In the following a short description will be given of the types of

drainage pattern commonly found in the study regions. For further

details reference is given to Monkhouse and Small (1978) which has

been consulted in preparing the descriptions below.

Dendritic drainage - a tree-like pattern where tributaries resemble

branches converging upon the main stream. Mostly found where there is

no structural control and where rocks are similar over the drainage

basin. Very common across the African erosion surface where not

tectonically disturbed.

Parallel drainage - streams and tributaries are almost parallel to one

another. Common in alluvial fans and below escarpments.

Rectilinear drainage - tributary junctions are generally at right

angles. Sections between junctions are of approximately the same

length. Usually connected to a similar joint pattern. Often seen

above escarpments.

Radial drainage - streams flowing down the slopes of dome or cone-

shaped uplands. Commonly seen around the craters in the Rungwe

Volcanic Province.

Trellis drainage - a rectilinear drainage pattern mostly in scarplands

where adjustment to structures has occurred.

Dambo - a river valley with a wide flat grass-covered floor resulting

from sheet wash. Stream channels are usually poorly defined. May or

may not be flooded during the rainy season. Dambos reflect the surface

as well as the subsurface drainage pattern which is commonly dendritic

in tectonically undisturbed plains. Common across the African land

surface.

Page 42: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

5.8

Mbuga - a seasonally flooded depression in a plain often situated with-

in drainage lines.

Page 43: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.1

6. PUMPING TESTS

6.1 Objective

Pumping tests are carried out on water wells to determine the hydraulic

properties of the formation tapped. With known values of aquifer charac-

teristics it is possible to determine the optimal yield that can be ob-

tained from the well, taking into consideration the life time of the

well. If the discharge is too great so that the water level is lowered

below the top of screen or inflow face, the water is oxidised with a

possible deterioration of the chemical quality as a consequence.

Furthermore, an assessment of the aquifer potential for withdrawal of

water cannot be carried out without a proper knowledge of aquifer trans-

missivity or permeability. The analysis of pumping test data to determine

aquifer hydraulic properties, therefore, is essential to the planning of

future aquifer development.

6.2 Types of Tests

There are numerous ways of testing wells, depending on the objective of

the test and the equipment available for testing. The tests to be men-

tioned in the following are those most commonly used, because they usual-

ly provide the most reliable results.

^2^1 Sgecific_Cap_acity__Test

This test is the most simple to perform. The well is pumped for a certain

period of time, preferably at a constant rate, and the drawdown is

measured immediately before pumping stop. The ratio of the discharge

rate Q and the drawdown in the well s , Q/s is the specific capacity

which expresses the performance of the well. The larger Q/s , the betterw

the well is. The specific capacity can be further used to obtain an esti-

mate of the aquifer transmissivity.

6^2^ 2 222§tant J)ischarge_Test

The constant discharge test is the test most commonly used to determine

aquifer hydraulic properties and boundary conditions. To obtain the best

results, several observation wells are required.

Page 44: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

•6.2

The test is carried out by discharging the pumping well at a constant

rate and measure the drawdown in the well and in the observation wells

frequently to obtain time-drawdown relationships.

The duration of the test depends on the purpose of the test. If trans-

missivity and storage .coefficient only are to be determined, 2-3 hours

will usually do. If boundary conditions are to be clarified, the dura-

tion may be a week or longer in a confined aquifer, and often several

weeks in an unconfined aquifer.

If the discharge varies about some mean value, this value can be used as

the discharge, and the methods used to analyse constant discharge tests

may be applied.

If the discharge rate decreases monotonously, the constant discharge

assumptions cannot be met, and different techniques must be applied.

Decreasing discharge tests are most commonly encountered when pumping

takes place by means of the air-lift method.

Initially there is a larger column of water above the air outlet, and

since the initial discharge is proportional to the length of this

column, the discharge rate decreases with increasing drawdown and be-

comes eventually steady when the drawdown rate is small.

The time required to obtain a steady discharge depends, as will be shown

later, on the aquifer properties, and this time may vary from a few

minutes to a day. In the latter case, data from the most important part

of the test is heavily influenced by the change in discharge, and special

methods are developed here (Section G.h) to analyse such data.

6.3 Effects Influencing Pumping Test Data

In deriving analytical formulas for the drawdown around a pumping well,

it is assumed that the borehole can be considered a mathematical sink,

i.e. a well with infinitesimal radius and no borehole storage.

Since this is never the case in practice, early data from the pumping

well will be influenced by the effects of skin effect and borehole stor-

age .

Page 45: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.3

§^3^1 ?°reh2i£_5^&g£_^§_§kin_Effect

Due to the method of drilling, the formation adjacent to the well bore

is always more or less disturbed or damaged during drilling. This goes

for both down-the-hole hammer drilling in hard rocks and mud drilling

in soft formations.

Small particles will fill in the fissures of rocks, and mud will pene-

trate into the formation. Therefore, before the well is tested, it

should be cleaned or jetted. As the cleaning of the well can seldom be

carried out completely, the pumping test results are influenced by the

restricted entry into the well bore, exhibiting a well loss due to the

reduced area of the inflow face.

The drawdown in the well, therefore, will be greater than the drawdown

that would be observed, had the skin effect not been present. This is

shown in Figure 6.1 where the Theis curve represents the time-drawdown

relationship that would be observed under ideal circumstances (Section

6.*0 .

During pumping, the well may develop and the skin effect become small

and be negligible for all practical purposes compared to the theoreti-

cal drawdown, especially if the discharge rate is small.

Log s

THEIS CURVE

SKINEFFECT

BOREHOLE STORAGE

Log t

Fig. 6.1 The effect of skin and borehole storage

s = drawdown; t = time

Page 46: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.U

In the skin effect is included well loss in the usual sense, i.e. a loss

which is proportional to the square of the discharge. This loss is con-

stant (if the discharge is constant) and is usually small compared to

the drawdown when the discharge or the transmissivity is small.

Before water starts to flow from the formation into the well, a certain

pressure drop must "be established. If the volume of water stored in the

well is large it may take some time before enough water has been pumped

out to establish the pressure drop. During this period, which may last

from a few seconds to some tens of minutes depending on the discharge

rate, the drawdown in the well behaves as if a pipe is being emptied at

at constant rate. Therefore, early data points will form a straight line

with unit slope, as shown on Figure 6.1, when plotted on a logarithmic

scale. When the drawdown in the well is large enough, water starts to

flow into the well. The effect of borehole storage then vanishes and the

drawdown will follow a Theis curve onwards.

Groundwater development in phreatic aquifers results in a decrease of

the saturated thickness of the aquifer. If the drawdown becomes compar-

able to the initial saturated thickness of the aquifer, the transmissi-

vity can no longer be considered a constant, and corrections must be

applied in order .to be able to interpret drawdown data by means of

standard methods.

Usually it is necessary to apply correction only to data from the pump-

ing well where the drawdown is much larger than in observation wells.

If the drawdown is small compared to the initial saturated thickness of

the aquifer, drawdown data can be analysed as if the aquifer were con-

fined. Although this is not strictly correct, the errors introduced by

doing this will be negligible.

Page 47: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.5

6.k Analysis and Interpretation of Pumping Test Data

6 Jul Flow_in_Porous_Media

A porous medium is characterised by a large storage capacity and a small

hydraulic conductivity. The differential equation governing the flow of

water in a porous medium is equivalent to the heat conduction equation,

and in fact, many solutions of groundwater flow problems can be found in

text books describing the flow of heat in solids.

Solutions to the most common flow problems connected to aquifer and well

testing are described in the literature, and in the following sections

solutions pertaining to the present study are presented and discussed.

The solutions of the groundwater flow around a well discharging at a de-

creasing rate will be discussed in more detail as these solutions are

not presented in the literature.

6AU^2_ Constant_Discharge_Test

Nonleaky Aquifers

The most commonly used method of interpretation is that of Theis. The

Theis solution describes the drawdown as a function of time and distance

around a well producing at a constant rate. This solutions is expressed

in the following way:

w(u)> where

W(u) = f° exp(-x)dr/x (the well function)u

u = r2S/UTt

s = drawdown

Q = discharge

T = transmissivity

S = storage coefficient

r = distance to observation point

t = time

Page 48: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.6

The graph of the well function is shown graphically in Figure 6.2. The

Theis solution is derived assuming a fully penetrating well, a homoge-

neous aquifer of infinite areal extent, and that water is released

instantaneously from storage due to aquifer elasticity.

Although these rather strict assumptions could be expected to restrict •

the applicability of Theis' solution, practice has shown that this is

not so. Even in nonhomogeneous aquifers, Theis curves are produced

during pumping. Because of the nonhomogeneity, different curves are ob-

served at different places in the aquifer, but these differences, if •

properly interpreted, can be used to explain the nature and degree of

inhomogeneity.

The Theis solution is used to determine T and S. Normally these aquifer

properties are determined by using drawdown curves from observation

wells. If only a pumping well is available usually only T is determined,

because the determination of S is too uncertain, due to the fact that

the effective radius of the well is not known.

Very close to the pumping well or for large times (u<0.05) the Theis

solution simplifies to the Jacob solution:

0.183Q , 135Tt3 = T l o s - j -

Data points should form a straight line when plotted on semi-logarithmic

paper. The transmissivity is determined from the slope of the line.

Again, the coefficient of storage should be determined from observation

well data, but if the transmissivity is very small (u large) a value of2

r S can be estimated from pumping well data, r being the effectiveW Vr

radius of the well.

Usually, recovery data after pumping has stopped is recorded. These data

can be advantageously used if the discharge rate has been irregular

within limits. Recovery data is analysed in the same way as drawdown

data, and may prove to be a valuable help in determining aquifer para-

meters.

Page 49: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.7

10.0

1.0

0.1

0.01 1

'—ii

I

~f/

/i

*

-

10 1.0 10 10 10' 10'

Figure 6.2 Non-leaky artesian type curve (Theis curve).

Leaky Aquifers

During some pumping tests it is observed that the drawdown becomes con-

stant after a certain period which may vary from a few hours to several

days. This is caused by leakage from adjacent layers. Assuming linear

leakage, i.e. proportional to the drawdown, the drawdown around the

pumping well is described as a function of time and space through the

Jacob-Hantush formula:

W(u,r/B)

W(u,r/B) = J°°exp(-X - dxhx

m

B = (Tm'/P')2

1 = thickness of confining layerthrough which leakage occurs

P' = permeability of confining layerthrough which leakage occurs

Other symbols are as previously defined. The graph of W(u,r/B) is shown

in Figure 6.3. Using type curves, the transmissivity, storage

coefficient and the leakage coefficient P'/m1 may be determined from

Page 50: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.8

observation well data. If the transmissivity is very small sometimes

pumping well data can be used to obtain T and approximate values of

r 2S and r 2P'/W.w w

10.0

1.0

3

0.1

0.01

i

"if1m

1/1/B/

i\

f

> -

1

a r t

1

T

wm •

1

;:£*

2.0

-f-- f - - •- 4 . . .

!

1.5-

5

rT r

-

Uo/

—tt" "

1

I

0.4

w -^0

—0

I2U-

-_i

1QQJ,

isr

10 1.0 10 10 10' 10

Figure 6.3 Leaky artesian type curves.

It is obvious that the drawdown formulas derived assuming a constant

discharge rate do not apply if the variation in discharge is consider-

able.

Very little is written in the literature about wells with decreasing

discharge. Hantush (196M has developed an approximate method of analy-

sis for different cases of discharge decay, and Abu-Zied and Scott

(1963) developed a method of analysing distance-drawdown data around a

well, discharging at an exponentially decreasing rate. However, since

only pumping wells are available for this study, neither of these

methods are very useful, and it is, therefore, necessary to develop

methods of interpretation of pumping well data. '

Page 51: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.9

6^_^U_ Theory

To find a solution to a given flow problem, one has to solve the diffe-

rential equation governing the flow, and use this solution to satisfy

the boundary conditions. This can be done rigorously using standard

methods. But it can also be done by writing down the step response

function, which is the aquifer response to a sudden stepwise change in

the flow conditions.

A time (t = 0) a well starts to discharge at the rate Q = Q f(t) where

f(t) is a function of time alone. The change in discharge is in the

form of a sudden step and then maintained as the discharge function

f(t) prescribes. Using the Theis' assumption, the solution for the

drawdown in the aquifer is the step response function:

Q^f(f)ex P(-r

2sAT(t-t')) I~'- (l)

In the case of a constant discharge, f(t) = 1 and using the substitution

X = r sAT(t-t'), the integral reduces to:

(2)

which

s

is the

%UTTT

Theis

1+Tt

solution.

To obtain an analytical solution of the step response function f(t) must

be so that the integral can be evaluated. If not, numerical methods must

be applied.

The discharge function in this case decreases exponentially from an

initial value Q to an asymptotic value Q (Figure 6.h) according to:

f(t) = Q2(l+(ad-l)e~kt), a = Q1/Q2

and k is the time scale of the discharge function.

The step response function now reads:

Page 52: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.io

f(t)

/ — f ( t ) -Q2) e"kt

t

Figure G.h Exponentially decreasing discharge function.

oSubstituting again X = r S/UT(t-t'), the integral is reduced to:

s = { J°°2 (exp-x)dx/x + (a-l)e"

UTt

or in symbolic form:

s =2

(W(u) + (a-l)e~3 A uW(u3)) (3)

where u = r2S/UTt and 3 2 = r2kS/T.

The solution is composed of two parts, the Theis formula and a second

term which tends to zero as time increases. After sufficiently long

time the drawdown will follow a Theis curve corresponding to the final

steady yield Q , as if there had been no initial decrease of discharge.

During the very initial period, the drawdown follows a Theis curve

corresponding to the initial discharge Q . During the intermediate

period which is the most important period of the test there is a tran-

sition from one Theis curve to the other.

The solution is shown graphically in Figure 6.5, for a = 5 and different

values of 3. These curves are called type curves.

3 is the dimensionless time scale of the step response function which

depends on the time scale of the discharge function as well as the

aquifer hydraulic properties. The smaller the aquifer diffusivity T/S,

the faster the steady discharge is reached.

Page 53: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.11

In some cases the duration of the test is not long enough to define the

steady discharge rate, in which case the discharge function is

f(t) = Q e ~ . The solution to the problem is found from Eq.(3) to be

-3/HuS = HnT

W(u,3, (M

- tfW

i]/U

ffit/ /UJL

V

H/

B

—f *

It—• w • •:

! ^

—-.

5 a:

=—

'

> • •

^ - .

_ - • • i • 1

• • . » •

^ ^

IXOft

!• P » 1 ;

"* -II..

- • •

Figure 6.5 Type curves, exponentially decreasing discharge in a non-

leaky aquifer; a = 5.

The corresponding type curves are shown in Figure 6.6. The drawdown

follows a Theis curve in the beginning of pumping and then rapidly

recovers.

Page 54: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.12

£I

/

—ir

/

r

\'<

\\

• • \

\

A\

9

\

i

"" - *s

\

X*

\

\

I

\

m

\\\P

~ \ -

]

•A

-;-V\

IH0

; ^

vS

\

-v

\

\

i

" • - .

\ v

, V -\

\

\

r~-\~-

\ 1

;; is:

, \

"A—rV

\

W\

——\"V

\OJ

= s • :

"v ""

s

\

\1

a <«

. . . ^ —

\\

• A—4V\\

1

\\\

v\OJQI

— - 4-J±

Figure 6.6 Type curves, exponentially decreasing discharge in a non-

leaky aquifer. No steady discharge.

To illustrate the effect of a, Eq.(3) is shown in Figure 6.7 for dif-

ferent values of a with 3 = 0.2.

The effect of increasing a is simply a larger deviation from the late

Theis curve. The larger the value of a, the larger the deviation.

Page 55: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.13

in1

fio°*1

i -

162

-

l-ffi

\iff.in/Mi

BIN§

Min/LHlfVmillw

mtl!\InmlIII

///

f

1I

t'

i -

>i

' / //

// J

y/

/

/

y

/

y

z _ _

p

. . itf4

; ; ****^• — a* = =

mm

=

* - m

m*

M M

N,

••

-

e

*• - -

^ ^: : —

^

- -

• •— — pa

10 10 10 10 10

1/u

Figure 6.7 Type curves, exponentially decreasing discharge in a non-

leaky aquifer; 3 = 0.2.

The discharge function in this case is:

), a = Q1/Q2

as shown in Figure 6.8 next page.

Page 56: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.1U

f(t)

| q, - q2

^2 kt - 1

^ -

t

Figure 6.8 Hyperbolically decreasing discharge function.

The step response function reads:

s = HnT

Using the same substitution as before and evaluating the integral yields

after some reduction:

s (W(u)l + 3 Au

U/32))

(5)

Eq.(5) is shown graphically in Figure 6.9, with a = 5, and for diffe-

rent values of 3.

It is noted that this family of curves has a close resemblance to the

curves of Figure 6.5, and the same comments as before could be applied

as the discharge function is qualitatively the same.

If the test is too short to reveal the steady discharge rate Q , then as

before Eq.(5) is reduced, and the result is:

exp(-l/(l/u + V3 2))s = (6)

UTTT(I + 3 Au)

The graph of Eq.(6) is shown in Figure 6.10 for different values of 3-

Page 57: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.15

Figure 6.9 Type curves, hyperbolically decreasing discharge in a non-

leaky aquifer; a = 5.

The discharge function is taken to be f(t) = Q (l-kt) and is shown in

Figure 6.11.

The step response function is:

Qs =

1 rtUnT

dt1r (l-kt')exp(-r^SAT(t-t')) -377

Page 58: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.16

,0°

-110

,62

yf

ft»*"

i

4. .

i >*^1 'C—

i

. •

. . .

-

^ ~ -

_ , • •

-t—

• ^ ^ s :

\

N

(

III1

m—i

N

ft

N

—^

>~~

s

.. ..!N

\4

i

- : : -

q

*-

j T^v

s, —

\

"Hitssaj

\; \

i

4- —i

V

N

s

.

- - »

!

;0O4

• 1

—T*. - I — i i i .

• •

002

; .

| |

i E

_

• i

i '. \ll

&

I • • : ! • •

-is?

; I1

r r1

• • •

t

; j

i

Figure 6.10 Type curves, hyperbolically decreasing discharge in a non-

leaky aquifer. No steady discharge.

Proceeding in the usual way, the result is:

= ^ (w(u)(l-32A(l/u + 1)) + e"U/u) (T:

The graph of Eq.(7) is shown in Figure 6.12.

Page 59: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.17

Figure 6.11 Linearly decreasing discharge function.

6 J+.J

The discharge function is the same as the one used in a non-leaky

aquifer, i.e. f(t) = Q (l + (a-l)e~ ) (Figure 6.2).

The step response function in this case is:

s = + (a-l)e kt')exp(-r2SAT(t-f)-32T(t-t')/r2S)

Proceeding in the usual way the integral can be reduced to:

s = (W(u,6) + (a-l)e~3 /ku W(u, (62+32)')J (8)

where 6 = r/B. All other symbols have been previously defined.

The graph of Eq.(8) is shown in Figure 6.13- The type curves behave

qualitatively in the same manner as those shown in Figure 6.5, except

that the final state is not a Theis curve, but the family of Jacob-

Hantush curves.

Interpretation of pumping test data by means of type curves is carried

out by the Match Point procedure, the explanation of which is given in

many text books on hydrogeology.

Page 60: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.18

10*3

3

r

J/

/ tm*

A

/

S

I p

*• A

'

\

/ /

• • — \ i

/

—N

y/

/

\\

*

Figure 6.12 Type curves, linearly decreasing discharge in a non-leaky

aquifer.

The procedure shortly is that drawdown data is plotted on logarithmic

paper and the type curve(s) are plotted also on logarithmic paper hav-

ing the same scale.

The type curve for the particular case fitting the data curve best is

selected, and a point common to both plots is selected. This point is

the Match Point. For convenience the type curve sheet coordinates are

taken (F(u), U ) = (l,l) in which u is the abcissa and F(u) the ordi-

nate. The corresponding coordinates on the data sheet are (s,t).

Page 61: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.19

Figure 6.13 Type curves, exponentially decreasing discharge in a leaky

aquifer, a = 5, 3 = 0.2.

From this the transmissivity, storage coefficient and other parameters

can be determined.

For each type of aquifer and test method the formulas are listed below.

Non-leaky Aquifer

Any type of discharge:

T =

S = liTt/r2

Page 62: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.20 .

If the discharge is decreasing, the time scale k is determined from dis-

charge data. When T and S (or r S) are determined, 3 can be calculated

and checked with the actual value used from the type curve selected.

Any deviation requires an explanation. This actually offers a built-in

test on the results of the interpretation.

Leaky Aquifers

Constant discharge and exponentially decreasing discharge:

T =

S = /

2

P'/m' = {r/f T where:r

r/B is obtained from the type curve selected. In the case of an exponen-

tially decreasing discharge there are two parameters to choose, 3 and 6,

which makes the number of possible type curves very large, and it may

prove very difficult to find a correct type curve. 3 can be used in the

same way as before to check the interpretation results, but this assumes

that the chosen value of 6 is correct.

The Match Point method as discussed so far is strictly only for observa-

tion well data. If u is very large, which happens for small T-values,

pumping wells will produce a distinctive and well defined drawdown curve

which can be matched to a type curve.

However, the method has one disadvantage which may make the matching

difficult, namely that the effects of well loss and well storage are in-

cluded in the drawdown. Well losses result in a greater drawdown in the

well than theoretically prescribed, and well storage effects result in

smaller drawdowns. Therefore, when applying type curves to pumping well

data, care must be taken to identify these effects and adjust the inter-

pretation procedure accordingly.

If the test is long enough to define the resulting Theis curve after

the discharge has become steady, transmissivity and storage coefficient

should be well determined, but if the test is terminated during the

transient period, which has very often been the case, some uncertainty

is involved.

Page 63: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.21

In Figure 6.lh discharge and drawdown curves are shown together for a

particular set of parameters, in the case of a non-leaky aquifer and

exponentially decreasing discharge. It appears from the figure that the

drawdown starts to follow the Theis curve a little sooner than the

instant the discharge becomes steady. For instance, if 3 = 0.2, then the

discharge rate is constant after 300 minutes, and the Theis curve is

reached practically around 200 minutes. To define the Theis curve proper-

ly, at least one decade should be obtained, i.e. the test should continue

up to approximately 3500 minutes of pumping.

Another disadvantage connected to pumping wells is that the effective

radius of the well is not known. Depending on the degree of weathering

and jointing the effective radius may vary considerably. Therefore, a

proper distance r cannot be used in the formulas, and instead of calcu-

lating the storage and leakage coefficients themselves, the quantities2 2

r S and r P'/m' shall be given, as these are also measures of the

storage capacity and leakage.

Fractures are characterised by a large flow capacity and a small storage

capacity. In some cases flow occurs both in the fractures and in the

blocks if these are porous (sandstone). Such a flow system forms a double

porosity system with two modes of flow: a large flow and small storage

capacity system (fractures) and a small flow and a large storage capacity

system (porous blocks).

Flow in fractured rocks have been relatively recently investigated, and

the result of this research can be summarised as follows:

For large times, when the radius of the cone of depression has become

large compared to a characteristic length of the fracture system (e.g.

the distance between fractures) the overall flow pattern becomes simi-

lar to that of a porous medium which means that the Theis method of

analysis may be applied.

For small times, however, it may be possible to distinguish clearly

between porous medium and fracture flow. Fracture storage, although

small, may dominate the flow pattern during the first few minutes of

the pumping test, which can be identified by the fact that data points

should form a straight line with half unit slope when plotted on loga-

Page 64: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.-22

rithmic paper. This period, however, may coincide with the period

during which the well storage effect is present, which may render the

fracture storage period indistinguishable.

10

10*

10

s (m)

Q (m3/h)

10

I

1

I4—

ess

1

ff

i

- - -mi71

V

A—=»—^ V

1=

J

Si

^ + s

: ; ;

s s

, J 4

H• • ,

1

— —

>

0.2

mk

= - -

•s,

» - •

--Drawdo

- • « ^ A/1-»-4MJ

; : >

^ — •

a

^ — •

N*'— 0.0P

= = •

s

_ = = ?•

b=»-

10 10 10t (min;

10 10

Figure 6.lh Comparison of discharge and drawdown decay. Exponentially

decreasing discharge in a non-leaky aquifer.

T = lCf5 m 2/s, r2S = icf3 m

2a = 5.

Page 65: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.23

After some time, the reduced pressure in the fractures may introduce a

flux of water from the blocks into the fractures. This causes a transi-

tion period to occur, at the end of which data points start following

a Theis curve.

It is now obvious that when testing wells in fractures or slightly-

weathered rocks, the first say ten minutes of pumping are extremely

important because the analysis of only the early period data can clear-

ly reveal the true nature of the aquifer tapped.

If the system of fractures degenerates into one single fracture,

special methods of analysis must be applied, but this subject is

beyond the scope of this discussion.

So far the discussion on fracture flow has assumed a constant discharge

rate. If the discharge decreases the mathematics involved in producing

type curves will be extremely complicated and can be solved only by

using large digital computers. This is again beyond the scope of this

study.

It is obvious that the terms transmissivity and storage coefficient

have different physical meanings for fracture flow and porous media

flow. For engineering purposes these terms will be used in connection

with fractured aquifers, but it should be understood that they are

actually only equivalent aquifer parameters describing the long term

flow pattern.

6. 5 Statistical Analysis of Pumping Test Results

Statistical analysis of pumping test results are carried out in order

to obtain a picture of the behaviour of wells within certain ground-

water domains where a certain uniformity is expected to exist.

It is a for a long time established fact that the specific capacities

of wells in aquifers of the same geohydraulic nature follow a logarith-

mic probability distribution. Values of specific capacities plotted

against the percentage of wells on logarithmic probability paper will

form a straight line in such aquifers. These plots have been made for

wells across the African and post-African land surfaces and across allu-

vial deposits. Further, wells from the study regions and from other

regions as well have been analysed this way to obtain a statistical

Page 66: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.2k

background to determine expected yields from the Basement Complex.

An other important statistical method is the analysis of yields of wells

as a function of drilling depth. These plots are made for wells drilled

into the Basement Complex and give a clear indication of where the pro-

ductive aquifer horizons are situated depthwise.

The graphs mentioned are all shown in Volume 9, Chapter 7, together with

graphs showing distribution of water levels, drilling depths, and sapro-

lite thicknesses.

These graphs have proven their importance for the assessment of the

groundwater conditions across the Basement Complex, the Karoo basins,

and the Neogene alluvial deposits.

6.6 Organisation of Pumping Tests

Pumping tests were scheduled to be performed with a pumping test unit

provided by MAJI. This unit, however, turned out to be inoperational,

and all attempts to find spare parts for its generator were unsuccess-

ful.

It was then decided to purchase a new complete pumping test unit. This

unit comprised the following main components:

k - GRUNDFOS SPU-6 submersible pumps

1 - GRUNDFOS SPU-l6 submersible pump

1 - GRUNDFOS SPU-19 submersible pump

2 - HONDA generators ES 1+500

The equipment turned out to be well-suited for the purpose. The dis-

charge and head range of the pumps covered all testing requirements,

and the generators gave no operation problems.

6 ^ 2 F i e l d W o r k

Field work was performed with a MAJI crew of seven pump test technicians

and the counterpart hydrogeologists under supervision by the Consultant.

The MAJI crew were trained in pump installation procedures as well as

general maintenance of the equipment.

Page 67: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6.25

The counterparts were trained in all pumping test procedures.

Pumps were installed with a hydraulic crane mounted on a 10 ton truck

used for transport of the testing unit. Several pumping tests were

performed on some boreholes in order to find the discharge rate best

suited for the borehole yield.

Water level measurements were recorded with electrical water level

instruments. Discharge rates were recorded with a stop watch and a

container with a volume of 27.6 litres.

Page 68: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

T.I

7. GROUNDWATER CHEMISTRY

7.1 Introduction

The results of the analyses performed on water samples are given on data

sheets in Volume 10 B, Appendix 3. Selected analyses are presented on

Drawing 11-11, Groundwater Chemistry.

The explanation of the groundwater chemistry is done by means of Piper-

diagrams. This method immediately classifies the groundwater in main

types and explains its origin. In the following the principles of the

trilinear Piper-diagrams are explained. The description is "based on

Walton (1970).

7.2 The Trilinear Piper-Diagram

The trilinear Piper-Diagram developed by Piper (1953) is an effective

tool in segregating analysis data for critical study with respect to

sources of the dissolved constituents in groundwaters. It is also useful

in defining the modifications in the character as groundwater passes

through an area. (Walton, 1970).

The groundwater is treated substantially as though it contained three

cation constituents (Mg, Na, Ca) and three anion constituents (Cl, SOi ,

HCO.,). Less abundant constituents than these major cations and anions are

summed with the major constituents. The common and minor constituents of

groundwater are shown in Table 7-1.

Cations Anions

Alkaline earths Weak acids

Calcium (Ca ) Bicarbonate (HCO~)

Barium (Ba ) Carbonate (C0« )^._i_ -

Strontium (Sr ) Tetraborate (Bj 0 )

Magnesium (Mg ) Orthophospate (P0. )

Alkalies Strong acids

Sodium (Na ) Sulphate (SO. )

Potassium (K+) Chloride (Cl~)

Rubidium (Rb ) Bromide (Br~)

Lithium (Li+) Fluoride (F~)

Ammonium (NH. ) Nitrate (N0~)

Table 7-1 Common and minor constituents of groundwater (After Walton,

1970)

Page 69: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

7.2

The Piper trilinear diagram (Figure T.l) combines three distinct fields

for plotting, two triangular fields at the lower left, and lower right,

respectively, and an intervening diamond shaped field. In the triangular

field at the lower left, the percentage reacting values of the three

cation groups (Ca, Mg, Na) are plotted as a single point according to

conventional trilinear coordinates. The three anion groups (HCO_, S0< ,

Cl) are plotted likewise in the triangular field at the lower right.

(Walton, 1970).

Figure 7.1 Piper trilinear diagram

The central diamond shaped field is used to show the overall chemical

character of the groundwater by a third single point plotting, which is

at the intersection of rays projected from the plottings of cations and

anions. Because the conductivity commonly is decisive in many problems

of interpretation, it is convenient to indicate the plotting in the

central field by a circle whose area is larger, the larger the conduc-

tivity of the water.

Page 70: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

8.1

8. DRILLING PROGRAMME

8.1 Introduction

An account of the objectives and results of the drilling programme is

given in Volume 9, Chapter 11. Here the methodology and more practical

aspects of the drilling are described.

8.2 Organisation

8^1Staff

The project drilling engineer arrived in October 198l and the mechanical

advisor in March 1981. A drilling foreman was employed in October and

November 198l to assist with the completion of the Ruvuma Programme.

The drilling crews provided by Maji, which were originally too many for

efficient operation of the rigs and placed a severe logistical load on

the programme, were reduced to achieve an optimum performance.

§^2^2 Transport

Maji supplied one 7 ton support truck for Rig 53 and Danida provided two

7 ton and two 10 ton trucks. 5 Land Rovers were used for the Consultants'

and MAJI's Drilling Staff.

8^2^3 Communications

These were maintained by fixed and mobile radios.

Fuel

The Consultants made a supply agreement with a local oil company in May

1981 and this worked satisfactorily. Prior to May some 27 days were lost

waiting for fuel. The Consultants also had 5 fuel storage tanks built in

Dar-es-Salaam.

In planning the actual drill sites, consideration had to be given to

access for Rig ^5 which weighed some 28 tons. Access therefore was limit-

ed to major roads in the Regions. Rig U5 for example could not be used to

Page 71: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

8.2

drill in the. area south of Tunduru due to bridge loading limits. A

similar situation occurred with Rig 53 on the Usangu Flats, Mbeya Region.

8.3 Equipment

The MAJI T6U Schramm Rig U5 was overhauled and re-equipped to use h

main drilling methods. These were in increasing order of technical and

logistical complexity:

• Straight rotary drilling with tricone roller or fishtail rock bits

using air or foam as a circulating (flushing) agent.

• Down-the-hole air hammer drilling using straight air or foam for

circulation.

• The Atlas Copco ODEX down the hole hammer and continuous reaming

system using welded casing and foam circulation.

• Mud rotary drilling using tricone or fishtail rock bits and a

bentonite or "revert-type" based drilling mud as a circulating

agent.

In practice air hammer and mud drilling proved suitable for all the

drilling conditions encountered. The Rig U5 mud pump drive system, how-

ever, broke down during the Ruvuma drilling.

To supplement the Schramm piston compressor mounted on Rig 1*5, the Con-

sultants imported an Atlas Copco XRH 350 Compressor for the deep dril-

ling. This compressor was mounted on a 7 ton truck. The rig compressor

was found to be producing nowhere near the specified capacity of U.25

cfm at 250 psi (200 1/s at 18 bar). The Atlas Copco XRH 350 performance

is 750 cfm at 275 psi (350 1/s at 20 bar).

8.J..2 §hallow_Boreholes_=_CME_Rig_53

This rig was equipped solely to drill using 6 5/8" flight-augers. While

originally the CME rig was equipped for diamond core and rotary drilling,

MAJI did not wish to have the rig re-equipped. Drilling operations with

this rig were, therefore, limited to auger drilled holes until solid

formation was encountered or to a maximum depth of 36 metres.

Page 72: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

8.3

Both the Schramm Rig U5 and the CME Rig 53 have been used for six or

seven years prior to the Consultants overhauling them.

Both rigs were, therefore, of uncertain mechanical condition and nume-

rous minor breakdowns and equipment failures occurred to both rigs.

Regarding the major breakdowns to the back axle of the Schramm Rig U5,

MAJI have had some 20 Schramm Rigs of which lk were mounted on Volvo

chassis - this includes Rig k5. Of the lk Volvo mounted rigs no fewer

than eight have had major back axle and drive train breakdowns. The

Consultants' problems with the Rig Volvo included 2 broken half shafts,

a completely smashed differential, a completely sheared off back axle

(this was welded back on in the field), and a rear suspension failure

which nearly resulted in overturning the rig.

Altogether some 126 days were lost due to major breakdowns to Rig k^>. A

similar loss of time occurred because of breakdowns to Rig 53.

Q.k Drilling Methods and Well Construction

The general policy was to drill the deep holes as efficiently as possi-

ble using the simplest method. In practice only 3 holes, Nos 3/81, 5/8l

and 276/8I were drilled with mud. Down-the-hole air hammers were used to

drill the rest of the holes. Experience gained of the geology at k sites

in Tunduru District (Nos 257, 259, 260 and 26l/8l) showed that mud dril-

ling would be preferred for the first 50 to 60 metres of drilling when

constructing production boreholes.

Drilling with Rig 53 was limited to straight flight augering. This

limited the use of the rig to areas of unconsolidated to semi-consoli-

dated formations. Conditions in the Karroo in Ruvuma where very clayey

horizons blocked both the screening and the borehole walls, showed up

the deficiencies of this method of drilling. Elsewhere in outwash and

alluvial material the augered holes could be easily cleaned using the

Atlas Copco Air Compressor. High pressure water flushing with a surging

action would have been needed in Ruvuma.

The boreholes drilled by both rigs were completed in one of four ways.

Page 73: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

8.1*

• Using plain surface steel casing and open hole - i.e. holes Nos

U/8l and 76/81. This proved satisfactory for boreholes drilled in

the less weathered lower saprolite zone. Experience showed, how-

ever, that a close geological control was required if the hole is

drilled for production purposes, otherwise too many fines and clay

enter the borehole if the plain casing is not set deep enough.

• Using six inch UPVC plain and slotted plastic pipes. Most of the

early Auger Rig holes at Kyela were satisfactorily completed in

this manner.

• Using four inch UPVC plain pipes and purpose made screening. This

construction method was the most widely used and produced wells

suitable for production purposes.

• At the beginning of the deep drilling programme one well (BH 2/8l)

was completed using 6" wire-wound screening.

One aspect of the auger well drilling was the difficulty of cleaning the

hole and setting the casing. An auger rig would need some kind of high

pressure jetting and surging equipment available to clean production

boreholes satisfactorily.

Page 74: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Appendix 2

Pumping Test Data

Page 75: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA

Page 76: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: CHAMDINDIB.H. No. 1 3 / 7 6

CCKK No.

Q=0.68+Z92 exp(-0.025t),m3/hr

4.0

3.0

2.0

1.0

- 1

[Q(mVhr)1^=3,6

\

-

n3/hr

Q7=0,68 mVhr

tlmin)

a = 5,3

k = 0,025 min

Type of decay:

Exponent ia l

Test performed:

1976 .2 .4 .

50 100 150 200 250 300 350 400

Type curves for a non leaky aquifer are used.

20

10

s'lmj '

: (6,3

- /

I • • I

m

t(min)i i i

T = 2 , 4 x 1 0 " 6 rr V s e c .

r u2 S = 0 , 0 0 7 3 rr,2

r w P /m = m / s e c .

6 = 0 ,9

k o b s = C,025 min

k c a l = ° ' C 1 6 min"

Q/Sw = 0,0 5 ir.3/hr/m

.1

T = 4 x 10" 6 m 2 / s e c .

5 10 50 100 500

kca j < koi;,s indicating well losses.

m /sec

Page 77: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: VILLAGE: 1KENGEZAB.H. No. 14/76

CCKK No.

u

12

10

e

6

i

QlrrP/hr)

t(min)

100 200 300 400 500 600 700 800

a = 2.1

k = min

Type of decay:

Test performed:

1976.2.18

O

o<(XQ

50

10

-slm)

_ i

L1 1 1 1

••

••

1 I t 1 1 1 1t(min)I

t i i i

10 50 100 500 1000

With the given variation in discharge, datacannot be matched with a type curve probablydue to excessive well losses.

T =

r w S

r w2 p

t =kobskcal

Q/S,.,

V-

II II

= 0 , 2 4

2it /sec.

2ir.

R2 /sec.

_ 1min

1min~

m /hr /m

T = 3 x 10"5 m2/sec.

25

20

15

10

_ s"(m)

i i

i i

-

t(min)

m /sec.

2

No interpretationattempted.Drawdown and reco-very data are verydissimilar.

Page 78: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: CHAMDINDIB.H. No. 29/76

CCKK No.

Q=£,5 +1,6 exp (-0,007 t),m3/hr

Q (m3/hr

, Q,=6,1

• •

1

m3/hr

1 1 -— .- i.i

• V

t(min)

nr hr

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

a = 1,36

k = 0,007 mirT 1

Type of decay:Exponent ia l

Test performed:1976.2.10

Type curves for a non leaky aquifer art- used.

10

5 ,

i

-slm)

/

i i • i

ten (1.10)loss (4,7.41)

-

-

t(min)

50 100 500 1000kcal > kobs indicating well storage in steadof well IOSS, Interpretat ion doubtful.

T = 2,1 x 10~5m

2/sec.

rw2S = 0,021 m

2

2 1 1 2rw P /m = ir. / sec .

kobs

0,6

= 0,007 m i n. 1

k c a l = 0,022 m m - 1

Q/Sw = 0 , 2 1 m3 /hr/m

T = 3 x 10" 5 m

2 / s e c .

>LU>ooLUa.

20

15

10

5 •

-s'tm)'

-

-

V,1 1 1 1

2,5min

• t i

-

-

-

t(min)-

T = 1,5 x 10"5m2/sec.

rw2S = 0,005 n2

5 10 50 100

Page 79: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IR1NGA DISTRICT: NJOMEE VILLAGE: UFAMBOLIB.H. No. 5 4 / 7 6

CCKK No.

LUOa:<xo

= 5exp(-0,0(Kt)6 0

5 0

4 0

3 0

2 0

1 0

Q(mVhr)( 1 Qi=5.0

V.N

mr^hr

tt(min)

50 100 150 200 250 300 350 400

k = 0,004 min"

Type of decay:

Exponential

Test performed:

1976.6.25

>LU>oUJ

200

100

50

10

slml

-

i i i • i

• • i

(1.1)(55.23)

A

/

//

/

1 1 1 1

1 1 1

-

-

t(min)"i 1 1

Type curves for anon leaky aquiferare used.

kcal < kobs. indi-cating well losseffects.

50 100 500

T =2,0 x 10" 6 i r ,2 /sec.

r w2 S = 0,011 m2

rw2P1 / rn1= m 2 / s e c .

k obs =0,004 min". 1

0/S w *> 0,012 m /hr /m

T =2 x 10- 6 m /sec .

T = m / s e c .

Page 80: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: NJOMBE VILLAGE: IYAIB.H. No. 5 5 / 7 6

CCKK No.

HI

o<Xoin

Q =9,8 +U,7 exp (-0,02t),m3/hr

30

25

20

10

Q(mVhr)

\

Q1=24,5 •rf/hr

• i i •

I I

Q2= 9,8

t(min)

n?Av

0 50 100 150 200 250 300 350 iOO 450 500 550 600 650 700 750

2,5

0, 02 min-1

Type of decay:

Exponential

Test performed:

1976.3.12

OQ

<

D

Type curves for a non leaky aquifer are used

30

10

s(m)1

31.1) / •(3,5.1,13^'A /

i l l i l t 1 l i 1 l i i i i i

i l i I I i i i

t(min)I 1 i i • I 1 I

1 10 100 1000kcal > kobs indicating well storage effects .

T = 6,2 x 10 m /sec

rw2S = 0,017 m2

0,5

n /sec

- 1k c j - j S = 0 , 0 2 rr.in

k c a l = 0,054 min"

Q/Sv = 0,5 ra3/hr/m

T = 5 x 1 0 ' 5 m 2 / sec

ooa:

20

15

10

- s'(rn) '

-

i i

i i

Z- /

• / .

/to=2min

• i i i

i

/

/

i I 1 i

V "-

./-I/As=19,£m

-

Kmin) -

T = 2 , 6 x 1 0 ~ 5 m 2 / s e c

r w2 S = 0 , 0 0 6 9

5 10

Page 81: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: NJOMBE VILLAGE: IKIN6ULAB.H. No. 7 0 / 7 6

CCKK No.

= 7,5*^,8 exp l-0.

u

12

10

Q(rriMir)

, Q,=

I\\

12,3 m/hr

i

Q2=7,5m3/

t fmin)

hr

100 200 300 A00 500 600 700

o = 1,64

k = 0,032 min- 1

Type of decay:

Exponential

Test performed:

1976.5.22

§Z

O

o

I

Well losses to excessive to allow for

interpretation by type curve method.

50

10

-slm)

1 I 1

(

1 1 1 |

• • • •

1 1 1

• •

1 1 1 1

ft • • • • • • «

1 1 1tlmin)

I I I I

50 100 500 1000

T

r w

=2S

V

It!

It!

IT:

2

2

/ s e c .

/ s e c .

. 1

kobs = min

kcal = min"

Q/Sw = 0,4 3 m3/hr/m

T = 6 x 10"5 m2/sec.

LU

ooUJ

18

16

12

10

6

6

-s'lm) ' ' '

-

-

-

y

- >^o=1,2min

s

,,,,

I 1 1

yAs=9,5m

i i t

i ' ' '

-

-

-

-

-

-

tlmin) -f i i i

10 50 100

4,0 x 10"5m

2 /sec.

=0,0065 m2

Page 82: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA

<

<oLUOcr<

ol / l

o

<

Q

z

kW

DO

V

CEQ

<

Q

CCUJ

OoUJ

DISTRICT: NJCMBE VILLAGE: UTAJA

1 U

0.9 '

0.8

r> "7<J. <

0.6

QlmVhr

c\

015t*1 *

)

» • ii

t(min)

0 10 20 X «) 50 60 70 80 90 100 110 120

Type curves fo r a non leaky aqu i f e r are used.

i U U

100

e n

i n

s(m)

11.1)!275,7

Boundaryeffects •

/

«.

-

-

-

tlmin)

5 10 50 100 200

B.H. No. 71/76

CCKK No.

a = 1,33

k = 0,15 m i n " 1

Type of decay:Hyperbol ic

Test performed:1976.4.17

T = 5,6 x 10 ' 7m 2 /sec.

r v , ^ =0,00077 m 2

rwT> /m = m /sec .

£ = 2,0_ 1

kobs = ° - 1 5 rain

k c a l = 0,17 min"

O/S = 0,0076m /hr/m

T = 4 x 10 m /sec.

T = m /sec.

2 2rw S = m

Page 83: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: I RING A DISTRICT: NJOMBE VILLAGE: HZLALIB.H. No. 67/76

CCKK No.

Discharge data too irregular to allow for interpretation

30

25

20

15

10

Q(m3 /hr)

»%• • • • • •

• • • • • <

•ttmin)

I

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

-1

a = 4,02

K = min

Type of decay:

Test performed:1976.3.20

50

10

-slm)

r

i i i i

• i i

••

i i i i

• • • • • • • <

i i i

r" i"

tlmin)-1 I f i

10 50 100 500 1000

The discharge is constant after 150 minutes,but since there is no variation in drawdown,type curve method cannot be applied.

ru2S

i =

kcal

2m /sec.

m /sec.

min-1

.1

Q/Sw = 0,27 m /hr/ra

T = 10-5 m /sec.

>UJ>ooLU

a.

T = 9,2 x 10"6m 2/sec.

rw2S = "0,0015 rc2

5 10 ?0

Page 84: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: MUFINDI VILLAGE: MALANGALIB.H. No. 216/76

CCKK No.

Q=5£exp{-0j00082t)nvkhr

6 0

5 6

5 2

4.8

4.0

3.6

3.2

2 8

2.4

Q(n^hr)

N

/hr

•\ •

N-

0 100 200 300 400 500 600 700 BOO 900 1000

0,00082 min-1

Type of decay:

Exponential

Test performed:

1976.10.22

Type curves for a non leaky aquifer are used.

10

-

- /

m "AM. 10)^ (8^.22Well storage

• t i

< - *

i i i •

«8-"""—'—x m m

ti

ll

tlmin)

10 100 500 1000kcal K kobs indicating well losses.Interpretation doubtful.

T = 1 , 5 x 10" 5 m

2 / s e c .

r w2 S

r« 2 P

0 =

= 0 , 0 0 7 6

V-0,04

m

m

2

/ sec .

- 1

. 1

k obs =0,00082 min

k c a l =0,00019 min

Q/Sw "» 0,07 m /hr/ra

T = 6 x 10~6 m 2 / s e c .

O

30

25

20

15

10

5 , r

slim)' '

l i l t /

- /

7/to=9min

/

t i l ttlmin)

50 100 200

Since the discharge did not become steady,tye figures are approximate.

T = 4 , 8 x 10

r w % = 0 , 0 0 5 9

2/sec.

Page 85: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: I RINGA DISTRICT: MUFINDI VILLAGE: MALANGALIB.H. No. 217/76

CCKK No.

0=9,5 expl-aOO18t),m3/hr11.0

100

9.0

8.0

7.0

6 0

50

4 0

3.0

Q (m3/hr)

%

ttmin)

0 100 200 300 400 500 500

The f i t t e d c u r v e i s v a l i d up t o a p p r o x . 400 m i n u t e s .

k = 0 ,0018 min *

Type of d e c a y :

Exponential

Test performed:

Type curves for a nor, leaky aquifer are used.

10

-slm)

. /(

111?

•Well storage .

, • • • r i w ( i >

-

t(min)

50 100 500 WOO

T = 2,8 x 10~5 ir .2 /sec.

rw2S = 0,01 m2

rw P /m = m / s e c .

B = 0 , 0 8

k o b s =0,0018 rnin" i

k c a l =0,0018 min"

Q/Sw m3 /hr/m

T = 2 x 10"5 m2 /sec.

25

20

15

10

s'lm)

^ » o =| I i I

2,3 mini i i

r

A S :

i i i i

19,7m

t(min)

10 50 100 300

T = 1,2 x 10"V/Sec.

r u2 S = 0 , 0 0 3 0 m 2

Page 86: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: NJOMEE VILLAGE: HALALIB.H. No. 226/76

CCKK No.

Q=6,1 • 18,4 exp (-0,021)32

28

24

20

16

12

Q(m^hr)

. Q,= 24,5

\

•A-

m>hr

f

0^=6,11^

tfrnin)

0 50 100 150 200 250 300 350 400 450 500 550 500 650 700 750

a = 4 , 0 2

k = 0,02 min - 1

Type of decay:Exponent ia l

Tes t performed:1976.3 .20

Type curves for a leaky a r t e s i a n a q u i f e r a r e used , 6 = 0 , 7 .

50

10

-slm)

"(1.1)-(16.7,2

A

'?l i l t

loss ti

ll

t(min)

50 100 500 1000kcal > *obs indicating well storage effects, but datashow well losses. Interpretation therefore questionable.

T =8,4 x 10"6 m2/sec.

rw2S = 0,015 m2

rw2P1/rn1=4.1 x 10"6

m7sec.i = 2,0

.1

1*obs - °'02

kcal = 0,13

Q/Sw = m /hr/m

T = m /sec.

>LLJ>ouUJ

24

22

20

18

16

14

12

10

8

6

4 ,

2

s'lm) ' ' '

i

As=£1,0my

f//to=2.Omi

7/ • •

/

/

• i 1 1t(min)

T = 7,6 x 10 6 m 2 / s e c .

r w2 S = 0,002 m2

1 10 30

Page 87: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: NJOMBE VILLAGE: USANCEB.H. No. 2 3 0 / 7 6

CCKK No.

1.2

1.0

0,8

0.6

0,4

0,2

0

Q(

• »•

I

t min)

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

-1a =

k •= min

Type of decay:

Test performed:

1976.1.27

0,5

0.1

-s(m)

i i i • i 1 1

1 i i I I I It(min)

10 50 100 500 1000 2000

Data too scarce and unreliable to allow forinterpretation by type curve method.

2 1 , 1ru P /m

S =

kobs =kcal =

0/Sw "^0

m /sec.

m

m'/sec.

.1min

.1min

m /hr/m

T = 6 x 10"5 m /sec.

o

T = m /sec.

Page 88: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

I -

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: KIHESAB.H. No. 232/76

CCKK No.

Q=2.3 • 2,2 expt-0P08t ),

Qlrn^hr)Q,=4,5m3y

Z3mhfi

•hr

^ 5 ^i •

t(min)

50 100 150 200 250 300 350 400 450 500

o. = 1,96

k » 0,008 min

Type of decay:

Exponential

Test performed:

1976.7.7.

-1

Type curves for a non leaky aquifer are used.

50

10

-slm)

-Well-storag?

/ \

i i i i

i i I

-/\* (1.10)' U3.39)

A

• i 1 1

i 1

11

-

tlmin)

5 10 50 100 500k ca l * kobs ind ica t ing well s torage e f f e c t s .

1,2 x 10"3m2 /sec.

rw"S =0,011 m

in / s e c .

6 = 0,2

kobs = 0,008 min- 1

k c a l = 0,026 min_ 1

Q/Sw = 0 , 1

T = 10"5

m /hr/m

m / sec .

ooa:

25

20

15

10

s'lm)

i

• I i i

J

/

//tp=16min

rL=32,5

ti l l

• •

m

tlmin)

50 100 300

T = 3,6 x 10" 6r a

2 / s ec .

Page 89: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: MUFINDI1 VILLAGE: NYANYENDEB.H. No. 2 3 5 / 7 6

CCKK No.

QlrtT^hr)

Q, =4,5 mi

•I

0 100 200 300 400 500 600 700 800 900

a =

k •= 0,0011 min

Type of decay:

Linear

Test performed:

1976.11.22

100

50

10

1

1 1 1 1 1 1 1 1 t 1 1 1 t 1tlmin)

50 100

Well losses too excessive to allowa matching with the type curves.

500 1000

T =

2

rw P /m =

6 =

in /sec.

m /sec.

n"*cal =

Q/Sw t 0,005 mJ/hr/m

T < 10"6m2/sec.

ooin

m /sec.

2

Page 90: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: NJOMBE VILLAGE: IDOFIB.H. No. 247/76

CCKK No.

0=7,7(1 •-^H22

20

18

12

10

6

\

N

2O5m>hr

0,

t(min)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 U00 1500

a = 2 , 6 6

k - 1,0 min

Type of decay:

Hyperbolic

Test performed:

1976.11.13.

20

10

slm)

lilt

1

• •

1 I 1 1

••

. . •

i i i

• • • •

i t 11

• •

tlmin)

50 100 500 1000 2000

Discharge data too irregular to allow for interpretation.

rw P /m

m / s e c .2

m / s e c .

k c a l

-1n

. 1

Q/Sw = 0 , 6 6 m /hr /m

T = 7 x 10" 5 m 2 / s e c .

>LU

oo

12

10

-s'lm)

-

-

—"Wellstorage

i

I I I I

i i i

As=a6rn - <>-- ' ""

to=O,1rnin

t i i i

• i i i

-

-

-

-

tlmin) -

50 100 200

T - 1,1 x 10"4 , r ,2 /sec.

r- 2 s = 0,0015 K2

Page 91: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: MUFIND1 VILLAGE: SAJAB.H. No. 265/76

CCKK No.

<

K

DUJOQC

XoI/)

20

15

10

[QltnVhr)10,=24,5

I

m3/hr

Q2= 2,5m3/hr

Q=25*22exp{-0,036t),m3/hr

9,8

C, 036 nun-1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Type of decay:Exponential

Test performed:

1976.12.11.

ooUJ

a.

Type curves for a non leaky aquifer are used.100

50

10

:s(m)' ' '

" (1.1)(16,5.24)

: /

/

i i t

* < *

i i i i i i i

• i i i

i i 11

-

-

t(min)

50 100 500 1000 2000

T = 3,3 x 10 6 m 2 / s e c .

r w2 S = 0,019 m2

2 1 1 2r w P /m « m / s e c .6 = 1,8

k obs = 0 ' 0 3 6 min~~

k c a l = ° ' 0 3 3 min" 1

Q/Sw =0,04 4 m3 /hr/m

T =4 x 10" 6 m 2 / s e c .

/sec

Page 92: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: NJOMBE VILLAGE: LYADEBWEB.H. Nc. 6 5 /77

CCKK No.

= 4.1(112

10

Q(m3/hr)Q,=10m= tir

•• • «

Q2=4,1TI

t(min)

0 50 100 150 200 250 300 350 400 450 SOO 550 600 650 700 750

a = 2,44

k » 0,04 min" 1

Type of decay:

Hyperbol ic

Tes t performed:

1 9 7 7 . 4 . 2 3 .

Type curves for a non leaky a q u i f e r a r e used .

10

-slm)

1 t 1 1

1 I I i

k(1.10)

UA.30)

• I 1 I 1 I I I

-

t(min)I 1 I i t 1 I 1

5 10 100 1000

^cal > ^obs i n < ^ i c a t i n 9 well storage ef fec ts .

T = 2,1 x 10"5m 2/

rw2S = 0,015 m2

/m 1

, 0

= 0

= 0

=

, 0 4

,14

in2 /sec

min"

min"

Q/Sw = 0,16 nr /h r / r r

T = 2 x 10" 5 m 2 / s e c .

The Theis type curve i s used.

50

10

- s'lm)

'- A' (1 .10). 17.18,5)

I I I

1 1 I I

^ -

I 1 i t 1 I 1

. — —

tlm'in)

10 50 100 500 1000

T = 1,3 x 1 0 " 5 m 2 / s e c .

r w2 S = 0,0057 IT:2

Page 93: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA D I S T R I C T : I R I N G A VILLAGE: MKULULAB.H. Nc. 1 2 6 / 7 7

CCKK No.

LUO

<ICJI/)

0=24,8*23,1 expl- 0,136 t),m3/hr52

44

40

36

32

28

24

20

Qlm^hr)Qi=

]III1v

47,9m3/hr

2A8m3/hi

tlmin)

a = 1,9

k •= 0,136 min~

Type of decay:

Exponential

Test Derformed:

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 650

Type curves for a leaky aquifer are used, 6 = 2,0 is chosen.T = 6,3 x 10"6

m2/sec.

rw2S = 0,029 n-2

20

10

s(m)' " '

** """well^ ^ • ' ' loss

• i i

r

j1

1 1

1 1 1

01.1) /I

T

• i i

i • 11 1 '

i t i

• i 11-J

L-LL

L

tlmin)

rw P /m •= 3^3 >: 10

£ = 2,0

k o b s = 0,136 m m - 1

-5

kcal =

T =

min_1

n /hr/m

m /sec.

5 10 50 100

al K ^obs indicating well losses.

500 WOO

T = /sec.

>orLU>

Page 94: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: NYAKANANGALAB.H. No.130/77

CCKK No.

a = 1,5

0=24,0+12,0 expl-0,Wt),m3/hr-l

QlmVhr)36pm^hr

Q2 = 24pmyhr

t(min)

k = 0,04 min

Type of decay:

Exponential

Test Derformed:

0 50 100 150 200 250 300 350 400 450 500 550 500 650 700 750 8O0 850

zoo<o

Type curves for a leaky aquifer are used. ( = 1,5 is chosen.

50

10

-slm)

-

</

//

• i 1 1

11.1)131.38)

/

loss

/7

1 1 11 1 1 1 1 1 1

-

-

Kmin)t i i |

T = 1,7 x 10 m / s e c .

r w2 S = 0,16 m2

rw2P 1 / ro 1= 3,8 x l o " 5

m 2 / s e c .e = i,o

kobs = °'04

kcal = 0,0065 min

_ii

_i

Q/Sw =

T =

m /hr/m

m /sec.

5 10 50 100 500 WOOkcal * kobs indicating well losses.

>a.ui>ouOJOr

T = m /sec.2

Page 95: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: IROLEB.H. Nc. 189/77

CCKK No.

<

Q

111Oo:

Io1/1

5

30

25

20

15

10

5

0

Qlmyhr)

• •i & t

tlmin)

o = 2,8

k ™ min

Type of decay:

-1

Test performed:

1977.10.17.

100 200 300 400 500 600 700 800

50

10

-s(m) ' ' '

i i i

• i i

• • • •

-

t(min)-

Kobs

Kcal

m /sec.

2

m /sec.

- 1

- 1

/hr/m

7 x 10~5 m2/sec.

Q/Sw ^-0,67

10 50 100 500 1000

Data insufficient for interpretation.

>LU>ooLU

ra /sec.

2

Page 96: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: I RINGA DISTRICT: IRINGA VILLAGE: 1ZAZIB.H. No. 227 /77

CCKK No.

0=9,6*8,4 exp(-0,055t),m3/hr18

17

16

15

U

13

12

11

10

9

ft\

18,0mftir

I t

t t

0?= 9^m3Air

Ilmin)

1,9

0,055 min- 1

Type of decay:Exponential

Test performed:1977.12.8

0 50 100 150 200 250 300 350 £00 t50 SOD 550 600 650 700 750 800

T = 3,5 x 10~5m /sec .

Type curves for a nor, leaky aquifer are used.

50

rw2S = 0,063

ru P /m =

10

-Sim)"

••

A

-—7s"

i i iHmin)I

0 , 4

m / s e c .

. 1

. 1

kobs

k c a l = 0 ,012

Q/Sw = 0 , 4 m" /h r /m

T = 4 x 10 m / S e c .

10 50 100 500 tXX)

kcal c kobs indicating well losses.

>cr>ooLU

a:

T =2

2m /sec

Page 97: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: MTERAB.H. NO. 9 3 / 7 9

CCKK

a =

k •=

Type

No.

1,16

0,12 min"]

of decay:Exponential

Test

1979

performed.12.7.

Q = 13,8*2,16 expt-0,12t),m3/hr16

155

15

14.5

135 "

13

I Q{m3/hr)

°"

116,0n^hr

• Q7 =13,8m3/ht

tlmin)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

zoo<a:o

T =

10

m / s e c .

2

m / sec .

jslm)

1 1 1 1

i i i

I I I 1 I I i

i i 11,

tlmin)1 I 1 I

n

k c a l =

Q/S w = 6 , 1

" 1min

m /hr/m

T = 6 x 10"4 m2/sec.

10 50 100 500 1000

Water level measurements too scarce to providemeans of interpretation by type curve method.

>

OoLU

NO DATA.

T =

rjs-

m /sec

Page 98: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION! IRINGA

WA

TER

LE

VE

L IN

M

ETR

ES

B

ELO

W

ME

AS

UR

ING

P

OIN

T

D I S T R I C T : IR1NGA V I L L A G E : NZ1HIBH NO: 2/81

CCKK NO: ID 1

1

|

' 1

3X

in*

z 2UJ

Io

0

—< •i s

AS • 0.72 m

• — ,

• — .• —

i

• Drawdown data

A Diccharge data

i 1

0.1 1 10 100 1000

TIME t IN MINUTES

Constant discharge test : October 23, 1981 13 4 5 - 14°3

Discharge rate : 1. 5 m /h

Static water level : 5.94 metres below measuring point

Calculation of hydraulic parametres:

T = 1.1 x 10~4 m2/sec

Q/sw = 1.35 m3/h/m

The test was stopped because fine material jammed the pump impellers.

Page 99: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OR TANZANIA

REGION: ]RINGA

0

i

2

3

4

6

f

I '5 »(A

2 10X

S 11

w 12

m 1>

I M

£ «

IM

IW

i "

O

z»rir

11111

DISTRICT: I R I N G A

i

^ c '( o

VILLAGE; NZIHI

A•\\.IT

o

o

A « . 17.0 m/ .

\

\

\

j \

\

\

\1

\

1

\

BH NO: 3/8I

CCKK NO: IE 2

*

1Dr*«wbowm d*ta

Ditcharg* d*ta

!

1

!

101 10° W1 M 1 10* 10* 6.10TIME t m MINUTIS

1

Constant discharge test : October 23, 1981 1500 - 1550

Recovery test : October 23, 1981 1550 - 1615

Discharge rate : 1.1 m /h

Static water level : 1.77 metres below measuring point

Calculation of hydraulic parametres:

T = 3.2 x 10"6 m2/sec

r^S = 2.7 x 10"3 m2

Q/sw = 0.068 m3/h/m

Page 100: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: MLOA BH NO: V81

CCKK NO: JO 3

o2

o'

- 10

. !

!

! |

H

i ^

! I •

i

1

i

1 :

! ; L*

! j 4kj ! j

i •

; ;

Vt U f «

"1

1

1

i•t*ra

1|

I

: j

j ;

1 ' ! i :f

fijIIT

|1

|

' : i! : . 1 M

—h-

: i

!

' 1

11

1

11

i < '

• i :

1

• 1

/ j : . . M .—H

I

|

1 |

i

i (

!

i j

r—•—'!

, >

1 |

•+•

i

- U -

1I

ii—!-

1

11

i

1

j T

j !

!

|

i

_ -^. 4-

. 1! t1

i

; : :

1! ;; ; j

i-1 ,. . . I

i i ' ' '

i

II

Constant discharge test :

Discharge rate :

Static water level :

October 22, 1981 1610 - October 23, 1981 Ol10

1.2 m /h

8.95 metres below measuring point

Calculation of hydraulic parametres:

T = 7.6 x 10"6 m3/sec

rwS = 3.8 x 10"4 m2

Q/sw = 0.Q27 m3/h/m

Page 101: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: MUFINDI VILLAGE: NDOLEZI BH NO: 55/81CCKK NO: [5

z5(9zE3(ft<

2

u

1

2

3

n

|

;

_JI

"1

i

1

0

5z

\ «

8

O

2

<i O (

t

> 0 (

1

I

i

< (

!

j

) (

=

1 (

t a

) CIta

|

|

i*

> o

» » «» 'zi9 • 0 . 15

—4

m

b—4> H

i

1 ' !I '

! !

• Drawdown data

o Recovery data

• Discharge data

] j

0.1 10

TIME t IN MINUTES

100 1000

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 27, 1981 II 3 0 - 13 3 0

October 27, 1981 13 3 0 - 13 4 2

4.1 m3/h

0.72 metres below measuring point

Calculation of hydraulic parametres:

T = 1.4 x 10"3 m2/sec

1.4 4 m /h/m

Page 102: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA

WA

TE

R

LEV

EL

IN

ME

TRE

S

BE

LOW

M

EA

SU

RIN

G

PO

INT

DISTRICT: MUF1NDI VILLAGE: NDOLEZIBH NO: 56/81CCKK NO: ]s 2

1 1

' \

T

X

z 2UJOK<

5 1in

on

!

<i

:

- - It

t

1

_J

•i•1

,

• Drawdown data

A Discharge data

j

i

::::

j

• j

i

0.1 1 10 100 1000TIME t IN MINUTES

Constant discharge test : October 28, 1981 9 - 11

Discharge rate : 1.5 m /h

Static water level : 1.98 metres below measuring point

Specific capacity.

Q/sw = 1.34 m3/h/m

Development was ongoing during pumping. This caused the water level to riseuntil it after 90 minutes suddenly dropped to pumpintake. The followingrecovery was completed in 5 minutes, but several repeated tests with samedischarge rate all lowered the water level to pumpintake within 2 minutes.Heavy silt/clay deposits were observed in discharge container.

Page 103: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION; IRINGA DISTRICT; IRINGA VILLAGE: MLOA BH NO; 58/81CCKK NO; ]S I)

5a

i

io

,2

1j

DIS

CH

AR

GE

IN

M

3/H

1/

i

i

\

i

A1

So

t

4

i

i

OOm

^ 1

;

|

i ;

i .1 1

• Drawdown data

A Discharge data

i

i

i

i

1

i0.1 10

TIME t IN MINUTES100 1000

Constant discharge' test :

Discharge rate :

Static water level :

October 22, 1981 1640 - 16 5 0

1.7 m /h

3.31 metres below measuring point

Calculation of hydraulic parametres:

T = 2.2 x 10~5 m2/sec

r2S =

Q/sw =

3.6 x IO"2 m2

0.22 m3/h/m

The test was stopped due to jamming of pump impellers by sand.

Page 104: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: IDODI BH NO: 178/81

CCKK NO: IS n

EA

SU

RIN

G

PO

INT

0.1 10

TIME t IN MINUTES

100

u

1

2

3

5

6

! !

f h

!5

z

*S2 4UlO

Io

i

it

A

AS • 0.86 m

/

A

* *

<

A

- - -• ^ .

• Drawdown data

A Discharge data

II

1000

Constant discharge test :

Discharge rate :

Static water level :

October 21, 1981 13 0 0 - 13 4 0

4.2 m /h

1.74 metres below measuring point

Calculation of hydraulic parametres:

T =

Q/sw =

2.5 x 10~4 m2/sec

1.4 m3/h/m

The test was stopped due to heavy sand content in discharged water. The dis-charge fluctuations were most likely caused by sand deposits in pump impellers.

Page 105: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: IRINGA DISTRICT: IRINGA VILLAGE: MAPOGORO BH NO: 181/81

CCKK NO: IS

z

8i£

iito

£5

K

3

4

5

6

7

8

1 2

1 3

1 4

15

1 6

11

11

i

7

1

»")"*

O

s5 5vt

a

4

p"-<

A

i fS s

)

N

\A

A ,

h4k |

s

A

o

• Drawdown data

o Recovery data

A Discharge data

At * 2.09m

A

A A

* * >

• '

A

A

**>-

j0.1 10

TIME 1 IN MINUTES100 1000

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 20, 1981 15 - 22

October 20, 1981 22 0 0 - 23 0 0

6.2 m /h

3.05 metres below measuring point

Calculation of hydraulic parametres:

T = 1.5 x 10"4 n>2/sec

Q/s 0.68 m3/h/m

Page 106: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA

Page 107: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA DISTRICT: TUNDURU VILLAGE: FRELIMO CAMPB.H. No. 207/73

CCKK No.

QlmVhr)

11

t i l • • • i t • i i • i I i i

t(min)

rain

Type of decay:Constant dischargetest, Q = 3,41 m3/hris usedTest performed:1973.12.27-29.

1

00 500 1000 1500 2000 2500 3000

The period 6-300 min has been used for analysis.

4,5 x 1 0 ' 6 m 2 / sec .

slm) ^

• • • t i l l

1 i •

\

As :36.6 m

* >

• i i

• i l l

i i • r

i i i I i i i

I in

Dtviation dutto leakage

- • . . .

s^Hmin)

rw S = 0,0012

rw P /m =

6 •=

k c a l

Q/Sw

T =

2m /sec.

min"

m 3/hr/m

m / s e c .

100 500 1000 3000

100

90

80

70

60

50

40

30

20

10

sr(m) " " '

• • • 't i t

t i l l

• • • • '

• * /. .A

i/

/ As

/

/

=32min

/

= 155m

t(min)

T =1,5 x 10"6 m2/sec

rvh =0,0065 m2

10 50 100 500

Page 108: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA DISTRICT: TUNDURU VILLAGE: FRELIMO CAMPB.H. No. 207 /73

CCKK No.

UJotr<io1/1

Q = 1,6 • 5.7 exp (-0,0072tl^nVhr

QlrnVhr)

\

-

Of 12

V

'X02=1.6

m^hr

in^hr

i

• " • i

t(min)

0 50 100 150 200 250 300 350 400 450 500

a = 4.3

k « 0,0072 min

Type of decay:

Exponential

Test performed:

1973.20.25

- 1

Oo

ID

Type curves for a non leaky aquifer are used.

200

100

50

10

. 1 I I

slm)

" (1.1)(18.1.8) ,V-

• 1 1 1

I t 1

4

• 1 1

K c a l

5 10 50 100 500

indicating very large well storage effect

T = 2 , 0 x 10" 6 m 2 /sec

=0,00085

rw ' P1 /m

S •= 1,5

P /m m Vsec

k o b s = O . O O 7 2. 1

n

. 1

min

Q/Sw = 0,014 m3 /hr/ i

T = 10"6 m2/sec

55

50

45

40

35

30

25

20

15

10

5

0

s'(m) • •' '

•/

/

1 1 1 1

/

/

/

/ts=L3.7m

min

7"/

t(min)

10

T - 1,9 x 10~6 m2/sec

0,0011 m2

100

Page 109: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA DISTRICT: SONGEA VILLAGE: (HANGA RIVER) BH NO: 253/81CCKK NO: RD 1

z50.

VS

UR

ING

UJ

ioUJCD

TR

ES

UJ

Z

0

4

8

12

16

20

24

28

32

36

4 0

44

4 8

1 •

j 1

J 3z

ID

S 2

<zuV)5

1

i

. ,

1

1

1,:

I•

•• •

A

1

AA

i

• : i

• Drawdown data

• Discharge data

!

!

1!

*

i

0.1 10

TIME t IN MINUTES100 1000

Constant discharge test :

Discharge rate :

Static water level :

November 6, 1981

2.5 m3/h

4.91 metres below measuring point

Calculation of hydraulic parametres:

Q/s.. = 0.037

The increasing decadeslope indicates flow in fractured rocks. Calculation

of transmissivity is uncertain and has thus not been attempted.

Page 110: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA

20

22

2a

30

J 32

8 34

I »S 3«1 40

O 42

Ml

£ „!J 50" »*K

DISTRICT: SONGEA

*

j!

j

|-

1

i

:; ,

j

!

' 1

i

JJ 3

X

2 1

T

!

i

1 "

1

1

VILLAGE: GUMBIROBH NO: 254/81CCKK NO: pj] 2

*•

/J

Ir

i

1

t

i

JT

• 1

A |

| '•

' i•

1

*

27.3 n.

• Drawdown dai

R*cov»rv dst

• Diseh«i>tc da

a

i

a

-1 0 1 2 30 10 X> 10 10

TIME 1 W MINUTES

1

.

\

410 6-10

Constant discharge test : November 6, 1981

Recovery tes t : November 6, 1981

Discharge rate : 2.5 m /h

Static water level : 18.72 metres below measuring point

Calculation of hydraulic parametres:

T = 4.3 x 10~6 m2/sec

Q/sw = 0.066 m /h/m

Data Indicates flow in fractured rocks.

Page 111: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA DISTRICT: SONGEA VILLAGE: MTUKANO BH NO: 255/81CCKK NO:

30

32

3 3

M

3 5

M

1 ' • ! : ! i :

| ]

1u,

1

1 . :; ' i1 .

i I j

'•• • \

] |

• i! i ; :

10

: ; I .

' c 1 ] '

1

. j

z

z

| 5

u

! 1

!

(

]

i

-

1! i

1

i

1

I ^ °'• c

o

i

iI

i | ;

Ill :

j1 j

J

!

i

i

^>

;

j1

|

i

4,

i* * •• •

!

!; |

|

j

1 .

• |

l*»1

11

C Recovery data

• Ditcharg* data

: i

j !

j

• : j

] . ! i •1 !I

; i

i

! ' • !

' i ]

j . ,lim

j

i : : .1 :

TIME t IN MINUTES

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

Nov. 7 1230 - Nov. 8 430, 1981

November 8, 1981 4 3 0 - 510

5.0 m3/h

26.81 metres below measuring point

Calculation of hydraulic parametres:

T = 2.0 x 10'4 m2/sec

0.60 nr/h/m

The curve deviations after 10 minutes' pumping and the decreasing decadeslope

after 30 minutes are most likely caused by development of the well construction.

Page 112: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA

9

10

11

I- I2

z5 13g 14oc

S 15

<2 16

2 "£ 18CO

£ 19

2 2 0

- 21.JUJ

UJ

CUJt-

DISTRICT: TUNDURU VILLAGE: NDENYENDEBH NO: 256/81CCKK NO: RD Zj

i

!

O

]

i

O

X

I 6

15

4

1 N

\

/

A

N

i

>)f

\

So

k

A

)

A

(

>

1

1

S,

0

A

(

j

s

o

i

\

'• • Drawdown data

0 Recovery data

| A Discharge data

1j

s

C:*> A

A

• 5.1!

A *

m

A

• a

A ' A

0.1 1 10 100 WOO

TIME t IM MINUTES

Constant discharge test : November 12, 1981 930 - 2130

Recovery test : November 12, 1981 2130 - 2400

Discharge rate : 5.5 m3/h

Static water level : 9.47 metres below measuring point

Calculation of hydraulic parametres:

T = 5.4 x 10"5 m2/sec

r2S = 5.1 x 10"3 m2

Q/sw ' 0.48 m3/h/m

The upward deviation from the straight line after 2 5 minutes is interpreted

as caused by leakage from adjacent formations.

Page 113: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA DISTRICT: TUNDURU VILLAGE: NANDEMBO BH NO: 258/81CCKK NO: RD 6

z50.

ozE

o

ui

Z

27

28

e

! 1

>

I

i •

j

;

!

sz

z

5

> t > •

• • 4

ii

i

A

A

)<)

j

i>6

u ^ * " * 4 > 4 > *

i

A , A

p m

• • •j

1• Drawdown data

o Recovery data

A Ditcharg* dataij

i

j

0.1 10

TIME t IN MINUTES

100 1000

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

November 15, 1981 II 3 0 - 1600

November 15, 1981 16 0 0 - 1610

5.3 m3/h

26.42 metres below measuring point

Calculation of hydraulic parametres:

T =

Q/s_

7.7 x 10"3 m2/sec

8. 03 m /h/m

Page 114: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: RUVUMA

7

*

S

10

11

12

13

i "

5 1Si3 "* w3 **

RES

5 22

>™ »4

£ 25

J »

27

DISTRICT: TUNDURU V I L L A G E : NAMIUNGOBH NO: 262/81CCKK NO: R n 1 0

1 :* '. •: : !

: i

1

1.:

; |

i : ] !

! .| ; ;

1

\

; i !

! ! '

: ! :

:' : i

1

• i

- j

ci ° : i !

1

; : (

• !' ! \J

;• • o M

o "/ \

"" /v«;.i|

X

I * •

Jr

'

Iij

i•

A

i

i

i1 ! •

i j

\ i\

\j / • \

Y11

t

iii

•,

i

j \

: !

:j 1

J i *

i

i

\\

]

;

!

j

i

\ • • ;

i \ :i

:

!|

i1

• Drawdown data

' Racovarv data

• Diacn«rg« data

; ;

: • i; • i

: i •1

1! ]

'• j !

|I1

± ! : ! i •

[

i

|

!

.: j

; |

i

» ' » ° 101 102 103 10* 5.10TIME t IN MMUTC8

4

Constant d ischarge t e s t : November 30, 1981 10 3 0 - 19 3 0

Recovery t e s t : November 30, 1981 19 3 0 - 19 5 0

Discharge r a t e : 5.5 in /h

S t a t i c water l eve l : 7.75 metres below measuring poin t

Calcu la t ion of hydraul ic parametres:

T = 3.4 x 10~5 m2 /sec

Q/sw = 0.30 m3/h/m

Page 115: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

EG I ON: RUVUMA

Ii•

4

e

10

12

i "

c 2 8

; 32

1

DISTRICT: TUNDURU VILLAGE! MAJIMAJ]BH NO: 263/81CCKK NO: RD 11

I

i i • •

• |

i

|

l

i1

i

I 3

I

§ 2

" 1

• 14.On

V i 1-J-\

1

ss

1 <

1i

o

11

j

\

,„»<>o

1

m \

*

]

i

s

)

i

j

\1 \I

I

At.ik.60

<

\

* *

\

1

!

j

!

i

!

• Drawdown data

: Nacevarv data

! : ! ' 11 ' i

!

: 1

;

i :

i;

j

i

; i

i• |

!

!

1

i

:' .0 ' 2 1 40 10 10 W 10 W> 5«10

TWf 1 M MMUTU

*

Constant discharge test : November 21, 1981 II10 - 1910

Recovery test : November 21, 1981 1910 - 1930

Discharge rate : 1.9 n\3/h

Static water level : 5.00 metres below measuring point

Calculation of hydraulic parametres:

T •= 7.6 x 10"5 ra2/sec

Q/sw - 0.056 m3/h/m

The decreased decadeslope from 5 to 60 minutes pumping is interpreted as

caused by delayed yield from storage as water table conditions occur.

Page 116: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

MBEYA

Page 117: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: NTUMBIB.H. No. 6 / 6 6

CCKK No.

S t e a d y d i s c h a r g e 7 , 1 m / h r w i t h 1 6 , 4 m e t r e s o f drawdown. a =

k * min

Type of decay:

- 1

Test performed:

No time-drawdown data.T = m / s e c .

m

? /m = m /sec.

kobskcal

O/Sw

rain"n"

min"

0,4 3 m3/hr/m

T * 6 x 10"5 m 2 / s ec .

18

15

10

• s'(m)

-

>40=2.0

1 1 1 1

min

1 I I I

/ >

1 1 1 1

X :

As =9,0 m

-

t(min)

10 50 100 300

T . 4 , 0 x 10"5 m

2 / s e c .

rw2S = 0,011 m2

Page 118: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC.OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: MATUNDOSIB.H. No. 21/71

CCKK No.

Q=3>9,2 i14

12

10

6

6

4

2

0

Qlm3/hrta,=12,6 m?/hr

r—_ . ..* T

Q2=3^

t(min)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

o = 3 , 7

- 1k « 0 , 0 0 4 min

7yi.>G of decay:Exponential

Test oerforraed:

7ype curves for a non leaky aquifer are used.

30

10

slm)'

-

'• /

t i i

A-Jtfn; /•

1 1

1 1

t(min)10 50 100 500 1000 2000

T = 9 , 4 x 1 0 " 6 r 2 / s e c .

r w2 S = 0 , 1 4 m 2

- 1

rw2P1/rn1=

S = 1 , 0

k o b s = 0 , 0 0 4 m i n

k c a l = 0 , 0 0 4

Q/Sw = 0,18 i-:3/hr/m

T = 2 x 10"5 m 2 / s e c .

>LU

oo

T =

r 2S

m / s e c

Page 119: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: KAMBI-KATOTOB.H. No. 118/71

CCKK No.

0=1,6*12,0 exp(-0,02t),m3/hr

12

10

t Qk =>\

>•

m3/

13,6

hr)

m3/ r>r

5m3/

t

hr

min)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

8 , 5

0,02 min - 1

Type of decay:Exponential

Test performed:1972.1.15

A Theis curve i s used after 200 minutes.

50

10

-Sim)" " "

Ar /

/ Well7 ^Sloroge

i i i i i i i l i l t

-

I i

i i

t(min)

10 50 100 500 1000 2000

3,5 x 10"6ir2/sec.

r u2 S 0,0084 m

rvj^Vni1* m 2 / sec .

min " 1

kcal n "

Q/Sw •= 0,03 9 m /hr/ra

T = 3 x 10"6 m 2 / sec .

oo

m / s e c .

Page 120: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: MAKONGOLOSIB.H. No. 173/77

CCKK No.

Q=U*32.0exp(-0(25t),m3/hr

35

30

25

20

15

10

Q(m3/hri

Q1=33,A

02=1. ^tlrnjp)

50 100 150 200 250 300

a = 23,9

-1k « 0,2S min

Type of decay:

Exponential

Test performed:

1977.9.17

zoo

Ioro

100

50

10

;s(m)

••

i i •

1 1 I 1

• '

I i • i

I I I

> • • •

1 i 1

1 I 1 1

• • <

t i l l

li

ft

• • • «•

tlmin);

10 50 100 500

Type curves cannot be matched to drawdown data,due to well losses early in the test .

T =

rw S =

rwT> /m =

S =

kobs •

*cal =

Q/Sw -

T *

n / s e c .

m

m / s e c .

min"

min"

n3 /hr /m

2m / s e c .

>a:

oo

35

30

25

20

15

10

s'(m) ' ' '

• •t t i >

l i

i

• /

l i

s>yi /sA,6min

i | |

i i i i

y/

is=Z2/Jn

t (min)

10 50 100 200

T = 3,2 x 10" 6m 2 / sec .

r^2S = 0,002 m2

Page 121: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: MAKONGOLOSIB.H. No. 194/77

CCKK No.

a = 47,7

Q=1,U51.Aexp(-0,4t),m3/hr -l

60

50

30

20

10

aimVhi)

0^52,5 rr^hr

=1.1m?/hr t(min)

k - 0,4 min

Type of decay:Exponential

Test performed:

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

oQ

<a:O

A Theis curve has been used as an approximation.

100

50

10

-s(m)

(9.2.if: &

:

1 1 l 1

l

1 1 1

• I 1 1

*>*

t l l

i 1 i L

-

t(min)• 1 1 1

T = 2 ,7 x 1 0 " 6 m 2 / s e c .

r w2 s - 0 ,0014 m

2

rw P /m = m / s e c .

"0,4 min

k c a l •= min"

Q/Sw = 0 , 0 2 m3/hr/ra

T = 4 x 10" 6 m

2 / s e c .

10 50 100 500 1000

>

>ooLU

m / s e c

Page 122: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: MBANGALAB.H. No. 1 9 5 / 7 7

CCKK No.

U1Q

= 5,4*67,2'exp(-0,15t)rm3/hr

eo

70

60

50

30

20

10

QlmVhr)

L

O,= 72.6 m3/hr

I 1

mVhr

t(giin)

0 50 100 150 200 250 300 350 400 450 500 550 600

a = 13,3

- 1k = 0,15 rain

Type of decay:

Exponential

Test performed:

1977.10.25

oD

<

Q

100

50

10

|s(m)' ' '

1 1 i

1 1 1 1

1 I I I

1 1 1 1 • 1 1

1 1 1 I 1 1 1

• M L

• •

t(min)It i i i

Well losses to excessive to allow for interpretationby type curve method.

r w P /re =

k obs

k c a l

Q/Sw

T -

m / s e c .

ra2

2m /sec .

min - 1

. 1

m /hr/m

m / sec .

>a.UJ>ooUJ

a:

50

30

20

10

s'lm) ' " '

••

/y/As=57m

t^ZSmin t(min)

50 100

T « 4 , 8 x 10 m / s e e .

r w2 S = 0 , 0 0 4 9

Page 123: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: MAPOGOLOB.H. No. 2 0 9 / 7 7

CCKK No.

Q=10,5 426,3 exp(-0.037t),m3/hr40

35

30

25

20

15

10

iQImVhr)

r*

\\\

d,=36.8 mVhr

i

Q2=10.5 rrv/'hr

t(min)

0 50 100 150 200 250 300 350 400 450 500 550 600

3,5

0,037 min - 1

Type of decay:Exponential

Test performed:

Type curves for a leaky artesian aquifer are used, 6 = 0,4

50

10

-slm)1 " '

" (1.1)-(1&5.U)

X]'- /..

1 • • 1

y-*•—• -*- -

t(min);

T =1 ,4 x 1 0 ' 5 m

2 / S e c .

=0,0049 m

6 - 3,0

~2J x- 10m^/sec.

" 6

kobs - °'037

kcal = 1,54

0/Sw =

T a

_1

.1

m /hr /m

m / s e c .

10 50 100 500 1000

kcal and kobs deviate too much from each other .Interpretat ion doubtful.

T = 1,9 x 1 0 " 5m

2 / s e c .

rw2S =0,0033 m2

35

30

25

20

15

10

s'(m) ' ' '

A

/y>/to = 1.3min

I i I i

y/

t i l t

i

/ • •

i i

• •

As=27,8m

, i * ' '

t(min)t i l l

10 50 100

Page 124: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: CHUNYA VILLAGE: CHUNYAB.H. No. 2 2 3 / 7 7

CCKK No.

Q=12,3m3/hr

16

12

10

Q(m3/hr)

• • •

t(min

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

k •=-1

Type of decay:Approximatelyconstant discharge

Test Derformed:

zoo<a:O

10: s ( m ) ' • •

. . .

t 1 1t(min)

10 50 100 500 1000

Drawdown data not reliable.Recovery data unused.

T =

rw S =

r ^ P 1 / ™ ^

6 =

*obs -

k c a l =

Q/Sw =

T =

m / s e c .

rr,2

m / s e c .

min"

min"

m 3/hr/m

m v s e c .

>>ouUJ

a.

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1,0

s'lm)

•*-to=O85min

i i i

0.85 m

t(min)

10

T = 7 ,4 x 1 0 " 4m

2 / s e c .

r w2 s = 0 , 0 8 4 m

2

50 100 300

Page 125: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: MBOZI VILLAGE: MKUTANOB.H. No. 182/78

CCKK No.

0=0.80»1,74exp(-0,04t)/m3/hr

3.0

2 5

2.0

1.5

10

0.5

Qlm3/hr)

10,.

\\

2,54 m3/

"-=21—0,8m?Ar

t(min)

0 25 50 75 100 125 150 175 200 225 250

= 3,2

-1k m 0,04 min

Type of decay:

Exponential

Test performed:

50

10

-s(m) ' ' '

1

i

till

i I I

• ••

1 t | |

i 1

11

t (min)i

5 10 50 100Type curves cannot be f i l led to data,due to excessive well storage effects.

300

r w S •=

r w P /m

e •=

kcal

m. /sec.2

m /sec.

min

Q/Sw =0,02 „ /hr/ra

T = 4 x 10"6 ra

2/sec.

T =

rjs

m /sec2

Page 126: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT.: MBOZI VILLAGE: MBOZI MISSIONB.H. No. 25/81

CCKK No.

LUO

<Ioen

0=0.073*1.1 exp (-0.08t],m3/hr16,0

0,08 min-1

\2 ,

10

Q8

06

0.4

0.2

Q(mn>r)

Q, =1,17mVhr

Q,= 0073 rnVhrt(min) t

Type of decay:

Exponential

Test performed:1981.4.17

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Z

oQ

<Q

50

10

slm) • • '

:

• i t

i•

• •

t (min)

••

11

1

-

T =

r w2 S =

r w P An =

fi —p -

xobs "k cal c

m /sec .

m

m / sec .

. 1min

min~

Q/Sw =.0,0032 m /hr /m

T = 2 x 10 m / S e c .

50 100 1000 2000

>

>oo

T =

rw 2 s

m /sec

25

20

15

10

s'(m) ' " '

i t I <

I

I | i i I

* i 1

1

I I 1

f

t(min)I I i 1

10 50 XX)

Drawdown and recovery data do not correspond.No interpretation done. Borehole technically dry.

Page 127: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA

WA

TER

LE

VE

L IN

M

ETR

ES

B

ELO

W

ME

AS

UR

ING

P

OIN

T

DISTRICT: KYELA VILLAGE: KIKUSYABH NO: 19/81

CCKK NO: MS 10

o

i

0

J 3Zz

8 2XuwS

o

< L

> <1 (

-1 -

) i

Mi » I -fci

AS -0.15 m

A ' A.

IN

• Drawdown data

o Recovery data

A Discharge data

> s % m

k A A A

0.1 1 10 100 WOO

TIME t IN MINUTES

Constant discharge test : October 12, 1981 19 3 0 - 22

Recovery test : October 12, 1981 22 0 0 - 22 1 0

Discharge rate : 2 . 2 m /h

Static water level : 9.34 metres below measuring point

Calculation of hydraulic parametres:

T = 7.5 x 10~4 ra2/sec

Q/s w = 1.31 m3/h/m

Page 128: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: KYELA VILLAGE: ITENYA BH NO: 22/81CCKK NO: 13

oB.

icDV)<

oatmtoUJsH

z

5

6

7

8

o_, - , — • ^

DIS

CH

AR

GE

IN

M

3/H

i — ~ -J

AS • 0.52 m

1

• •

t

^ «

1l l 1 • • • •

-

^ — — '(-1 f

1 n ^ 1

\ 1

(

( •

1

11• •• Drawdown data

0 Recovery data

» Discharga data

j

0.1 10

TIME t IN MINUTES

100 WOO

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 15, 1981 12 1 0 - 14 1 0

October 15, 1981 1410 - 15 1 0

2.0 m3/h

2.72 metres below ineasuring point

Calculation of hydraulic parametres:

T = 2.0 x 10~4 m2/sec

Q/s, 1.48 m /h/m

The water level fluctuations were caused by ongoing development duringpumping.

Page 129: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA

WA

TER

LE

VE

L IN

M

ETR

ES

B

ELO

W

ME

AS

UR

ING

P

OIN

T

CO

-4

O>

W

DISTRICT: K Y E L A VILLAGE: K A B A N G ABH NO: 24/81

CCKK NO: MS 15

_lt ,

> •

i1.77m

zz

S 2.0

|

S 10

5

n

" V^ (X

\ i

(

s1 ( i

,,

s

< I O O O 0

Al

s• 2

S

.18

k

m

* -

• Drawdown data

o Recovery data

» Oitcharga data

0.1 1 10 100 1000

TIME t IN MINUTES

Constant discharge test : October 14, 1981 15 1 0 - 19 1 0

Recovery test : October 14, 1981 19 1 0 - 19 2 8

Discharge rate : 1.8 m /h

Static water level : 5.32 metres below measuring point

Calculation of hydraulic parametres:

T = 4.2 x 10"5 m2/sec

r2S = 2.0 x 10"2 m2

Q/sw = 0.69 m3/h/ro

Page 130: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: KYELA VILLAGE: TENENDEBH NO:

CCKK NO:?q/R1

16

EA

SU

RIN

G

PO

INT

ET

RE

I

i

i

j

6z25 5IW

OB

S 45

3

-i O—<i »—i » • » - •

!

' i *

i

1

i

—1• 4 - .>-*

4

H

I

i

A« • 0.D6 m

J '

At .0.0'

AJ

A

15 m

A

A

*

A

4

- • a a

i

i• Drawdown data

o Recovery data

A Discharge data

" * A A

h

i j0.1 10

TIME t IN MINUTES100 1000

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 13, 1981 10 0 0 - 13 0 0

October 13, 1981 13 0 0 - 13 2 0

3 - 6 n>3/h

3.88 metres below measuring point

Calculation of hydraulic parametres:

T = 4.2 x 10 m /sec (recovery data)

Q/sw = 2 0.8 m3/h/m

The fluctuating discharge rate may have been caused by temporarilyclogging of pump impellers by sand.

Page 131: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA

WA

TER

LE

VE

L IN

M

ETR

ES

B

ELO

W

ME

AS

UR

ING

P

OIN

T

DISTRICT: KYELA VILLAGE: IPINDABH NO: 30/8ICCKK NO: MS 17

o

t

•0

z

5 7

UJ

S

1o

5

i

o

1

1 1

1

•—1 K

i

*

— —

.0.38 m

A *A ' i

• •

\

H

• Drawdown data

o Recovery data

« Discharge data

A S *

»/ a

* *A

0.51

•••••1 • . —

0.1 1 10 100 1000

TIME t IN MINUTES

Constant discharge test : October 13, 1981 1310 - 1710

Recovery test : October 13, 1981 1710 - 1730

Discharge rate : 6.4 m A

Static water level : 4.46 metres below measuring point

Calculation of hydraulic parametres:

T = 6.4 x 10~4 m /sec (drawdown data)

T = 8.6 x 10 ~ m /sec (recovery data)

Q/sw = 1.04 ra3/h/iti

Page 132: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: KYELA VILLAGE: NDOBE BH NO: 73/81CCKK NO: MS 18

az£(A

2UJCO

<nuic

2

3

;

J

o (>

1i

1° i

zZS 6

UJ

•O

I5

4

1!

1i o o o o < i C

F=i

>

J

!

)

1

1|

j

• o . c

* > * . ' A

A

II|

|

•0

A

Drawdown data

Recovery data

Discharge data

i

0.1 10

TIME t IN MINUTES

100 1000

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 14, 1981 8 4 5 - 945

October 14, 1981 945 - 955

5.4 m3/h

2.42 metres below measuring point

Calculation of hydraulic parametres:

T = 1.4 x 10"2 m2/sec

12.86 m/h/m

Page 133: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: MB0Z1 VILLAGE: CHIWANDAB.H. No. 7 6 / 8 1

CCKK No.

Q = 0,65*_3.60 x mVhr

Om 3/h \

=4,35m3/h

5m3/h

20 «0 60 80 100 120 140 160 180t(min)

a = 7.7

k - 0.055 min" 1

Type of decay:

exponential

Test performed:

81.10.02

tlm)

100SO

10

5

1

0,5

0,10,05

0,01

WELL,LOSS

1

A10.

I

/

ku)•6.Q

/

B)

M i • > •

0,01 0,05 0,1 CLS 1,0 5 10 50 100k , < Jtow- indicating well losses

5001000 t(min)

2.2 x 10 /sec.

rw2S

rw2P

6 =

-3.4x11

0.07

m2 / sec .

kobs ° 0.055 min- 1

kcal min_1

Q/Sw - 0.033 m /hr/m

T » . m / sec .

T = m / sec .

Page 134: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: MBOZI VILLAGE: MPEMBA BH NO: 77/81CCKK NO: f-'iD 2

PO

INT

IVS

UR

ING

5

oUJ

o

TH

ES

UJ

5

10

12

14

16

18

20

22

24

26

28

I

I

z

I 2

83 1

o

0

I

~l

I

11

<

| i

i

yi rl -<<f

1

<o

•—*,—•

o

3.0 m

• Drawdown data

o Recovery data

A Discharge data

;

: i

0.1TIME

10

1 IN MINUTES

100 WOO

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 8, 1981 1020 - 1038

October 8, 1981 1038 - II28

0.4 5 m3/h

15.03 metres below measuring point

Calculation of hydraulic parametres:

T = 7.6 x 10"6 m2/sec

0.041 in3/h/m

The test was stopped when the water level was lowered to the punp suction.

Page 135: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA

WA

TE

R

LEV

EL

IN

ME

TRE

S

BE

LOW

M

EA

SU

RIN

G

PO

INT

DISTRICT: MBEYA VILLAGE; IHOWELOBH NO: 205/81CCKK NO: flS 20

I

zzs 3

D

1 2a

1

<

[ I i i > |

\

i (

«

\s

<, ooOo<

\

> 0 t

Al

\\

I O (

• 3

1 (

.39

\

• <

t

\

\

• Drawdown data

o Recovery data

A Diftchar^e data

0-1 1 10 100 1000

TIME t IN MINUTES

Constant discharge test : October 10, 1981 1010 - II10

Recovery test : October 10, 1981 II10 - 1210

Discharge rate : 1.9 m /h

Static water level : 26.15 metres below measuring point

Calculation of hydraulic parametres:

T = 2.8 x 10"5 m2/sec

r^S = 5.1 x 10~3 m2

0/sw = 0.32 m3/h/m

The test was stopped when the water level was lowered below top of pump.

Page 136: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: MBEYA VILLAGE: LUHANGABH NO: 208/81CCKK NO: MS 25

o0.

c3CO«

O

0CI-

0.1

20

21

22

23

24

25

26

DIS

CH

AR

GE

IN

M

3/H

•»

1i

j

4 *0 | «

91

1

j

i

1

I

c* * * * *

j C <

1Ai

m.H L,

0

* 0.63m

1

Drawdown data

Recovery data

Discharge data

r~\~

10

TIME 1 IN MINUTES

100 1000

Constant discharge test :

Recovery test :

Discharge rate :

Static water level :

October 9, 1981 13 1 5 - 15 0 0

October 9, 1981 15 0 0 - 16 0 C

1.0 n>3/h

21.56 metres below measuring point

Calculation of hydraulic parametres:

T = 8.1 x 10" 5 m2/sec

0.25 m /h/m

The test was stopped when the water level was lowered below top of puir.p.

Page 137: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA

•!1

|

1

«3

11

ii

13

M

IS

i "I 17

I »I 20

! 2 A

Ij „

: 3S

I 24

' 25

; 2e

i 27

1

DISTRICT: MBEYA VILLAGE: UKWAHERIBH NO: 209/81CCKK NO: MS 24

i

fI

III

\

r.

\ ,

Y

o

At! I

\\\

A

.Off.

\

•O

PfwdoiTi data

Di*c*Mrt« data

1O1 10° »' to* 10* K* S.WTIMt t M MIHUTCt

i

Constant discharge test : October 10, 1981 II30 - 1205

Recovery test : October 10, 1981 1205 - 1240

Discharge rate : 1.15 m /h

Static water level : 13.05 metres below measuring point

Calculation of hydraulic parametres:

T = 6.5 x 10"6 iti2/sec

r^S = 2.0 x 10"3 m2

Q/Sw = 0.08 m3/h/m

The test was stopped when the water level was lowered to the pump suction.

Page 138: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

THE UNITED REPUBLIC OF TANZANIA

REGION: MBEYA DISTRICT: MBOZI VILLAGE: VWAV.'AB.H. No. 276/81

CCKK No. MD 3

0

\

mVh

1 •Q2= 1/ m3/h

- 1

a = 3.21

k •= 0.10 min

Type of decay:

exponential

Test performed:

81.10.07

20 60 80 100 120 140 160

<

Q

2

oo<a:O

3.9 x 10"6n2 /sec.1000

10

0.1 1 1 1

IwL0

11 ii

11.1

(ao.<M

1 1 1

b) J

/

I I i 1 III

^ ^

1 1 1 1 III 1 1 1 1 III

r u2 S = 4.3xlO"2m2

6 = 0.6

k obs = 0 . 1 0

= 0 .02

m /sec.

n "

n "

Q/S. 0.64 m /hr /m

T * 6 x 10"6 m2 /sec.

tlmin)10 50 100 500 1000 5000 10000

LU>ooLU

T =

r Jsm /sec

Page 139: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Appendix 3

Geophysics.

Page 140: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA

Page 141: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: IRINGA

'•""I .j '.

I • •"?

1

1 —

i -

1-

:"•:• f ; i '

--: " V r —! -(T-J-I-

~ \ _ • • •

• • • • • • V i • • • "

-—^---—-- •••• S^ZL^.

"I

*±- :--

Profile no : 201

Latitude : 7°26.9'

Longitude : 35°4 3.3'

Village : Chandindi

Date : 14.11.1980

Profile no : 202

Latitude : 7°2

Longitude : 35°4

Village

DateChandindi

14.11.1980

Profile no :203

Latitude : 7°

Longitude

Village

Date

35°11.8'

Chandindi

13.4.1981

-ir.

—^

—-

100

1 -'i I/;-

• : ' • i , - ,

—".:_z_-

• • . , . \

• » • %

1 '

. , |T— —

H- r*H-{-i-!tH--- •-'-ff

— 7 = — : • ; ; ; : - . 'I ; ;

F'y i j.;i:iiiiii;:.;;;i"L5••=-2J:=J.|.:Jt;.: . =--"

*wl t I »'1 111 1

J1——(.—

- ' • — '

1 1 ,

: — — :

I F - ! • » 1

! : . • • . - - : • . j . • - ~ ^

^ * * ^ ^ . . - : = , : - • • • • • . , # . : . - • : . - :

:_:{•• : " ^ s r * ^ ; ! . . : - : !

- f*J. . B '

Profile no : 204

Latitude

Longitude

Village

Date

7°47.2'

3S°11.2'

Idodi

13.4.1981

Profile no

Latitude

Longitude

Village

Date

205

Xguluba

18.11.1980

Profile no

Latitude

Longitude

Village

Date

206

7°23.3'

35°42.7'

Ikengeza

12.11.1980

: • • • : " j : • .

• • - — ^

^ ~ . 1

— r — T - r r . — : — r r : — • — - : • : • • • • • • • • : *

; i ' ' ' V '•!r|

...•\K-|-|J.,,||1

z

, - i - \- • ) ! . M - • • . i - - 1 - ; . - - » i i t - 1 1 1 . - i - *

• ; : j ! ' ' : • • • ' ; : = • • • • ' • • . r • • - ^ - ^

: - : ! : ! : M . ' . : : . ; - - " ^ ^ : \ . : - - : • ' ' • • - i • -

i - r ^ ^ ^ ^ j t f ••!••

•jHJ h""*1^-1 Hf! i-^r•H-;: ; :—H^i;-^--- -.

Profile no : 207

Latitude : 7°28.4'

Longitude : 35°58.9'

Village : Ikuka

Date : 13.11.1980

Profile no : 208

Latitude : 7°4 3.8"

Longitude : 35°51.2'

Village : Irole Mission

Date : 20.11.1980

Profile no : 209

Latitude : 7°14.6"

Longitude : 35°43.9'

Village : Izazi

Date : 19.11.1980

Page 142: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: IRINGA

»0 I >1QOO ?- li V

Profile no : 210

Latitude : 1 "•

Longitude : 35 4

Village

Date

Kinywanganga

12.11.1980

Profile no

Latitude

Longitude

Village

Date

211

7°50.1'

35°09.1'

Kitanewa

2.4.1981

Profile no : 212

Latitude : 7°3

Longitude : 35 2

Village

Date

Mafruto

29.4.1981

it

;

i

• >-> 1

: „

• 1;-'!'!-

- ——-' - - -—;-

, _

... — . ..__

CO

_ ^ - _

• - • ! • - - 4 - - 1 - > : . : ; • • -

• • • • • - r — r ± ~ - - - — • • - :

: • jt -• j T •

. ... i ye ,....: .-

• • • — —

— .

-

I . 1. _

. . —.

11 1 -

Profile no

Latitude

Longitude

Village

Date

213

Mahuninga

1.4.1981

Profile no

Latitude

Longitude

Village

Date

214

Makadupa

18.11.1980

Profile no : 215

Latitude : 7°4

Longitude

Village

Date

: 35 07.8'

: Mapogoro

: 13.4.1981

| 700Q | iOOO f»c) )io 1 is j n o

Profile no : 216

Latitude : 8°25'

Longitude : 35°05'

Village : Matanana

Date : 7.4.1981

Profile no

Latitude

Longitude

Village

Date

2177°39.81

Mloa

27.1.1981

Profile no : 218

Latitude : 7°39.6'

Longitude : 35°22.8'

Village : Mloa

Date : 27.1.1981

Page 143: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: IRINGA

HL J—

I . - - 1^ -~i : :

?-.: W: liviaiie^

Profile no : 219

Latitude : 7°4

Longitude : 35°2

Village

Date

: Mloa

: 11.4.1981

Profile no : 220

Latitude : 7°08.3"

Longitude : 3 5°4 8.8'

Village : Mtera

Date : 19.11.1980

Profile no : 221

Latitude : 7°4 3.7'

Longitude : 35 17.11

Village : Musimbe/Mloa

Date : 11.4.1981

?=^S: {Z—

•••:::vr--\; '.:.-»-: ' J':1 j . : ^ UIHJ !; iz—i .;J .;;!:"' ^^= :_ -• • • • » : • ' . : T :

1- - !•:: : _ = 5 ••:• i - : 7 i

;...^^nuir.-.^aFg|:^P

Profile no : 222

Latitude : 7°46.2'

Longitude : 35°12.8"

Village : Musirabe

Date'! : 11.4.1981

Profile no : 223

Latitude : 7°4 0.3'

Longitude : 35°4 5.3'

Village : Nduli Air Field

Date : 12.11.1980

Profile no : 224

Latitude : 7°4 3'

Longitude : 35°32.1'

Village : Nzlhi

: 13.1.1980

1 •' 1 I " I J —

Profile no : 225

Latitude : 7 43'

Longitude : 35 32.1'

Village : Nzihi

Date : 13.1.1981

Profile no : 226

Latitude : 7°4 3.41

Longitude : 35°32.2'

Village : Nzihi

Date : 14.1.1981

Profile no : 227

Latitude : 7°4 2.8'

Longitude : 35°32.3'

Village : Nzihi

Date : 14.1.1981

Page 144: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: IRINGA

| |7

• • • . . . : • - • - • '^£i j ; . i ; | : g - . z l i : " . _ ~

• :• • i • -J"•7Tt^".'i'*!^|.1 I T ! " \ " f - ^ ^ i j s ! .

• . ; • . ; . - i - - - •.... • r ' : i . :•• T J ^ T J v O r 3 aii

1 . 1 r ..in 1 ft .... i

?::

Profile no : 228

Latitude : 7°4

Longitude : 35°3

Village

DateNzihi

15.1.1980

Profile no

Latitude

Longitude

Village

Date

229

Nyakawangala

18.11.1980

Profile no : 230

Latitude : 7°4 9'

Longitude : 35 44.4'

Village : Tagamenda

Date : 29.1.1981

(MS 1.3

f :pg\

Profile no : 231

Latitude : 7°4

Longitude : 35°4

Villaae

Date

: Tagamenda

: 29.1.1981

Profile no : 233

Latitude : 7°5

Longitude : 35°0

Village

Date

Tungamalenga

2.4.1981

Profile no : 234

Latitude : 7°

Longitude : 35°

Village

Date

: Tungamalenga

: 2.4.1981

r I c Ul iMWkc H

i * * - ,

l : :. :

— - -

110

•^rp-

'; r :.*-—

= = -

1•: L :

- • " r 1

1

•*-= "rf-J: • i •••l-Lr:."i::.Lr=s

| P~...

^

Profile no

Latitude

Longitude

Village : Ngerenge

Date : 4.12.1980

235

34C42.9'

Profile no : 236

Latitude : 8°14.8'

Longitude : 3 5°15.7'

Village : Ndolezi

Date : 28.1.1981

Profile no : 237

Latitude : 8°14.7'

Longitude : 35°15.8'

Village : Ndolezi

Date : 28.1.1981

Page 145: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: IR1NGA

1 2M0 J i H

-!:: :'.-l -J . . " i ' l — V . ) i j i

- - — " " . : • • • • ; — ~ - < ^

- : : ••: i : ' i i . r N :

T * | - 7 i • ; : : • • • — : . . . - . ' .

1 - I

•fHl-"'! | ! .J r I5•'• - ' I ; ; : : : - : : . " - z

. j ^

•*tm**~,;—,

- • ^ ' • • - L :

" T:—:—/f-

l » I

y ^ i • ! • ' ' . •

I , ; . , . - , v . • . ; • - . •• , -

I "' ijl I if

-*=i. V -

Profile no

Latitude

Longitude

Village

Date

238

Ndolezi

28.1.1981

Profile no

Latitude

Longitude

Village

Date

239

Sadazi

28.1.1981

Profile no : 240

Latitude : 8°4 9.1'

Longitude : 34°50.S'

Village : Idofi

Date : 21.11.1980

\-

III

l _r —

:

1 < -j

'«l

—r—=-r-^-.—r-TT — -

^ | ^-iv:•:;-; • •• : ^ i -

- — - • • - . r - ' - f - - : i - —^ :

1 -

^ I-"pi—i- rr:

•~ M ' • , . ' ; ' ; \ . ; ^

J4-J '••,•• r l " '-.•> V: . • . . • • : ' • .

- . : • : ; • • . -

»-i4l»| ~ T -

Profile no : 241

Latitude : 8°5 3.6'

Longitude : 34°34.4'

Village : Jlembula

Date : 2.12.1980

Profile no : 242

Latitude : 9°00.3'

Longitude : 34°50'

Village : Jlunda

Date : 3.6.1981

Profile no : 243

Latitude : 8°52.5"

Longitude : 34°32.3'

Village : Jyayi

Date : 3.12.1980

M C | U000 |—•» ' *i " •" *

335

i: -V-

1" '

i r-LJ—- i..-.

- - • • —

: — : T - = :

• . - • • '

; . _ : _ : • . - ^

• •—j—i—

i

• • - -

J

• — . : :

- ^ ^

Profile no : 244

Latitude : .9°16.1'

Longitude : 35°00.7'

Village : Kidegembye

Date : 4.6.1981

Profile no : 245

Latitude : 8°4 4.5'

Longitude : 34O47.6'

Village : Kinegembasi

Date : 21.11.1980

Profile no : 246

Latitude 8 58.6'

Longitude : 34 35.3'

Village : Palangawano

Dat« : 17.12.1980

Page 146: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E 0 E L E C T R 1 C S O U N D I N G S REGION: IRINGA

tOO 64

U=

I 1 ..

-KU'l.jp-iiiBig

:. :J •;:-!., lie- .-...+ >

Profile no : 247

Latitude : 8°

Longitude : 34°

Village

Date

Saja

21.11.1980

Profile no : 248

Latitude : 8°57.6'

Longitude : 34°35.7"

Village : Udonje

Date : 16.12.1980

Profile no : 249

Latitude : 8°

Longitude °

Village

Date

: 34°42.8'

: Uhambule

: 3.12.1980

I -•••—,-•• ..; I L M ^ - i

Profile no : 250

Latitude : 8°51.7"

Longitude : 34°42.9'

Village : Ujindile

j Date : 3.12.1980

Profile no : 251

Latitude : 8°

Longitude

Village

Date

34U39.1'

Utiga

3.12.1980

Profile no : 252

Latitude : 8°

Longitude : 34

Village

Date

: Wangingambe

: 3.12.1980

!| mo

: _

; i

— . . • , • 1 1 - i 1 1 -

CO

• . • . ; . . " • : : , i • ;

Jffl

Profile no : 253

Latitude : 9°1

Longitude : 34°5

Village

DateMakombako

3.6.1981

Page 147: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I O N T R A V E R S E S REGION: IRINGA

It

E

I"5,5 20uK

10

(

oaao A///

- '

\\\

1

Si—"

10 20 30 40 SO 10 70 10 »0 100 110 120 110 140 l i t 1 H 170 110 110

DISTANCE <ni )

Traverse no : 232Lat i tude : 7°49'Longitude : 35°45.4'V i l l age : TungamalengaDate : 29.1.81

Page 148: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA

Page 149: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

I «TO I 5700 I 15S

IE;

i-as

— = V -

i »~—r

. —i . ! :. : "T'T

l-j:'; j:'j MTTlr "]?111.;M•..,i'd

43V

I- i;r'»=r—.-I!?

' I •» I » J—•

Profile no : 301

Latitude : 10°4

Longitude : 35°

Village

Date

Kitai

23.5.1981

Profile no : 302

Latitude : 10°31.2'

Longitude : 34o45.0'

Village : Lukali

Date : 24.6.1981

Profile no :303Latitude :10°40.4'

Longitude :34°39.5'

Village : Mbaha

Date :24.6.1981

t=±

l^mW^ma^S

III

[-lil

t 1

-j~:^ - T H!-ii—!•

• • ^ . ' . - I - l T 1 • • - — • ; • • • • - ; — _ _

;:• rS3:.-=:!.-ia11 •

: : - " _ ; , - ^ - i . : : . : . • • ; * • • ^ _ -

.:.-• r • i ' - . ^ j R = .-::-_-r.: •_•_.!

>-r:..:::-:...:;.:--

Profile no : 304

Latitude : ll°04•

Longitude : 34°55.7'

Village : Onango

Date : 23.6.1981

Profile no : 305

Latitude : 10°34.8'

Longitude : 35o02.4'

Village : LituXi

Date ; 24.6.1981

Profile no : 306

Latitude :10°21.3'

Longitude : 35°39.7'

Village : Songea 40 km

pate : 5.6.1981

» I »« I

1-I •

1

—:—r——

- - --»n

• : : • • - - '

..tJ:i:i:IL. .}

-- --

1 i

!.••

.-TT-.:rf ^: • l y i . [ ! —±-—

•• ; • • • : " " " . . ; ;

I~Z tTTT

Profile no : 307

Latitude -. 10°02.3'

Longitude : 35 37.5'

Village : Songea 50 miles

Date : 11.2.1981

Profile no : 308

Latitude : 10°54.5'

Longitude : 36°05.3'

Village : Ligera

Date : 18.6.1981

Profile no : 309

Latitude :ll°07'

Longitude : 36°10.8'

Village : Malijoni

Date : 18.6.1981

Page 150: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

-rTrrSTJTE n. i.-u;

5 ' !

.._.4

. pi.

If

I'" | no

: ' • : ' • . • . ; •

l ^ J . . : • • • - ^

i

. = • . - •

T— • • - • • • ~ T =

• . • : - _ . ; • • : : . - . i =

ii lili

!.¥'•

Profile no

Latitude

Longitude

Village

Date

310

Mkongo

18.6.1981

Profile no : 311

Latitude : 10°16.4'

Longitude : 36°20.2'

Village : Mpigamiti

Date : 19.6.1981

Profile no : 312

Latitude : 10°22.6'

Longitude : 36°09.9'

Village : Mtonya

Date : 19.6.1981

1330 i i

_

t • - ' - • L J

I •--:"."NJ-

" - • - ' - .

— _ _ _ v -

: f^-7

- • • ; ~ T - J -

•. ~r~

-I " ' .- : : : Y •:•• . • . •• —

^ • • •

• -• • • • • • V . * * ? •

" • ; - i - - r ; .'—i-g-J-

— •[•-—- — ^ - f S r -

„ . , • .T

. r .

•-LL.L ...J...

:.: ; » -.-

vi.p :-i:'.'rA»

i:::!! ' ^ - ^ 7

j u p [tjcq "I—.

^ —T.-S-r— - » - I - - " - .- 7.;

• : . . • - T J • • - •. •;•!••• ' 4

• • • - - • - . . : : " T l

• . . • _ ! ; : . ; ' . .• j . : ~ ' • , ~

. ;

. • : = . - . : • ; . ; •"• .:-: .~:-?^i

j i _ — - • • ; - i ; • - — — — ;-.. - • ; " _ _ _ ; r= r5i:

Profile no

Latitude

Longitude

Village

Date

313

Mtua

22.6.1981

Profile no

Latitude

Longitude

Village

Date

314

Nakawale

22.6.1981

Profile no : 315

Latitude : 10°34'

Longitude : 35°52'

Village : Namabengo

Date : 19.6.1981

700 | iftO | 1*00 !>*•• 'JI1

(T-jS-r- —:- —-^

irM. 9-

Profile no

Latitude

Longitude

Village

Date

316

Namatuki

22.6.1981

Profile no : 317

Latitude : 10°40.6'

Longitude : 35°35.3'

Village : Songea Airport

Date : 25.6.1981

Profile no : 318

Latitude : 9°57'

Longitude : 35°37.6'

Village : Songea 96 km

Date : 12.2.1981

Page 151: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

[ "oo | M | o_

»rE^ . - = - - HTH-fr

! : • • ' : : T^T*—^^TJ.|-rr!-':!:.:i

1"» 1 »<

Profile no

Latitude

Longitude

Village

Date

319

Sangea 80 km

10.2.1981

Profile no : 320

Latitude : 10°4 3.6"

Longitude : 36°20.6'

Village : Sangea 128 km

Date : 16.6.1981

Profile no : 321

Latitude

Longitude

Village

Date

: 10°45.6'

: 36°31.5'

: Sangea 140 km

: 16.6.1981

II

1;

i-ii

...

—^«Kt?

• • : ' ~ 3 • ' • "

*i ' " ' : _

"Hill:

........

• - ~

"+!^"

| 22.J

. p.i \i

; . _ : • ;

- . . : • z ^ . .•=

^Vj' -. ~-

—-rtfji

: :£Iii.-...

10

. . .

_t.i.i||j...:!_^i

J • • • : . '£'--. . ' ••. . '

n | , , | ^ , . . . , , , ff

•? i.hr.L5-1-1:1 " " T '

^ F ^ ^ - . ' . T :

- - : : : • ; : " : . . -

! : - • •

- • : > :

; • ' • "

J •

MOO

• ; •> * )

- • ^

- . ' • - " * ^ i *

-

?ooo J?joq

:.: : — : . : . . . . ^ = -

. I . - . : - . . • : . - . -

T: v ^ ' • " • • • • " -

—.-ZTS:: . ,

"••S:~£."T:

••! j i'j'i-Tr-:\ ['

. = -._'3i----. :

illHRE Ir

Profile no : 322

Latitude : 10°34.6'

Longitude : 36 22.2'

Village : Tunduru 89 miles

Date : 10.2.1981

Profile no : 323

Latitude : 11°34.7'

Longitude : 36 53.7'

Village : Chamba

Date : 12.6.1981

Profile no : 324

Latitude : 11°

Longitude : 37°

Village

Date

: Chilanga

: 9.2.1981

TSO ISO Ho... EH" j . I—

:.. ..I^J.J.:.,..J4I

3 •• i ir : : i i . ; i : i

••-Htt:'l+W'"":

—-%H^j^-

-i—'•

—La

V _:

Profile no : 325

Latitude : 10°51.4'

Longitude : 37 35.7'

Village : Katumbi

Date : 8.2.1981

Profile no

Latitude

Longitude

Village

Date

326

Kitanda

9.2.1981

Profile no : 327

Latitude : 10°51.4'

Longitude : 37°29.5'

Village : Kwitanda

Date : 8.2.1981

Page 152: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

a: UOC 160-^TT

-; *-H. t-

JS I

Profile no : 328

Latitude : 11°31.6'

Longitude : 36°56.5r

Village : Likweso

Date : 12.6.1981

Profile no : 329

Latitude : 11°23.4'

Longitude : 37°01.5'

Village : Lukumbo

Date : 12.6.1981

Profile no : 330

Latitude : 11°31.3'

Longitude : 37°21.7'

Village : Lukumbule

Date : 12.6.1981

HII6 . K I I » '-• 1

ii

" •

• - i - • • — - : • : - • - - ^ - 4 !

• • : • , - • • - .

-'— ~ H i—!-

. . . .

o

4U. i-i :.u.. . i

••• ' ' V •': •;

;.'-.-r\

— - — - ^ - -

- : • - - ' - 1

- -1

-:-~=-nrivi " ^ t-

Profile no : 331

Latitude : 10°57.1'

Longitude : 37°19.1'

Village : Masonya

Date : 7.2.1981

Profile no : 332n

Latitude :

Longitude

Village : Nkaudu

Date

37°08.7'

9.2.1981

Profile no : 333

Latitude : 11°19.3'

Longitude : 37°05.3'

Village : Mbresa

D a t e = 9.2.1981

| 3200 :

.

r ~ -:--f • —

12

4_.i.

.il.i.—'

. • -

\ni \ •

-

--^ -j-.j-i-j.;,-,-..- • . : 1 - : ! ; - ' J

1 J . i f 1:H]J

iiill1

.i.il.-4.;,3

I » !

Profile no

Latitude

Longitude

Village

Date

334

Mindu

8.2.1981

Profile no : 335

Latitude : 10°51.8l

Longitude : 37°50.2'

Village : Mindu

Date : 8.2.1981

Profile no

Latitude

Longitude

Village

Date

336

Mindu

8.2.1981

Page 153: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S •REGION: RUVUMA

1 -

1 —•-4-J--4-

— —^

i -.-: :

— —

i 1 • V .

ll••:••',••••: - : - : - ! - 4 - !

^ ^ • - ; ^ H

_ i i L

— ^

• \ ^

1

• • • • ' - -

— ; • . - , ! - :

• . . . : ~

. . . . _ J . _

• « " 't- \

i" - V

:••..;: T'j N Wl.:..:..4-ij.-P.l., |

^5. ^ . | . . . .

•i - ^ ~ '

mm

4:..I;_4..^3^U;^j4lj}lil*|j|;^

Profile no : 337

Latitude : 10°50'

Longitude : 37°46.1"

Village : Mindu

Date : 8.2.1981

Profile no : 338

Latitude : 10°48.41

Longitude : 37°46.8'

Village : Mindu

Date : 8.2.1981

Profile no : 339

Latitude : 10°47.3'

Longitude : 37°47.3"

Village : Mindu

Date : 8.2.1981

j B5 | HO j 100

^ i^^ij™' T^pp'':i;!\?-

Profile no : 340

Latitude : 10°!

Longitude : 37°!

Village

Date

Mkowela

11.6.1981

Profile no : 341

Latitude : 10°

Longitude : 37°

Village

Date

Mcwajuni

11.6.1981

Profile no : 342

Latitude : ll°01'

Longitude : 37°18.8'

Village : Nakayaya

Date : 9-2.1981

900 1tO0

\ 4 ^ 1 Tr%^Bj#§Pnia

! = =

-—3^-J.i4.,a:-.^:4j4.[|:^g

Profile no

Latitude

Longitude

Village

Date

343

Mpelembe

9.2.1981

Profile no : 344

Latitude : 10°52.8'

Longitude : 37°26.8'

Village : Msagula

Date : 7.2.1981

Profile no : 345

Latitude : 10°52.8'

Longitude : 37°41'

Village : Mtetesi River

Date : 8.1.1981

Page 154: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

6SC '. W

^#^.V-

Profile no : 346

Latitude : 11°1

Longitude : 37 1

Village

Date

'tola

9.2.1981

Profile no : 347

Latitude : 10°52.5'

Longitude : 37°44.1'

Village : Mtonya

Date : 10.6.1981

Profile no : 348

Latitude : 11°13.1'

Longitude : 37°27.5'

Village : Mtolela

Date : 13.6.1981

"I—™

--~=^^=mmmmm

Profile no

Latitude

Longitude

Village

Date

349

Mtwaro

13.6.1981

Profile no : 350

Latitude : 11°27.91

Longitude : 36°59'

Village : Nalasi

Date : 12.6.1981

Profile no : 351

Latitude : 10°

Longitude : 37°2

Village

Date

Nalyawale

7.2.1981

" I - . .

.i;:;^:i—i^-i-^A-i^ *•

Profile no :

Latitude :

Longitude :

Village :

Date :

352

Namakambale

8.2.1981

Profile no : 353

Latitude : 10°54.9"

Longitude : 37°51'

Village : Namakambale

Date : 11.6.1981

Profile no : 354

Latitude : 1O°51.3'

Longitude : 35°33.3'

Village : Namakambale

Date : 8.2.1981

Page 155: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

g — • -*- • —- * —

•4-s-*-

'. IZ.LSTE

•IP

i

=F 4*3-r-t ;.iu;l:-^=i.y-.

: : r p t : : p ^ -i^ n iffl-

1

!.!

1—i

— 7 — -

—T '" ':

-ii . .. ..:

— . —

1

i^-- -U-

w :'"^\r'i

Tii-- tt^

- , ; .- • - • • • • - 1 - ^ ' :

. . . . : . . . . - .

. _ _ _

rr-

'iii

1-

—;—;-__ J..J

Profile no : 355

Latitude : 10°58.5'

Longitude : 37°23.6'

Village : Namakungwa

Date : 10.6.1981

Profile no : 356

Latitude : 10°41.2'

Longitude : 36°53.8'

Village : Namakungwa

Date : 15.6.1981

Profile no : 357

Latitude : 10°4

Longitude : 36°5

Village

Date

: Namakungwa

: 7.2.1981

h

1

3T00

•f .. .

- ^ : : :

— • • . " ; " _

:•=:- =™.is.

• • • . . • ' - i •

"H"—i3*!""^.1"

— ^ — •

-j'!fr--;- i|ij'^'**1

4TT=:.-.r—S~l •:•-.,-

1

-••:-

• 0

-V—

V

-T^T

v-:.;:-

• • - •

i^il

1 "

t "•'

i-i-rr-rr

&

•H- —

U-'.::." ... 1: . : T . • • •

; . , „ •

1 '••

-2.-±z Li3-:-_TL-

W

Profile no : 358

Latitude : ll°0

Longitude : 37°2

Village

Date

Nanasakata

13.6.1981

Profile no : 359

Latitude : 10°50.7'

Longitude : 37°10.8'

Village : Nampungu River

Date : 7.2.1981

Profile no : 360

Latitude : 10°57.1'

Longitude : 37°14.6'

Village : Nandembo

Date : 15.6.1981

TFBT "I— [zaq *to 1 —

1 -vt^W^MmM-m

,.;::. :-;»• 'L L-± y-

Profile no :

Latitude :

Longitude :

Village :

Date :

361

Ngapunda

12.6.1981

Profile no : 362

Latitude : l6°48.6'

Longitude : 36°56.7'

Village : Ndeyende Ya pili

Date : 7.2.1981

Profile no : 363

Latitude : 10°48.1'

Longitude : 36°55.4'

Village : Ndeyende Ya Pili

Date : 15.6.1981

Page 156: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: RUVUMA

1

f " •

i-

1D00

—--

_

17D

• • \ ; . . - ;

•y; •—'•;—•- ' :.i "~

•7J;'V-r-t |:jlr"'"t"'j''^"7—• • • - : i • ; : . ' • - — ' -

-170

i ! !*rl"; " ' • H J

BM.Ijjji i i j ja^1.::;:!3-:::iSf»=-

i .:viMj:i[jiii;hj.a.'i

I

Profile no : 364

Latitude : 10°5

Longitude : 37°;

Village

Date

Profile no : 365

Pucha Pucha

8.2.1981

Latitude

Longitude

Village

Date

: 10°52.7'

: 37°27'

: Sagula

: 10.6.1981

Profile no : 366

Latitude : 10°4 7.8'

Longitude : 37°58 •

Village : Tinginya

Date : 11.6.1981

•« i '. •• .'1 i " i T

i- '...:-—-•

;:::^z^

•e.!,\

Profile no : 367

Latitude : 11°1

Longitude : 37°2

Village

Date

3 km, Tunduru

17.11-1981

Profile no

Latitude

Longitude

Village

368

Tunduru, Masasi

17.11.1981

Profile no : 369

Latitude : 10°1

Longitude : 35 3

Villaae

Date

Hanga

4.11.1981

' '•'•';:~ "V]"i \\\ " '"l''~X"'Tl'iTC^L"I^i^

li -=Z:--::~-L:--Z=Z

• 'Z'" ~\ — - —

--—' —- :T-

—^. l-i-r.

Profile no :Latitude

Longitude :Village :

Date :

— - ;-_——

3 7 1

ro°io35°39Hanga

4 . 1 1 .

• : • 1 ' =

I

. 5 '

1981

370Profile no

Latitude

Longitude

Village : Azitnio

Date : 18.11.1981

ll°08'37°17'

Profile no :

Latitude :

Longitude :

Village :

Date :

372

Azimio

18.11.1981

Page 157: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

6 E 0 E L E C T R I C S O U N D I N G S REGION: RUVUMA

•. ' ' ' 1 1 . » '

^ rjj\m'j-m

Profile no : 373

Latitude : 11°

Longitude : 37°

Village

Date: Azimio

: 18.11.1981

Profile no :

Latitude :

Longitude :

Village :

Date :

374

Azimio

18.11.1981

Profile no : 375

Latitude

Longitude

Village

Date

ll°07.5'

Azimio

18.11.1981

i-P

m

1 : .. ' . -"—- — '"*' - , | . L ! : . ; . ' : •*' !TI IJ ..' ~ . ^ ? . "'U.r .. ._ r = _ T r C

Profile no : 376

Latitude : 10°16'

Longitude : 35°38'

Village : Gurabiro

Date : 4.11.1981

Profile no

Latitude

Longitude

Village

377

Sisikwa, Sisi

17.11.1981

Profile no : 378

Latitude : 1O°5

Longitude : 37°2

Village

Date

8*5 km, Tunduru

17.11.1981

iti-t

^—^—mIP\m1m

••A-

Profile no

Latitude

Longitude

Village

Date

379

Ndenyende

11.11.1981.

Profile no :Latitude :

Longitude :

Village :

Date :

380

10°7.8-

35O40'

Mkutano

5.11.1981

Page 158: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

MBEYA

Page 159: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: MBEYA

f—I "

--M • • - • • i l l - f ! •

• • ( . • > "

— !

k- r f

.j.pliiC* : :

irnfjf

iii—

Profile no : 101

Latitude : 8°36.8'

Longitude : 33°01.1'

Village : Galula

Date : 25.9.1980

Profile no : 102

Latitude : 8°36.8'

Longitude : 33°01.5"

Village : Galula

Date : 25.9.1980

Profile no : 103

Latitude : 8°

Longitude : 33°

Village

Date: Ifuko

: 25.9.1980

T^\ "

-' -•:->=:::: ^ ^

III

f

^ 1 i

—•*=?•

• . " . ; -.7:

- - . ^

H :- 1 'J3

—: " "^

| " •++: "••r

— i

.....

— » r • • • -

J — • • • ' • • ^ —

.t;^" -TJ: ;.! !.:.: . : '

y^fftftW ' "' ^

-='7~-;.:.y--:.-.--- =

_ _ . . ^ . _ • - . :

rfT: • . : • • : . . • -

i—*. ' ." I f"' - '

Profile no : 104

Latitude : 8°

Longitude : 33°

Village

Date-

Ifuko

25.9.1980

Profile no : 105

Latitude : 7°

Longitude : 33°

Village

Date

Kambi Katoto

30.10.1980

Profile no : 106

Latitude : 7°1

Longitude : 33°3

Village

Date

: Kambi Katoto

: 30.10.1980

I >•" I

!r?t .i 1 j 1"{ |} '^' — * V^ H: .• . L . i J . I •! j : • •"• • - • A : • :

•_•. :. : • — . _ . . ! . . ! ::; : i . : V ^ ~-=^ .

1

- • • • " • - " • - -

- : V i . , : -

» •

iH-

IT:

. . : • r

— \

— •

*

J

• T

1 1 ••4a ii

„ ;,::

r H : -"••.-]-:-?

1 , 1 , . : . _

19 •W

Profile no

Latitude

Longitude

Village

Date

107

Kanga

26.9.1980

Profile no : 108

Latitude t 8°34.4'

Longitude : 33°03.1'

Village : Kanga

Date : 26.9.1980

Profile no : 109

Latitude : 8°

Longitude : 33°

Village

Date

: Kanga

: 26.9.1980

Page 160: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E 0 E L E C T R 1 C S O U N D I N G S REGION: MBEYA

I ; » I »

: 7 '-. ' •'-•'•_/

_ j - ^ . .

/ / . . - " • ; • • •

y--i--U 1-1:1+)— -1—

Irfiir

Profile no : 110

Latitude : 8°3

Longitude : 33°2

i Village

Date

Kiwanja

18.9.1980

Profile no : 112

Latitude : 8°3

Longitude

Village

Date

: 33°24.8'

: Kiwanja

: 28.4.1981

Profile no : 113

Latitude : 8°33.5'

Longitude : 33°26'

Village : Kiwanja

Date : 28.4.1981

111 inn

j •.

'Z'ZZ

» I

—J—H—:

r-j:' ••.. j. -?

. i L : -:v-

:";. X'-i

:::.. :.-l

0D 1

-^-T-~" 17.

^ - • - - 7 " ... .

••-!i»?!H:;ij:--;.;'

IK' H]j^:l: -''. -

•fei ;.;j;rf':>': :i

.. • i I i; .i ' • — :

| '100 I

- • • : ' - . - . —

. -' '"T• : : : ;

£-i •;• •

: ; • : - ' : . ^ \ . : : : . • • • ; • _

• • • . : . . - . • • = • . • = • : - . i •• • : . - -

•••:•: ..- Ji;i'.,jp-- • -

U=.--" 1£7-'": l-.T:! ::;•.: :71;:' 7^=

Profile no : 114

Latitude : 8°;

Longitude : 33 ]

Village

Date

Kungutas

30.4.1981

Profile no : 115

Latitude : 8°27.5'

Longitude : 33°14.1'

Village

Date

: Kungutas

: 30.4.1981

Profile no : 116

Latitude : 8°4 0.7"

Longitude : 33°17.9'

Village : Lupa Goldfield

Date : 22.10.1980

|SOO-IOO| J — r^T^i

I:; l.i \J\. •-!, .1 J.I :.;|!- -

Profile no : 117

Latitude : 7°5

Longitude : 33°1

Village

Date

Profile no : 118 Profile no : 119

Lupa Tingatinga

30.10.1980

Latitude

Longitude

Village

Date

s 7°30'

: 33°26'

: Mafyeko

: 30.10.1980

Latitude

Longitude

Village

Date

: 8°37.5-

: 32°57'

: Magamba

: 2.10.1980

Page 161: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: MBEYA

100 33

11 i

iti

'[".'."'

« - -

, j : " . ; • • • • '

13

— ; • - ,

' . - I " : • . M * " "

- -..:; .':\> l4-;:ifaa

_ ^ » * i l i i r i j i :T' ;• -••••

.. . __.-^j.i-;,(ji:4 4 ^

Profile no : 120

Latitude : 8°2

Longitude : 33°1

Village

Date

: Makongolosi

: 31.10.1980

Profile no : I22

Latitude : 8°03.3'

Longitude : 33°16.2'

Village : Mamba

Date : 29.4.1981

Profile no : 123

Latitude : 8°03.8"

Longitude : 33°15.9'

Village : Mamba

Date : 29.4.1981

130

. - ,

I

1

. • . •

\

- r

•Sit"

- 3 -

^-_

" 1

. . . ? . ; • ; : >

4_u:i.U+:_..iq

TTTJ" m1 ?v*.

~;-^-ni:""::

. . . . •

r - . '• '.

• • : • " T . = . . r •

-*M_=d:.J=j- •:iiii

fa.15

K-Tr:Jr;rr

"!.M It • m i n - 1 !„..

Profile no : 124

Latitude : 8°0

Longitude : 33 1

Village

Date

Mamba

29.4.1981

Profile no : 125

Latitude : 8°25.9'

Longitude : 33°31.9'

Village : Mapogolo

Date : 29.10.1980

Profile no

Latitude

Longitude

Village

Date

126

Matundasi

31.10.1980

TT- T ^ If''nK! ; i'iTI| -• Eij-U-J J-UJ!'-— !i3

! 1>

!:••-'• 1 - 5 . . 4 ' • '

j ; ; , . . • ! • : ; ; ^

490

jrn-:-7-t"-H'+

t"rf-^ •-:—j-+iiij.:. .. :s-k

YVy—'IVf •!'' i 1 : : ! . • ^ = M : ••

: • ' ; . ; • : ' • " ' "

: f j ^ ;:- : '

.i-jl'.;;-, ;-,;; Di.::tiU: ': ' ' • ' "

•• H • f-

Profile no

Latitude

Longitude

Village

Date

127

Mbuyuni

3.10.1980

Profile no : 128

Latitude : 8°4

Longitude : 33°0

Village

Date

Nsangamwelu

17.10.1980

Profile no -. 129

Latitude : 8°2

Longitude : 33°1

Village

DateNtumbi Mines

29.10.1980

Page 162: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: MBEYA

i

} - .-=- -

" ! " • - '

, . , ) . ; . , . . , , ,11 II j ^

^H'"H HfMifll^

_ ;;-_-— ;';Tg ;*T3JM

•Milrtyijt'jB

...-EElsgliilbS i

1 »° 1

I:. .:• -f - — r —

' ~ ••- - 4 -

•—-f-^—

; _ . ~.j . . .

: : • • . . - - r

_ . . .

III

^SS^:

" ^

III

, .—'. rz:

. . • . .

—T—r^-T-—~,

- '-'• •'-• ; i . •' : ; ; ; "

_ ..r.4li.i;;.|JI .:...: .^

fr^— -_^~j-

Profile no : 130

Latitude : 8°2

Longitude

Village

Date

33°36.7'

Sangarabi

22.10.1980

Profile no : 131

Latitude : 8°30'

Longitude : 32°50.V

Village : Totoe/Totowe

Date : 3.10.1980

Profile no : 132

Latitude : 9°22.9"

Longitude : 33°01.9'

Village : Jkumbilo

Date : 21.11.1980

| ::..:...,.»;3j.

a ^ ; '•' '

:, A=-

• - ' - # :

. i_L-

- " • - :

-TTT

- - T -

1

. - : • = = =

; ^ ^ Ez—imt^rFimWm

II Profile no

Latitude

Longitude

Village

Date

134

9°20.9'

32°59.1'

Mbebe

20.11.1980

Profile no : 135

Latitude : 9°1

Longitude : 32°4

Village

Date

Nandanga

17.11.1980

Profile no : 136

Latitude : 9°29.2'

Longitude : 33°53.2'

Village : Ipinda

: 18.12.1980

t : - .

1 :—

i i

— . . . '

: - - — —

,

HIT

• • : • ; : " ~ -

. . ' • . " • I 1

' » **•' —r

I '•;'p-i V'ti^.i-rij-^^p^^Big

:v:3ri;^S3S

^=^¥-

Profile no :

Latitude :

Longitude :

Village :

Date :

137

9°34.6'

33°51.3'

Kikusya

18.12.1980

Profile no : 138

Latitude : 9°

Longitude : 33°

Village

Date: Kyela

: 16.10.1980

Profile no : 139

Latitude : 9°33.8'

Longitude : 33°53.2'

Village : Tenende

Date : 18.12.1980

Page 163: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: HBEYA

I — ' *r~

» = •

mwm

J--

1 P ! 7

• • • . j - ^

- 4 4 j • '

lift!§•;:•

Profile no : 140

Latitude :

Longitude :

Village : Mbeya Airport

Date : 8.10.1980

8°54.9'

33°27.6'

Profile no

Latitude

Longitude

Village

Date

141

Ijumbi

17.9.1980

Profile no : 142

Latitude : 8°46.9'

Longitude : 33°4 3'

Village : Olongo

Date : 15.9.1980

I » I

-rtf'

1"I:..—f —i u "i

-r

'Iff?

TF=^ i

T---T- p ^

-•(-M'i 4-(-

; ! • * • - " - J "

- ri'!r V 1W

^ S i i * . ' . : : : • ; • • .—: -

JJ. [• ! . ' : : : • : • • " : . " -

I

r*

nnrpi

^? ;.):;.ri

I B

P

Srt-»-: —

'•"~"^r

Profile no : 143

Latitude : 8°4

Longitude : 33°4

Village

Date

Jlongo

10.9.1980

Profile no

Latitude

Longitude

Village

Date

144

Jlongo

15.9.1980

Profile no : 145

Latitude : 8°4

Longitude : 33°4

Village

Date: Jlongo

: 15.9.1980

• :• • • [ . . 4 . ' ! ! • • ; • : • : • " • • ? ~ i ~ -

1

\**-zi=

.« |

. . ~ • • • • : - - , • - :

. ' "'J • J •' •• • ' : - - - : ] . ' :

!'--!.-:4-r*:r!:. .. , - -.:

IT

l | ^ ' '••:.:

• ; . • •

1 «»

• " • d ":

i * ! j-

i I " ':

• • • ' • • " ' • * • *

- "i j'+j-U-^H - V ^ T I. ; . " ; • j - 3 i . j Hs".\... i •• =

- . : . • . • = : : : : : ! - . : •• . : . : . - _ r

Profile no

Latitude

Longitude

Village

Date

146

Iyunga

8.10.1980

Profile no

Latitude

Longitude

Village

Date

14 7

Kongolo

17.9.1980

Profile no : 148

Latitude : 8°58.4'

Longitude : 33°13.6'

Village : Magereza

Date : 8.10.1980

Page 164: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: MBEYA

. . - - . • - r " : . : : '

•••: j-:; ~ fti^j^"

—. - . : ~ :^i.:i::r—

"ft——

; • ; • • : - . • . • . i • " ,

"%*2H1H:*::1.»i"it

*m

Sr j ui

• ' P 7 •! ' ! ] j . ' . -.. . ^ r -

• - - 7 3 - ' ••••;•!-; >--7 fl:

Profile no : 149

Latitude : 8°4

Longitude : 33 4

Village

Date

Mahango

16.9.1980

Profile no : 150

Latitude : 8°

Longitude : 33°

Village

Date

Mbeya

7.10.1980

Profile no : 151

Latitude : 8°46.2'

Longitude : 33 42.3'

Village : Mlowe

Date : 16.9.1980

9.3

I - - • • • • : - • • • - - • • • • " :

1 '•

: .•;:••. . :

l ; = r

' ' '" i i • " ' • ^ = 5 -

4-j.ti. • • - + ' ? •

-+ ^-*-

• ^ ^ ~ "

^ ~L

Profile no : 152

Latitude : 8°4

Longitude

Village

Date

33°45.1'

Nsonyanga

15.9.1980

Profile no : 153

Latitude : 8°5

Longitude : 33°1

Village

Date

Songwe

14.10.1980

Profile no : 154

Latitude : 8°5

Longitude : 33°1

Village

Date

: Songwe

: 14.10.1980

W "° 770 7«

I:;} "•'•••: "'• - ••" ! :! ' ' ' - i i - g i ' i ^ - : •" '

%y-

Profile no

Latitude

Longitude

Village

Date

156

Chiwanda

21.4.1981

Profile no : 157

Latitude : 9°1

Longitude : 32°3

Village

Date

Profile no : 158

Chiwanda

22.4.1981

Latitude

Longitude

Village

Date

9°10.2'

32°33.8'

Chiwanda

22.4.1981

Page 165: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: MBEYA

\:

1—

• • • • j - i

• } .

iSi

'"J 1* : .

| . ;J

49: "*if; :.

m

.-{-.• I j ;

\ ." i ti.j.'iiiiii

• ::=Ai.:-i3:':|!l=i .'I feSJkBitf!t ;;;-'i~.::;E=i i ^

• • • • _

i Vf1. • •

: . • : : : • . " • ~

aii:H£===

• 'i'T|i-lUii T

(ZZ. t —

- •

, :

H'» 1

—ir^i

—E-

aj-i-'j.J

* ^ %

— \ -; \ •

; , 1 ..

- -T4~

\ \ -----

. i_

1 " ° i

.::; •;::;. ...- ;-

" * r*r ; •'"'

_

Profile no : 162

Latitude : 8°25.8'

Longitude : 32°28.9*

Village : Ivuna

Date : 27.1.1981

Profile no

Latitude

Longitude

Village

Date

163

: Kamsamba

: 27.1.1981

Profile no : 164

Latitude : 8°

Longitude °

Village

Date

: 32°27.3': Mbao

: 28.1.1981

f:Kii^ijj

,"Y~- : ^-^ i -

•:::::r.z—.:_.:' ':

. ' . 3 ' * ! •

• — - — ~^': : ; - i : ' - - ^ ^

Profile no : 166

Latitude : 9°05.5"

Longitude : 32°57.3'

Village : Mbimba

Date : 28.11.1980

Profile no : 167

Latitude : 9°05.5'

Longitude : 32°57.3'

Village : Mbimba

Date : 9.10.1980

Profile no : 168Latitude : 8°25.9'Longitude : 32°31.4'Village : KinaraweneDate : 27.1.1981

""h-Iir

i '.: i\i

- ,.;rrvj .. ' i.-:-1 - i - *

-irj:::!.!i: 'ra"i;i.:i::j .

r' 1 i iTt:: +i-

':.- ! : h i .

r-TTTrr—

> " i ' 1

•..~s • J 11 : t i ( . . . . . . . ^

si M.i

•:\U:i"

1

•^-i!|-1:!-H 1_h_.. r :?

• • : • : - . • • . -

II-

j:--',-4 4,

1 Cl 1 Cl | t . fci

- _ • . . • • - . • • -

i i 1 i •!H ; i "

•ffifp'

| 100 j 1C

Profile no : 170

Latitude : 9°01.1'

Longitude : 32°58.7'

Village : Mbozi Mission

Date : 30.9.1980

Profile no : 171

Latitude : 9°01.9'

Longitude : 32°55.9'

Village : Mbozi Mission

Date : 8.12.1980

Profile no : 172

Latitude : 8°4 2.1'

Longitude : 32°10.4'

Village - : Mkutano

Date : 13.11.1980

Page 166: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S REGION: MBEYA

—; ;—>-* i._,-j .f'j-j.l.J.H'HjkT-U

; ; : ^ * i 4 . . . \ ! - - •:•. . : ^ i -

raermmrisi

£••—

u

fi

t '""*

1 -M

.

'» i

. .

.. rq...^.:j,i..V^_ .- i_.: : ;-. .

\ — — - - —

,._^. ._.::.... . ..

L • : —

• . - . ' • : • • . :

...;._ ;Xj.|44.j, —.-^

—- j •-•=-H-;-H~:^-^

V ^ :-r-r —r-='-H-i-Htt?i—T-^5

-L....!. 44:l.i.!.U.. .' _!.^.

: . : • : • ; : _ . •

• IOC 1C

WuvMT

Profile no : 173

Latitude : 8°24.3'

Longitude : 32°22.2'

Village : Mpapa

Date : 28.1.1981

Profile no : 174

Latitude : 9°

Longitude : 32°

Village

Date

: Mpemba

: 11.11.1980

Profile no : 178

Latitude : 9°16.2'

Longitude : 32°49.1"

Village : Mpemba

Date : 14.5.1981

I no | ui | ?*oo !»...

[ : p * ^ Jtr.y^^gtl^Mi ^ : f ^ i f ! ; g g ^

z^znirz-rr.r^—z:

JHn'i

:; ;i t -.

Profile no

Latitude

Longitude

Village

Date

179

Nkangamo

15.11.1980

Profile no : 180

Latitude : 9°14.5"

Longitude : 32°37.5'

Village : Nkangamo

Date 15.10.1980

Profile no

Latitude

Longitude

Village

Date

181

Nzoka

13.11.1980

j .

» r:'S

:czz

: .- -^ t : — ^ ~

I " -^Si 1 •

| 5'50

; !•! r r f : i j

•ilrJ-'i-T—y-H:

•: • z • • m~

mmi

i i . ! •

.j.jj|....:.-!_3

I:H3...:.J.J3

;•-

j. gigiil^pi^

: : • • . • • ; • • • : ; . 1 . - _ : -i r-r T—J

:!J]i:u!L«|ii

Profile no

Latitude

Longitude

Village

Date

182

Rungwa

30.9.1980

8°51.8'

Profile no : 183

Latitude

Longitude : 32U59.4'

Village : Rungwa

Date : 30.9.1980

Profile no : 184

Latitude : 8°2

Longitude : 32°

Village

Date

: Sawanyambe

: 27.1.1981

Page 167: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

G E O E L E C T R I C S O U N D I N G S

•—S5E h»J_L

jA.

5l

" ; • • = : • : :

i • i

• •

• t • • * ' • 1 1 : i

REGION: MBEYA

| HP

Profile no : 185

Latitude : 8°57.1'

Longitude : 33°10.2'

Village : Senjele

Date : 2.10.1980

Profile no : 186

Latitude : 8°5

Longitude

Village

Date

: 3 3°10.3'

: Senjele

: 2.10.1980

Profile no : 187

Latitude : 9°18.8'

Longitude : 32°46.3'

Village : Tunduma

Date : 8.10.1980

1 '

I-P^d

• i

-~-;i5'j™

~~.;f-^'-;-*j'a;

1 n " I « 1

j^^pgi^

Profile no : 188

Latitude : 9°18.6I

Longitude : 32°47.3"

Village : Tunduma

Date : 9.10.1980

Profile no : 190

Latitude : 9°05.2'

Longitude : 32°56.3"

Village : Vwawa

Date : 10.4.1981

Profile no : 191

Latitude : 9°05.2'

Longitude : 32°56.3'

Village : Vwawa

Date : 9.4.1981

,1.p 1 >.. 1 ,. 1

Profile no :Latitude :

Longitude

Village :

Date :

l»i

9°02.4'

33°35.8'

Idweli

1.4.1981

I » ' I

Profile no :Latitude :

Longitude :

Village :

Date :

194

9°02.8"

33°35.6'

Idweli

1.4.1981

Page 168: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I O N T R A V E R S E S . R E G I O N : M B E Y A

— 400

E 200

• A / \

n---

VV-

GS

113

A A A

\

i]

11

-

-

-

-

-DO 300 400

Traverse no :

Latitude :

Longitude :Village :Date :

500 100

DISTANCE

101

8 ° 3 3 . 4 '

33°26-

Kiwanja2 8 . 4 . 8 1

700

Im)

100 (00 1000 1100 1200

P 100

122

'

Of 1

iff \

-rv V

100 200 300 400

DISTANCE I m )

Traverse no

Latitude

Longitude

Village

Date

121 A

Maraba

29.4.81

— 120t

-AV AK -GS

1

23

V

/\f VI-

w--

100 200 300 400 500

DISTANCE ' m l

• 00 700 tOO

Traverse no

Latitude

Longitude

Village

Date

121 B

8°03

33C 3 15

Mamba

29 . . 4 .

. 9 '

. 8 '

81

Page 169: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I O N T R A V E R S E S R E G I O N : M B E Y A

— 1000E

A

\

\

\

\ I I

in toe jot tee too 1000

DISTANCE I m l

Traverse no :

Latitude :

Longitude :

133

35°58.9'

VillageD a t e

Mbebe

20.11.80

too

)

1 rVV u1

a

E

M

1 -A.

f V/LA

\

\

\

A j£

r0

CD

A

A-

. /

V .

--

100 200 300 400 SOO iOO 700 100 <O0 1000

D I S T A N C E [ m l

Traverse no :

Latitude :

Longitude :

155 A Village

Date

Chiwanda

22.4.81

Page 170: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I O N T R A V E R S E S REGION: MBEYA

A

-

-

\

\

c

I

V

-

-

-

-

\

-

-

-0 100 200 100 400

DISTANCE I n )

Traverse noLatitudeLongitudeVillageDate

155 B

Chiwanda23.4.81

- 00E \TV

---

A---

ai

gc

1)

9

-

-

0 tOO 200 100 ' 0 0 900 100

D I S T A N C E I m l

Traverse no :Latitude :

Longitude :

Village :

Date :

165

9°05.32°57.Mbimba

2 8 . 1 1 .

2 '

4 '

80

Page 171: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I O N T R A V E R S E S REGION: MBEYA

1/u

V

\

\ V -OS

171

------

-

Traverse no

Latitude

Longitude

900 400 900 tot 700 »«0 (00 1*00 1100 1200 1300 1400

DISTANCE ln>)

169 Village

Date

Mbozi

8.12.80

0 100 200 300 400 900 (00

Traverse no :Latitude :

Longitude :

Village :

Date :

1769°16.2

32°49.1

Mpemba

8.4.81

Page 172: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I O N T R A V E R S E S REGION: MBEYA

1 * 1

I

J

II

I:

••

/

Asr j

f/—

I

\h1

/ % •

A"

/ \ /V •

IM |N ••• Ml 1M ItM It**

Traverse no :

Latitude :

Longitude :

Village :

Date :

177

9

32

°15.6°50.2

Mpemba14 .5.81

—>

-

A«s

\J

A

Vs—

•o1

in ft

10

EW 2 BZ

o40

U K

1

O I * T « K C I ( m l

\

Traverse no :Latitude

Longitude :

Village :

Date :

189

9°03.5

32°57'Vwawa

S.4 .81

The lower graph illustrates resultsfrora seismic soundings 101-107.

Page 173: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

C O N S T A N T S E P A R A T I 0 N T R A V E R S E S REGION: MBEYA

_ tooE

- CS

113

J, . V)o fJJA

-

/ .

-

-

-

0 100 200 300 ««0 l t 0 «»0 700 100 (00 1000 1100 t>00 1300 1400

DISTANCE I n )

Traverse no :

Latitude :

Longitude :

Village :

Date :

1929°02.4

33°35.6

Idwell

6.4.81

Page 174: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

PV

IRINGA

Page 175: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: IRINGA

0 1 *

O l f

014

01}

! o.o

[ 00*

oee

0 0 }

TRAVEL

1 V

! m

I

¥

K

E

:

DIAGRAM

• 5 *

s

|

= 3 • • >•

0 1 *

B i t

0 1 )

I ...

:OAI

00*

00}

TRAVEL

• m

x>

Z *

HE

k i

>

OUOUM

aa • • a • M

^|

INTEKWIETJJICH :

•*• M K * V '."»*/i

TRAVEL TIME DIAGRAM :

Profile no : 201

Latitude : 7°4 7.5'

Longitude : 35°10.9"

Village : Idodi

Date : 30.4.1981

Profile no : 202

Latitude ' : 7°4 9.4'

Longitude : 35°06.9"

Village : Mapogoro

Date : 30.4.1981

Profile no : 203

Latitude : 7°39.7'

Longitude : 35°22.3'

Village : Mloa

Date : 28.4.1981

on

00'

£ OCR

OCJ

C07

TRAVEL

t 1

TIME

1 ;

OUORAM

r

i

s\\

| OOJ

i-

2

a,

-

1h

- 1

i

I

7

"3

TME

2

DUGRAM

I I;

1

i

-J-

rr-

. : V

» m » n » C » U '» ?*

INTIRWIITATPON : INTEWMt IR1IGN :

Profile no : 204

Latitude : 7°35.7"

Longitude : 35°22.8'

Village : Mafruto

D a t e : 29.4.1981

Profile no :

Latitude

Longitude :

Village :

Date :

205

7°43

35°32

Nzihl

28.4.

. 0 "

. 1 '

1981

Profile no : 206

Latitude : 10°29.0'

Longitude : 34°4 2.9'

Village : Ngerenge

Date : 5.12.1980

Page 176: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: IR1NGA

TRAVEL TIME DIAGRAM ;

O i l

O n

„ on.

OCf

c:..

oc;

'• • i •

i i

, *sr 1 H

1 ,

• | • , ' < T 1 1 1

1

h

1 ,

i

" ^ • I

O M

O M

ou

0 1 ?

S 0 0

r OM

COi

CO]

TRAVEL TIME

•j,

t

<T 1

i /

DlAOfi

_ j

11

AlM

l1

i

I

• 3

f

3

=

O i l

0 1 *

O U

0 1 }

I 010

J.O.oot

OCu

0 0 1

TRAVEL

1-t-j-

TlMt

~p7

If

1

=

-

DUG* A

I

H

I

1i • i

. i

i • 1 '

n •1 V,

IS\—\ - i —

0 I » 11 M tC i l M H T3 K

IMTERPRCMTIQN :

Profile no : 207

Latitude : 8°14.8'

j Longitude : 35°15.7'

I Village : Ndoiezi

Date : 31.3.1981

Profile no : 208

Latitude

Longitude

Village : Ilembula

Date : 17.12.1980

8°53.6'

34°34.4'

Profile no :

Latitude :

Longitude :

Village :

Date :

209

9°16.3'

35°00.4'

Kidegembye

4.6.1981

Page 177: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA

Page 178: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: RUVUMA

TRAVEL

'.

t

-

I C

i

DIAORAM

E 5i -i . -

a •

sINTERPRET*! B N :

i. ME DIAGRAM

1

z

\e s si u

MTERPflEiAliCN

TRAVEL

a •

f

i

T

=

DIAGRAM

2 •

j |

d

\

h

Profile no : 301

Latitude : 10°33.3'

Longitude : 34°37.5'

Village : Lituhi

Date : 24.6.1981

Profile no : 302

Latitude : U°18.0'

Longitude : 34°50.5'

Village : Mbamba Bay

Date : 23.6.1981

Profile no : 303

Latitude : 1O°5O.2"

Longitude : 35°00.7'

Village : Mbinga

Date : 23.6.1981

e n

" 6

O i ?

cot

cot

OUJ

TRAVEL TME

: 1 '

' 1

7¥]

DIAGRAM

I . I . I

i l l ' 1 '

f

f

k •

1

J-Lla

, I

i

c

i • 1 :

i

I

1 i '

c

IS

O i l

9 1 *

g u

o n

! 0-0

I N i

0 0 1

TRAVEL

• = -

• C DM0R4M

1

- 9 H

1

-

1 1

e a -.

1

KTER«*eTWION .

TRAVEL T»C

i

DIAGRA*

H~i—f™1

; 11

1 ' !

-H-+• . i i T ^ * - 4

i '

A

i , 1 ,

/ ' '. ' i L

I 1 i

1 ' I

|

2

C 'J K M> a «C T3

INTERPRETATION .

Profile no : 304

Latitude : 10°32.7'

Longitude : 34°57.3'

Village : Rvanda

Date : 24.6.1981

Profile no : 305

Latitude

Longitude

Village : 4 0 km from Songea

Date : 5.6.1981

10°21.3'

35°39.7-

Profile no : 306

Latitude : 10°31.6'

Longitude : 36°12.1'

Village : 80 km from Songea

Date : 16.6.1981

Page 179: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I- L ' E S REGION: RUVUMA

Oi l

0 1 *

OH

00*

004

001

TRAVEL 1 mfc 01AORAM

-

C C K M l O l O M T O B f O W O i *

INTERPRETATION :

l f t , . i T O - X ' * * * - .

TRAVEL TIME DIAGRAM

\ ' j i

• i • i •

• ;

|

1

I • • • '

' I.' »* K K K. 77 K «( W 170 i l i ' M

INTERPRETATION

Profile no : 307

| Latitude : 9°56.5"

I Longitude : 35°37.6'

: Village : 95 km from Songea

! Date : 5.6.1981

Profile no : 308

Latitude : 10°406'

Longitude : 35°35.3'

Village : Songea Airport

Date : 25.6.1981

Profile no : 309

Latitude : 10°19.0'

Longitude : 36°15.0'

Village : Likuyu

Date : 19.6.1981

J CO.

TRAVEL T M I L)

: | | • 1

|

I J

AGRA** :

— I : r ' '

— - • i 1 ! ' • •

AT 11

" ^ * t-5 1 L_L

1 ' '

1 J>41+^i ;; 1

i o.e

TRAVEL

i

TtC

1

DIAORAf.

• • i

1

-4

|

|

i

i Jf\

Jf i '.! / , i

ir

n:1 'N

3

s ±"T

±

"J.f i! \ !1

P

i

i

•q

VI L T M

1E

1I :

; i

-+-4-

DM3RA>

j

«

-U-

;

•»

4-

--

m OD tviM

NTERPOETAtlON INTERPRETATION

Profile no : 310

Latitude : ll°03.8'

Longitude : 36°02.9'

Village : Lukirawa

Date : 18.6.1981

Profile no : 311

Latitude : 10°17.8'

Longitude : 36°06.0'

Village : Mgombasi

Date : 19.6.1981

Profile no : 312

Latitude : 11°31.8'

Longitude : 35°25.9'

Village : Mitomoni

Date : 22.6.1981

Page 180: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: RUVUMA

an

Oil

Ol i

01}

010

DM

OM

00]

TRAVEL

• s •

T»€

m

DIAGRAM

= i„

as • • a s

TRAVEL

,1J

TNE

?

2

DIAGRAM

i •• •

• •

6 » » » M

OJO

on

011

1...

«•004

M l

0

TRAVEL

b • m

IME OtAORAM

•d cJ E i a H ei

WTFIMKWIW

Profile no : 313

Latitude : ll°05.7'

Longitude : 35°29.1'

Village : Mkayukayu

Date : 22.6.1981

Profile no : 314

Latitude : 10°4 3.0'

Longitude : 36°01.2'

Village : Mkongo

Date : 18.6.1981

Profile no : 315

Latitude : 9°54.4'

Longitude : 35°34.4'

Village : Rutukira

Date : 5.6.1981

IRAVEl

n

T M DIMS

1 ! : 1 i

• V

A»-

Pc

I

4-

,-

«» w mm

TRAVEL TIME DUOftAMr

• ocu

I t <tt M lu NO IN

INTERPRETATION :

B1*

• 1«

• t*

t i l

HO

OM

OM

• 01

TRAVEL

|

Twe

OUQRAM

4-1• >>>• • • a

INTEKfMCWO) :

Profile no : 316

Latitude : 10°45.2'

Longitude : 36°33.4"

Village •• 144 km from Songea

Date •• 16.6.1981

Profile no : 317

Latitude : ll°05.9'

Longitude : 37°19.3'

Village : Kitanda

Date : 12.6.1981

Profile no : 318

Latitude : 10°49.8'

Longitude : 37°4 6.3'

Village : Mindu

Date : 11.6.1981

Page 181: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: RUVUMA

TRAVEL TIME DIAGRAM ;

oo: -&

-H-j. 1

— i — '

*, !

--r-\-

1

' tH

r

• i ^

rr'1 i l ; \

INTERPRETATION :

TRAVEL

!

- F

THE DlAGRA*

1 ;

. ! 1 •

I

3 •

i

-1Ji

|

e •

1

+1

1

1 ,

1

TRAVEL TIME DIAGRAM:

| OOI

006

•{J '

,

1

- i -

-

-

i

-4-

-J

i

2

|— * - i • • •

"*

11 ; • 11

; ]

— H

• i

. . . i

i

4-

-4*-

i-i-p

•m no mm

INTERPRETATION ^ INTERPRETATION :

Profile no : 319

Latitude : 10°55.3'

; Longitude : 37°56.1'

; Village : Mkowelai

j Date : 11.6.1981

Profile no : 320

Latitude : 11°14.8'

Longitude : 37°33.4'

Village : Mtwaro

Date : 13.6.1981

Profile no : 321

Latitude : 11°11.5'

Longitude : 37°16.0'

Village : Mtola

Date : 12.6.1981

0 0 (

1 1

1 1

1• i

1 ;

j J

1 ' 1

/ i

i : i

a1

: 1

!a%

J M—r-'

••vi . 1

O J .

on

O i l

0 4

CM;

i o-c

sot

C O .

0 0 )

RAVEL TIME

1 : ' '

DIAGRAM

. i , , |

; ; •

1

1 r*J • I

f. ! . 1

|

|T

I^ >

-

1 ! ! ^

TRAVEL TM DIAG(U#i

t i j ) f M i

1 t

_L,

1-

; * •

1 ' !^ : ! .

K) « IO 1« «* **0 " * '

INTERPRETATION - INTERPRETATION : INTERPRETATION

Profile no : 322

Latitude : 10°52.4'

Longitude : 37°4 3.8'

Village : Mtonya/Paheani

Date : 11.6.1981

Profile no : 323

Latitude : 10°51.2'

Longitude : 37°31.5'

Village : Namakarabale

Date : 10.6.1981

Profile no : 324

Latitude : 10°57.0'

Longitude : 37°14.4'

Village : Nandembo

Date : 15.6.1981

Page 182: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: RUVUMA

TRAVEL

+

V

E

J

T

E

I'-

*1

1 1 •

DIAGRAM

l

1

a •

WTERPRETAtlW

TRAVEL

• E

T»C

: •

C

DIAGRAM

D :i

a B

^

c

•y c

TRAVEL

• m

f

f:

=

TM

: 9

DIAOR

H s

[ 1£ = •

I

U±-1-H-

V j TU L

XI\

1 •

^

Profile no : 325

Latitude : 10°4 5.4'

longitude : 36°57.1'

Village : Matemango

Date : 15.6.1981

Profile no : 326

Latitude

Longitude

Village : Namakungwa

Date i 15.6.1981

10°42.0'

36°54.5'

ll°06.3'

Profile no : 327

Latitude

Longitude : 37u27.0"

Village : Namasakata

Dote : 13.6 .1981

O i l

0 1 f t

0 *

0 1 ]

» . . o

!°-001

Q0>.

0 0 ;

TRAVEL

i

T

OUOR

a

Al

4

c=a

TRAVEL ^MC DUGRAM :

i oio

• 091

- - r l

- y*

4-1

i

. ; ; i V{ • 1 i i

i

S 0.0

TRAVE L T

| ' . 1 •

! * •

M

L,

E 0

r

AJA

• o :

V s

INTERPRE1ATI0N :

^ .Kt- v, .in-'*«

Profile no : 328

Latitude : 10°23.5-

Longitude : 37°21.5'

Village : Ngwanga

Date : 12.6.1981

Profile no :

Latitude :

Longitude :

Village :

Date :

329

Puchapucha

10.6.1981

Profile no : 330

Latitude : 10°55.4"

Longitude : 37°24.2'

Village : Nalywale/Sagula

Date : 10.6.1981

Page 183: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: RUVUMA

0 3 6

B i t

Oi l

Oi l

aet

r RAVEL TIME

r

E

DUORAM

1 a • =D a a •a e

« K M l O « w n B M

INTERMEWION :

Profile no : 331

Latitude

Longitude : 37°58.1'

Village : Tinginya

Date : 11.6.1981

Page 184: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

MBEYA

Page 185: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: MBEYA

O H

C U

i 010

r 00*

00*

D C i

oc;

TRAVEL T N

-j-j

a

i

OlAGf)

1 i

3

I •

r

Al<4

1

"I

t !

M

i

I

* * *

1I I I : i

F

1 ^

a nion

INTEBPBEIATION

' • " • v. .M2-

3

to

c

t

r

IP •eE? r s t • e

f

AVtL

= 2

T

ii

MC CMAl3ft

=

1! 1

1 i

i •

!

-

1 t

1 ; ;

I I ; • i . i\wt no i»n

ff^TERPflETATION : NTC0PACUTIOM '

Profile no : 101

Latitude : 9°05.4'

Longitude : 32°56.3'

Village : Vwawa

Date : 24.4.1981

Profile no : 102

Latitude : 9°05.4'

Longitude : 32°56.3'

Village : Vwawa

Date : 24.4.1981

Profile no :

Latitude :

Longitude :

Village :

Date :

103

9°05

32°56

Vwawa

2 4 . 4 .

. 4 '

. 3 '

1981

1—1~?—'—i~•

— - — - - -

l

1 1 : ^ * pim

P ! I ! i

1 ' 1

„ _ „

r—:— • r-

I | ,

— : -

^

01*

01*

Ct?

[ 010

, 00*

OM

OOi

001

TRAVEL

T i

L.A?jf

i

i

h-7

|l|

r1

DIAGRAM

• ^

IP *

\

E i am • -

_•

|

Mi

TRAVEL

|

|

DIAGR

|

A*I

\ .

f

; 1 ,, 1

-

v 1

at nmn

MTtRPRETATKM :

Profile no : 104

Latitude : 9°0 5.4'

Longitude : 32°56.3'

Village : Vwawa

Date : 24.4.1981

Profile no :

Latitude :

Longitude :

Village :

Date :

105

9°05

32°56

Vwawa

2 4 . 4 .

. 4 '

. 3 '

1981

Profile no :

Latitude :

Longitude :

Village :

Date :

106

9°05

32°56

Vwawa

2 3 . 4 .

.4 '

. 3 '

1981

Page 186: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

S E I S M I C P R O F I L E S REGION: MBEYA

TRAVEL

• " f

. . -1

I K

;

: . —

DIAGRAM

• 1 t

x-JH—l-. - ^ L i J ^

—r*?--—^*-«£-

. . . • . v

C •? Ji X i t fcC 7} * i 9t» « ITT 137 l M

: »>3«c» • - .

INT E RPRE TAT iQN

r '-••'

TRAVEL 1 M

• ' •

.

• • —

; /

AGRAM

-

—.—1

— !

_ ,

• —

- •

. . <

. ' ' 1

V : 1/ ' 1 i i/ 1 1 ' !

| : 1 1

1 | 1

1 1 T

i , • 1 , \ "1 • • s1 1 N

TRAVEL ME

A: 1

i

{MGRAMI ;

+

1

t -1 •

I 1 '

• - 1 : .

1

; j

—rf-• , • 1

• , ^ t• I \

0 n B a M 10 H m m u. no i

INTERPfierAIlON :7

Profile no : 107

Latitude : 9°05.4'

Longitude : 32°56.3'

Village : Vwawa

Date : 16.4.1981

Profile no : 108

Latitude : 9°21.0'

Longitude : 32°59.1'

Village : Mbebe

Date : 19.11.1980

Profile no : 109

Latitude : 9°C

Longitude : 32°5

Village

Date

: Vwawa

: 10.04.1981

on

cu

f m e

30*

TRAVEL

i

1 •

J

»«. DIAGRAM

1 i ' ; i :;

i

rf"

i

-

1

U-*

l l f

1

TRAVEL TIME DIAGRAM:

KTERPftETATION -

i ' 1-r-H—

-1—1H -

• /

- | -

' F-

7.

. i 1 : ; • 1 • 1 1 '

1

•j,

• \ N :

1

iH"1• 1 • . '

1

: 1i

I% r

>NTFPPRETATlQN *•

Profile no : 110

Latitude : 9°05.4'

Longitude : 32°56.3'

Village : vwawa

Date : 10.04.1981

Profile no : 111

Latitude : 9°02.4'

Longitude : 33°36.0'

Village : Idweli

Date : 10.04 .1981

Page 187: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA

Page 188: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

GAMMA

Increasing radiation

CALIPER

Inch4 6 6 1012 14

RES. NORMAL

Ohm m1000 2000

SELF POTENTIAL

+ mV +20 10 10 20

SAMPLE

DESCRIPTION

10

20

30

40

50

60

70

Electrode spacing3.0 m

Alluvial toil red

Waathered hornblendegneiet

fiiotita hornblendegneist

Region

District

Village

BH NO.

CCKK No.

Iringa

Iringa

Nzihi

3/81

ID 2

Page 189: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

GAMMA

Increasing radiation

SELF POTENTIAL

^ mV +•400 200 0 200 400

RES. NORMAL

Ohm m1000 2000

RES. LATERAL

Ohm m1000 2000

SAMPLE

DESCRIPTION

10

20

30

40

50

60

70

Electrode spacing

0.8 m

' '

w Sandy toil, red

Water level

Coarii angularalluvium

btottt*gneiss

B+ ++

RegionDistrict

Village

BH No.

CCKK No.

: Iringa: Iringa

: Nzihi

: 4/81

: ID 3

Page 190: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA

Page 191: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Region

District

Village

BH No.

CCKK No.

Ruvuma

Songea

Hanga River

253/81

RD 1

Page 192: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

zI-0.LUa

Metres

GAMMA

Increasing radiation

- * •

RES. NORMAL

Ohm m0 100 200 300 W

SAMPLE

DESCRIPTIONS

Electrode spacing

0,1 m

10

20

30

40

50

60

ITTT ~ T

TTTLZX

T ~ T

I . I

I T T

171

Fine clayey siltstoneand very fine sandstone

Dark brown mudstone,reddish brown micaceoussiltstone

Grey siltstone, veryfine sandstone andmudstone

RegionDistrict

Village

BH No.

CCKK No.

: Ruvuma: Songea

: Gumbiro

: 254/81

: RD 2

Page 193: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

aUJ

oMetres

GAMMA

Increasing radiation

RES. NORMAL

Ohm m

0 500 1000

RES. NORMAL

Ohm m

100 200

SAMPLE

DESCRIPTIONS

Electrode spacing

3,0 m

Electrode spacing

0,8 m

1 0

20

3 0

40

50

6 0

r~TT~T

Red varigatedsand and arkoses

Red mottled claystone

Red medium-coarsearkose

Mottled red yellowclayey sandstone

Grey claystone

Red variable arkosesand sandstones withoccasional conglomeratehorizon

RegionDistrict

Village

BH No.

CCKK No.

: Ruvuma: Songea

: Mtukano

: 255/81

: RD 3

Page 194: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Q.UJQ

Metres

GAMMA

Increasing radiation

RES. NORMALOhm m

1000 2000

RES. NORMALOhm m

0 200 400 600

<a.V)

SAMPLE

DESCRIPTIONS

Electrode spacing

0,8 m

Electrode spacing

3,0 m

10

20

30

40

50

T ~ T

t+ +

+

Fine very clayey Irlablesandstone

Fine grained well sortedmicaceous sandstone

Greenish very biotitcrich sand

Grey biotite and quartzrock weathered

Feldspatic granite withminor micas

Region

District

Village

BH No.

CCKK No.

Ruvuma

Tunduru

Ndenyende

256/81

RD 4

Page 195: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RES. NORMAL SAMPLE

DESCRIPTIONSOhm m

1000 2000

Increasing radiation

Electrode (pacing0,8 m

Red laterltlc clayeyaand

Rad madium coarse aand

Flna - madium aand withweathered taldspara

Reddish clayayconglomarata

Madium - fine wallsorted sandstone

Region

District

Village

BH No.

CCKK No.

Ruvuma

Tunduru

Nandembo

258/81

RD 6

Page 196: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Metres

SAMPLE

DESCRIPTIONS

50

60

Red sandy clayeylaterite

Light red coarsegrained conglomerate

Very lateritic clay withquartz and weatheredfeldspars

Red clayey quartz sandwith occasionalfeldspars

Soft sticky clay withquartz and weatheredfeldspar sand

Region

District

Village

BH No.

CCKK No.

Ruvuma

Tunduru

Sisikwasisi

260/81

RD 8

Page 197: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

z0.UJ

oMeirm

GAMMA

Increasing radiation

SAMPLE

DESCRIPTIONS

10

20

30

40

50

I60

70

'////A

%

%

W

/ / •

Orango brown limonlticclay

Red clayey tands

Grey plastic kaollnitlcclay

Red plastic clay

Grey plastic clay

Red plastic sandy clayand clayey sands

Yellow brown mediumcoarso quartz sand

Region

District

Village

BH No.

CCKK No.

Ruvuma

Tunduru

Sisikwasisi

261/81RD 9

Page 198: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

SAMPLE

DESCRIPTIONS

10

20

30

40

50

60

Red sandy laterlte soil

Orange/brown llmonlticsand

Clayey sand with veryweathered feldspars

Very clayey sand withvery weatheredfeldspars

Red granular quartzmica and feldsparsweathered

-do, but fresh rock

70

Region

District

Village

BH No.

CCKK No.

Ruvuma

Tunduru

Namiungo

262/81

RD 10

Page 199: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

oMetres

GAMMA

tncraating radiation

RES. NORMALOhm m

0 10OO0 20000

RES. NORMALOhm m

C 10000 70000

SAMPLE

DESCRIPTIONS

10

20

30

40

50

6 0

70

80

Electrode spacing

0.8 m

Electrode spacing

3.0 m

Red

8utt clay and sand withbiotite

Greenish butt clayey

Greenish grey quartzand mica sand

Ouart2. biotite gneiss.no feldspar

Region

District

Village

BH No.

CCKK No.

Ruvuma

Tunduru

Majimaji

263/81

RD 4

Page 200: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

GAMMAQ.UJQ

MetresIncreasing radiation

RES. NORMAL

Ohm m0 200 400

<<

V)

SAMPLE

DESCRIPTIONS

10

20

30

40

Electrode spacing0,1 m

Brown clayey sand

Yellow sand

Red sandstone

Fine clayey sand

Red sandy marl

Region

District

Village

BH No.

CCKK No.

Ruvuma

Songea

Hanga River

269/81

RS 6

Page 201: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

MBEYA

Page 202: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Region

District

Village

BH No.

CCKK No.

Mbeya

Mbozi

Mbozi Mission

25/81

Page 203: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

Appendix U

Springs.

Page 204: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA

Page 205: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA REGION

VILLAGE DISTRICTREG.NO.

DATE OFVISIT

YIELD(I/a)

COMMENTS

Bulongwa

Chamndindi

Ibaga

Ibumila

Idegenda

Idende

Idihani

I dun da

Idundilaga

Igagala

Igeleke

Igolwa

Igoma

Igombavanu

Igumbilo

Ihalula

Ihanga

Ihawaga

Ihimbo

Ikuna

Ikuvilo

Ikuvo

Ilininda

Image

Imalilo

Imalinyi

Ipalamwa

Ipelele

Ipepo

Ipilimo

Isupilo

Itambo

Itandula

Itulike

Itundu

Itunduma

Makete

Iringa

Iringa

Iringa

Iringa

Makete

N j ombe

Iringa

Nj ombe

Nj ombe

Mufindi

Makete

Nj ombe

Mufindi

Iringa

Njombe

Makete

Mufindi

Iringa

Njombe

Iringa

Makete

Ludewa

Nj ombe

Nj ombe

Njombe

Iringa

Makete

Makete

Mufindi

Iringa

Nj ombe

Nj ombe

Njombe

Ludewa

Njombe

495

k3

30U

527

222

595

575

203

362

51*

1+31

196

313

UOT322

281

32U

U06

227

532

260

33U

10U

67

357201

166

198

59U

122

23

63

399

190

83

377

15.06.8l

O7.O8.8O

23.06.8l

27.02.81

21.07.80

l6.06.8l

O6.11.8O

25.09.80

ok.09.80

09.09.80

15.10.80

10.06.8l

10.09.80

12.11.80

ll.06.8l

10.09.80

09.06.8l

18.03.81

30.07.80

09.09.80

O6.O8.8O

13.08.8l

17.01.81

26.02.81

2U.06.8l

05.10.81

3O.O6.8O

05.06.8l

10.06.8l

15.0U.8l

18.07.80

2U.02.8l

03.02.81

25.09.80

15.01.81

03.0U.8l

0.U

0.0

NA

0.1

2.5

NA

0.1

0.5

0.5

U.O

0.2

0.U

0.5

2.0

2.0

0.3

1.0

0.5

1.0

0.U

10.0

0.0

0.1

0.5

0.0

1.0

l.U

NA

1.0

0.5

83.0

0.2

0.1

0.5

0.1

0.3

Page 206: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

VILLAGE

Iwungilo

Iyoka

Kidegembye

Kidope

Kigala

Kigulu

Kihesa/Mgagao

Kiyombo

Kikombwe

Kikondo

Kilanji

Kiliminzowo

Kilolo

Kingole

Kitula

Kitumbuka

Lima

Limage

Lole

Ludende

Ludilu

Lugavo

Lugenge

Lupande

Lupombwe

Lusitu

Luvulunge

Madege

Madihani

Madilu

Madunda

Mafinga

Magunguli

Maholongwa

Mahongole

Mahulu

DISTRICT

Njombe

Makete

N j ombe

Makete

Makete

Makete

Iringa

Njombe

Iringa

Makete

Makete

Mufindi

Iringa

Ludewa

Makete

Iringa

Njombe

Njombe

Njombe

Ludewa

Mufindi

Makete

Njombe

Ludewa

Makete

Njombe

Makete

Iringa

Makete

Ludewa

Njombe

Njombe

Mufindi

Ludewa

Njombe

Makete

• IRINGA

REG.NO.

315

312

68

3 3

336

570

180

318

29

592

591

kk6

5

227

585

U85

808

271

588

91

323

556

367

93

597

366

598

165

310

96

9h

578

U35

107

52U

311

REGION

DATE OFVISIT

Oil.11.80

19.O6.8l

O8.O9.8O

10.06.8l

111. 08.81

O9.O7.8l

2U.07.80

ll.O6.8l

O5.O8.8O

0*1.06.81

l8.O6.8l

l8.03.8l

30.07.80

20.11.80

l8.O6.8l

26.08.80

26.02.81

IO.O9.8O

09.09.80

111. 01. 81

12.O6.8l

17.O6.8l

09-09.80

OU.12.80

12.06.8l

O6.11.8O

ll.O3.8l

25.07.80

l8.O8.8l

17.01.81

Oil.12.80

23.O6.8l

08. Oil. 81

111. 01.81

l6.O3.8l

17.08.8l

YIELD(1/s)

0.2

0.2

0.5

NA

NA

7-0

2.0

0.1

2.5

k.O

0.1

0.1

1.0

0.1

0.1

0.3

0.2

0.5

0.5

0.1

1*0.0

0.2

10.0

O.ii

0.3

5-0

0.5

1.0

NA

0.1

0.3

0.0

1.0

0.1

0.2

0.2

COMMENTS

i| springs

3 springs

2 springs

Page 207: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

VILLAGE

Makangalawe

Makewe

Makoga

Makwalanga

Malanduku

Malembuli

Maleutsi

Mapanda

Mapogoro

Masege

Masisiwe

Matenga

Matinganjola

matola

Mavala

Mawambala

Mbalatse

Mbanga

Mbega

Mbela

Mdasi

Milo

Misiwa

Miva

Mj imwema

Mlevela

Mlondwe

Mlowa

Moronga

Mtulingala

Muwimbi

Mwakauta

Ndapo

Ndulamo

Ng'anda

Ng'ang'ange

DISTRICT

Makete

Makete

N j ombe

Makete

Makete

Makete

Makete

Mufindi

Iringa

Iringa

Iringa

Makete

Njombe

Nj ombe

Ludewa

Iringa

Makete

Makete

Nj ombe

Makete

Njombe

Ludewa

Makete

Nj ombe

Nj ombe

Nj ombe

Makete

Njombe

Njombe

Nj ombe

Iringa

Makete

Makete

Makete

Nj ombe

Iringa

IRINGA

REG.NO.

300

56952

560

596

565298

1+63

87810

325

337

295

288

92

32

319

559

5U5330

57781+

3 5

363

3U2

533

329

521

200

520

22

3UU

567

307

1+03

259

REGION

DATE OFVISIT

2k.06.81

O5.O6.8l

2k.06.81

10.06.8l

ll.O6.8l

2U.06.8l

2U.06.8l

15.12.80

15.01.81

25.07.80

10.06.8l

lU.08.81

O8.O9.8O

23.08.80

15.01.81

25.07.80

12.06.8l

05.06.81

06.ll.80

ll.O8.8l

25.O6.8l

lU.01.8l

O5.O6.8l

06.ll.80

05.09.80

26.09.80

10.08.81

17.03.81

23.06.8l

17.O3.8l

21.07.80

09.06.8l

19.O6.8l

ll.O3.8l

2U.06.8l

1O.O8.8O

YIELD(1/s)

U.o0.5

0.5

NA

NA

1.0

0.1

0.1

0.1

2.0

0.9

NA

0.5

0.5

0.1

NA

0.1

NA

0.2

2.5

0.0

0.5

NA

0.2

NA

0.5

5.0

0.5

1.0

0.2

2.6

NA

0.0

0.5

0.0

167.0

COMMENTS

2 springs

Page 208: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA REGION

VILLAGE DISTRICTREG.NO.

DATE OFVISIT

YIELD

(1/s)COMMENTS

Ng* ingula

Ngoje

Nhungu

Ninga

Njoomlole

Nkenja

Nundu

Nyamande

Nyave

Nyigo

Nyombo

Nzivi

Peluhanda

Tambalang'ombe

Ubiluko

Udumuka

Ugesa

Uhekule

Ujindile -

Ujuni

Ukemele

Ukwama

Ukwega

Ulembwe

Uliwa

Unyang'oro

Unyangala

Usalule

Usililo

Usungilo

Utalingoro

Utanziwa

Utelewe

Utengule

Utengule

Iringa

Makete

Makete

Njombe

N j ombe

Makete

Njombe

Njombe

Nj ombe

Mufindi

Njombe

Mufindi

Njombe

Mufindi

Makete

Iringa

Mufindi

Njombe

Nj ombe

Makete

Mufindi

Makete

Iringa

Njombe

Njombe

Makete

Makete

Njombe

Makete

Makete

Nj ombe

Makete

Njombe

Iringa

Nj ombe

1^

571

326

528

I+98

561

1+79

UT866

131

l+7>+

U22

U81

1+18

3U6

136

131+

76

350

335

U55

195

1+86

1+71

311+

568

599

555

1+91+

513

551+

586

1+75

1+9

309

O8.O7.8O

20.06.8l

19.06.8l

09.09.80

ll.09.80

O1+.O6.81

03.09.80

17.03.81

25.02.81

l8.O3.8l

O6.O9.8O

29.09.80

O6.O9.8O

12.11.80

10.o6.8l

ll+.0l+.8l

13.10.80

21+.06.81

25.06.8l

O1+.O6.81

i7.03.81

09.06.8l

01.07.80

O8.O9.8O

01+.11.80

09.06.8l

17.08.8l

O6.O8.8O

l6.06.8l

25.06.8l

O8.O9.8O

17.06.8l

2U.06.8l

29.07.80

18.06.81

NA

0.0

0.02

0.5

0.3

NA

0.5

0.2

0.2

0.5

0.5

10.0

0.5

0.3

15.0

0.5

0.1

0.0

0.0

1.0

0.5

0.1

0.1+

0.3

1.0

NA

1.1+

NA

0.1+

0.2

0.3

0.1+

0.0

0.3

0.5

Page 209: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

IRINGA REGION

VILLAGE DISTRICT REG.NO.

DATE OFVISIT

YIELD(1/s) COMMENTS

Utilili

Utweve

Vikula

Wami/Mbalwe

Wikichi

Winome

Ludewa

Makete

Mufindi

Mufindi

Njombe

Iringa

278

581

505

i+53

53

536

l6.01.8l

09.06.8l

lU.10.80

15.10.80

Oi+.O9.8O

29.07.80

0.5

3.0

0.2

0.2

NA

1.5

Page 210: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA

Page 211: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA REGION

VILLAGE DISTRICTREG.NO.

DATE OFVISIT

YIELD(1/s)

COMMENTS

Buruma

Changarawe

Chemuchemu

Chengena

Chikomo

Chilundundu

Chinula

Chiwana

Fundimbanga

Gumbiro

Hulia

Ifinga

Igawisenga

Ilela

Kagugu

Ka j ima

Kidodoma

Kigonsera

Kihagara

Kihangi/Makuha

Kiherekete

Kihongo

Kikolo

Kilagano

Kilindi

Kilosa

Kingirikiti

Kipapa

Kitalo

Kitanda

Kitanda

Kitani

Langiro

Legezamwendo

Libango

Mbinga

Tunduru

Tunduru

Songea

Tunduru

Tunduru

Mbinga

Tunduru

Tunduru

Songea

Tunduru

Songea

Songea

Mbinga

Mbinga

Tunduru

Tunduru

Mbinga

Mbinga

Mbinga

Mbinga

Mbinga

Mbinga

Songea

Mbinga

Mbinga

Mbinga

Mbinga

Tunduru

Mbinga

Mbinga

Tunduru

Mbinga

Tunduru

Songea

212

kh

305

98

2

9

165

3

257

82

268

285

90

216

2H2

57

37

2l+5

17U

227

210

219

21+1

111*

22U

279

213

222

39

16

103

13

221

255

801

10.06.8l

20.06.8l

30.05.81

15.01.81

O6.O8.8l

07.08.81

20.05.81

O6.O8.8l

19.06.81

31.07.81

23.06.8l

30.07.81

29.07.81

21.08.81

13.05.81

22.06.8l

l8.O6.8l

30.07.81

19.08.81

26.08.81

O9.O6.8l

12.06.8l

11+.O5.81

27.03.81

25.08.81

21.05.81

O9.O6.8l

ll.O6.8l

l8.06.8l

02.06.8l

ll4.02.8l

10.08.81

ll.06.8l

17.O6.8l

30. Oil. 81

0.2

1.0

0.1

0.3

2.0

0.5

0.5

3.0

0.5

0.0

0.0

0.2

3.0

5.0

0.5

1.5

0.2

0.2

1.5

5.0

0.5

0.5

20.0

1.0

2.0

0.2

1.0

O.k

0.5

0.5

0.3

8.0

0.2

0.1

0.1

Page 212: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA REGION

VILLAGE DISTRICTREG.NO.

DATE OFVISIT

YIELD

(1/3)COMMENTS

Lilambo

Lipaya

Lipepo

Lipumba

Litapwasi

Litola

Litumba/Kuhamba

Litumbandyosi

Liweta

Liyangveni

Longa

Luhangarasi

Lusonga

Luwaita

Lwinga

Magazini

Maguu

Mahenge

Malungu

Mandepwende

Mango

Mapera

Mapipili

Maposeni

Masuguru

Matemanga

Matepwende

Matepwende

Mateteleka

Matiri

Maweso

Mbangamao

Mbati

Mbuju

Mbungulaj i

Songea

Songea

Tunduru

Mbinga

Songea

Songea

Mbinga

Mbinga

Songea

Songea

Mbinga

Mbinga

Songea

Mbinga

Songea

Songea

Mbinga

Mbinga

Mbinga

Songea

Mbinga

Mbinga

Mbinga

Songea

Tunduru

Tunduru

Songea

Songea

Songea

Mbinga

Songea

Mbinga

Tunduru

Mbinga

Tunduru

122

139

11

238

138

99

183

190

283

800

201

208

132

230

108

59

217

303

27U

110

172

218

225.

123

112

1+3

63

72

91

223

92

239

6

198

1+2

13.03.81

l6.10.80

07.08.81

21.02.81

O8.Ol.8l

O7.OU.8l

29.10.80

2U.10.80

lH.10.80

O8.Ol.8l

15.05.81

O9.O6.8l

2U.03.8l

19.02.81

29.05.81

O6.O5.8l

10.06.8l

02.12.80

2U.10.80

29.0U.8l

19.08.81

ll.O6.8l

27.08.81

03.03.81

29.0U.8l

20.06.8l

05.05.81

O9.OU.8l

22.0U.8l

25.O8.8l

22.0U.8l

13.05.81

O8.O8.8l

02.12.80

22.06.8l

1.0

1.5

0.2

0.3

2.0

0.5

0.3

5.0

NA

2.0

0.8

0.3

5.0

0.2

0.1

2.5

0.3

0.2

NA

1.0

0.3

0.1

3.0

0.3

0.3

1.0

0.5

0.5

NA

2.0

1.0

0.5

5-0

0.2

3.0

Page 213: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA REGION

VILLAGE DISTRICTREG.NO.

DATE OFVISIT

YIELD(1/s)

COMMENTS

Mchomoro

Mgombasi

Mikalanga

Milonj i

Minazini

Misyaje

Mkalanga

Mkali

Mkasale

Mkoha

Mkolola

Mkongo

Mkongotema

Mkumbi

Mlingoti

Molandi

Mpandangindo

Mpapa

Mputa

Msagula

Msisima

Mtama

Mtyangimbole

Muhuwesi

Mwanamonga

Mwangaza

Nahoro

Nakawale

Nakayaya

Nalasi

Naluwale

Namakungwa

Nambecha

Nampungu

Namwinyu

Nang'ombo

Songea

Songea

Mbinga

Songea

Songea

Tunduru

Mbinga

Mbinga

Tunduru

Mbinga

Tunduru

Songea

Songea

Mbinga

Tunduru

Tunduru

Songea

Mbinga

Songea

Tunduru

Songea

Mbinga

Songea

Tunduru

Songea

Songea

Songea

Songea

Tunduru

Tunduru

Tunduru

Tunduru

Songea

Tunduru

Tunduru

Mbinga

107

105

2lU

65

109

25*+

301+

I69

310

220

Ik

9k

85200

290

1+

lU9

209

81

31

62

236

83

30

128

229

295

95

293

10

58

1+6

101+

36

i+5

162

29.OU.8l

28.0U.8l

21.08.8l

06.05.8l

29.OU.8l

08.08.8l

15.05.81

20.08.8l

01.06.8l

ll.06.8l

10.08.8l

lU.0l.8l

23.oU.8l

lU.05.8l

l2.08.8l

l0.08.8l

13.10.8l

09.06.81

13.02.81

29.05.8l

05-05.81

22.02.81

31.0T.8l

28.05.81

13.03.81

15.0l.8l

30.03.81

lU.01.81

ll.08.8l

08.08.81

18.06.81

23.06.81

28.0U.8l

18.06.81

23.o6.8l

21.05.8l

0.3

0.5

5-9

0.5

0.1

3.0

0.5

0.2

0.5

3.0

1.0

3.0

0.3

0.5

0.1

1.0

0.1

0.8

0.5

3.0

0.5

0.3

0.2

3.0

5.0

0.1

0.5

1.0

1.0

0.2

0.5

U.O

0.3

0.2

U.O

0.5

Page 214: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

RUVUMA REGION

VILLAGE DISTRICTREG. DATE OF YIELDNO. VISIT (1/s)

COMMENTS

Nasya

Ndenyende

Ndondo

Ndunduwalo

Njalamatata

Nyoni

Parangu

Raha Leo

Likuyu/Sekamanganga

Sepukila

Sisi Kwa Sisi

Tingi

Tumbi

Ukata

Uzena

Tunduru

Tunduru

Mbinga

Songea

Songea

Mbinga

Songea

Tunduru

Songea

Mbinga

Tunduru

Mbinga

Mbinga

Mbinga

Mbinga

3k

2U9

119

91

207

129

1+1

113

2U3

29

251

173

206

2U0

02.06.8l

19.06.8l

23.10.80

12.03.81

lU.01.8l

09.06.8l

11.03.81

22.06.8l

28.0H.8l

28.08.81

3O.O5.8l

25.10.80

19.08.8l

13.05.81

lU.05.8l

2.0

0.6

0.5

0.5

2.0

0.5

NA

0.0

0.1

2.0

0.3

NA

0.5

0.1

2.0

Page 215: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

MBEYA

Page 216: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

VILLAGE

Bagamoyo

Bujesi

Bukinga

Bumbigi

Bunyakikosi

Bwenda

Bwipa

Chembe

Chibila

Chilemba

Chizumbi

Galijembe

Hamwelo

Haporoto

Hatelele

Hezya

Ibaba

Ibembwa

Ibula

Ibumba

Ibungu

Ichesya

Idimi

Idiwili

Idunda

Igale

Igamba

Igamba

Iganduka

Igembe

Igogwe

Igumbilo

Ihowa

Ikama

Ikhoho

Ikinga

DISTRICT

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Ileje

Ileje

Mbeya

Ileje

Ileje

Mbozi

Mbeya

Mbozi

Mbeya

Mbozi

Mbozi

Ileje

Mbozi

Rungwe

Rungwe

Rungwe

Mbozi

Mbeya

Mbozi

Mbozi

Mbozi

Mbozi

Rungwe

Mbozi

Rungwe

Rungwe

Mbeya

Mbozi

Rungwe

Mbeya

Ileje

MBEYA

REG.NO.

819

329

818

2kk

326

56

59

hi

5h

55

833

H+5U20

158

391

373

Uo1+78

315

320

310

505

160

38U

kok

376

khk

85^

HIT280

817

125

507

289

1U6

REGION

DATE OFVISIT

13.02.81

26.06.80

13.02.8l

13.O6.8O

22.10.80

lU.09.81

19.10.81

ok.03.81

Ik.09.81

O5.O3.8l

22.10.80

09.01.81

17.09.80

26.11.80

30.07.80

2k.02.81

l8.12.80

12.08.80

23.09.80

23.10.80

13.12.80

l6.O9.8O

26.11.80

22.07.80

21.07.80

l8.07.80

12.08.80

17.02.81

21.08.80

22.07.80

13.02.81

22.10.80

15.07.80

1O.O6.8O

22.12.80

20.01.81

YIELD(1/s)

0.0

NA

NA

0.3

0.0

0.

NA

NA

0.1

0.1

NA

0.0

20.0

0.U

2.0

NA

0.1

73.0

2.5

0.0

0.1

NA

0.3

NA

NA

NA

l.k

NA

0.3

0.2

NA

0.0

NA

0.6

0.0

0.5

COMMENTS

k springs

2 springs

Page 217: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

VILLAGE

Ikomelo

Ikonya

Ikubo

Ilembo/Usafwa

I lima

Ilinga

Ilolo

Ilomba

Ipapa

Iponjola

Ipuguso

Ipunga

Ipyana

Isajilo

Isaka

Isalalo

Isange

Isenzanya

Isonso

Isumba/Kibole

Itaga

Itagata

Italazya

It ale

Itepula

Itete

Itula

Itumpi

Ivugura

Iwalanj e

Iwiji

Iyendwe

Izumbwe II

Izuo

Kafule

Kakozi

DISTRICT

Kejela

Mbozi

Rungwe

Mbeya

Rungwe

Rungwe

Rungwe

Mbozi

Mbozi

Rungwe

Mbozi

Mbozi

Mbozi

Rungwe

Rungwe

Mbozi

Rungwe

Mbozi

Mbeya

Mbozi

Mbeya

Rungwe

Mbeya

Ileje

Mbozi

Rungwe

Rungwe

Mbozi

Mbozi

Mbeya

Mbeya

Mbozi

Mbeya

Mbeya

Ileje

Mbozi

MBEYA

REG.NO.

519

1*65

276

831

350

290

317

1+62

1+33

298

272

398

56U

351

303

U18

2U2

393

556

278

170

291

88

27

1*58

297

3I+8

1+06

1+80

172

101+

1+91

97108

60

382

REGION

DATE OFVISIT

06.02.8l

l6.09.80

l8.02.8l

22.12.80

02.07.80

1O.O6.8O.

09.03.81

23.02.81

19.09.81

13.06.80

l8.02.8l

19.09.80

22.07.80

11+.01.81

28.12.81

19.09.80

12.06.80

08.01.8l

05.03.81

22.02.81

O8.1O.8O

11.06.80

09.02.81

l8.12.80

23.01.81

17.06.80

01.07.80

27.02.81

l6.09.80

23.12.80

02.07.80

28.01.8l

l8.12.80

l6.01.8l

21.01.81

31.10.80

YIELD(1/s)

NA

1.5

NA

0.1

NA

NA

NA

NA

1.3

NA

NA

1.0

0.8

30.0

0.1

1.0

6.0

NA

0.0

NA

NA

11.2

0.2

0.0

0.5

1.5

NA

NA

NA

NA

0.6

NA

0.2

0.6

0.1

0.5

COMMENTS

2 springs

2 springs

2 springs

Page 218: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

VILLAGE

Kalembo

Kapugi

Kapyu

Kasyeto

Katundulu

Kifunda

Kilimansanga

Kitali

Kitema

Kiwanj a

Kyambambembe

Ludewa

Lufumbi

Lugombo

Lukata

Lulasi

Lupando

Lupepo

Luswiswi

Lwanjilo

Lwifa

Lyebe

Lyenj e

Mahenj e

Maj engo

Makongolosi

Malangali

Malolo

Maporomoko

Masebe

Mashese

Masoko

Masukulu

Mataaba

Matwebe

Mbagala

DISTRICT

Ileje

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Chunya

Rungwe

Mbozi

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Rungwe

Ileje

Chunya

Rungwe

Rungwe

Rungwe

Mbozi

Mbozi

Chunya

Ileje

Mbozi

Rungwe

Rungwe

Mbeya

Mbeya

Rungwe

Rungwe

Rungwe

Chunya

MBEYA

REG.NO.

292

271

35

3 7

261

557

251

267

3

357

h!9330

296

277

2*+l

371

309

58

167372

3i+0

308

375

511

2

51

390

510

325

527

87338

2U0

3U3

90

REGION

DATE OFVISIT

O5.O3.8l

1 .01.81

2i+.O9.8O

lit.01.81

01.07.80

17.02.81

26.09.80

l6.02.8l

25.09.80

21.01.81

2H.06.80

22.01.80

27.06.80

13.O6.8O

22.07.80

O6.O6.8O

26.06.80

11.12.80

14.09.81

13.05.80

02.10.80

11.09.80

12.12.80

18.O9.8O

06.02.8l

13.03.81

OU.O3.8l

19.09.80

06.02.80

10.06.80

26.11.80

09.02.81

27.05.80

l8.O6.8O

11.09.80

10.02.81

YIELD(1/s)

0.0

0.5

1.5

NA

NA

NA

NA

NA

NA

NA

0.0

0.3

NA

0.5

NA

20.0

NA

NA

0.2

NA

0.0

28.0

NA

NA

NA

0.0

NA

l.U

NA

0.3

1.0

1.3

k.k

G.k

2.0

0.8

COMMENTS

2 springs

Page 219: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

VILLAGE

Mbawi

Mbugani

Mgaya

Mibula

Mkandami

Mlale

Mpanda

Mpande

Mpombo

Mpunguti

Msangaj i

Msanyila

Msiya

Mwabowo

Mwaka

Mwala

Mwasenkwa

Mwela

Nambala

Nambinzo

Ndandalo

Ngulilq

Ngulugulu

Njelenje

Nkangamo

Nkunga

Nsalala

Ntangano

Old Vwawa

Pashungu

Ruanda

Sakamwela

Sange

Sanje

Sheyo

Shiwinga

DISTRICT

Mbeya

Mbeya

Ileje

Rungwe

Mbeya

Ileje

Mbozi

Mbeya

Rungwe

Rungwe

Chunya

Mbozi

Mbozi

Mbeya

Mbozi

Mbeya

Mbeya

Mbeya

Mbozi

Mbozi

Kyela

Ileje

Ileje

Mbeya

Mbozi

Ileje

Mbeya

Mbeya

Mbozi

Mbeya

Mbeya

Mbozi

Ileje

Mbeya

Ileje

Mbozi '

MBEYA

REG.NO.

567523

1+8

353

6930

1+07

112

356

273

15U1+22

1+97

571

1+68

99

5Vr525

385

1*61

213

57

1+3

96

1+23

301

93

79

1+1+5

11*7

110

1+31+

52

111

37386

REGION

DATE OFVISIT

09.02.8l

16.O7.8O

19.12.80

Ik.01.81

19.ll.80

02.02.81

2U.02.8l

20.01.8l

21+.06.80

l8.02.8l

12.11.80

31.07.80

02.10.80

27.11.80

11+.O5.8O

10.02.8l

13.05.80

26.ll.80

O2.O3.8l

08.01.8l

20.02.8l

19.10.8l

O5.O3.8l

25.09.80

lU.05.80

20.06.80

06.03.8l

26.12.80

06.02.8l

ll.02.8l

l6.01.8l

l8.09.80

O5.O3.8l

08.12.80

l8.12.80

31.07.80

YIELD(1/s)

1.9

0.0

0.0

1+.0

NA

0.2

NA

0.2

11.0

0.0

0.0

2.0

0.1

0.8

2.8

0.7

6.5NA

0.0

0.3

NA

0.1

NA

0.5

0.5

NA

0.0

NA

2.5

0.0

0.3

NA

0.1

NA

3.0

l+.l

COMMENTS

2 springs

2 springs

Page 220: UNITE - IRC · guide to water master plans for 1ringa.ruvuma and mbeya development framework population livestock agriculture industry 3/2, 3/2, 3/2, 3/2 4a/2/4, 4a/2/3/5 4a/3/5,

MBEYA REGION

VILLAGE B I S E C T ff- " g ^ ™° COMKEKTS

Shizuvi

Simike

Sumbalwela

Swaya

Ukwile

Uwambishe

Wasa

Mbeya

Rungwe

Mbozi

Mbeya

Mbozi

Mbeya

89

299

1*63

155

U83

129

09.02.81

17.06.80

19.09.80

10.10.80

23.10.80

28.11.80

03.10.80

NA

0.1

2.0

NA

NA

0.5

3.6