unit 5 formula review sheet - Mrs. Price's Math Site - · PDF file ·...
date post
08-Apr-2018Category
Documents
view
269download
8
Embed Size (px)
Transcript of unit 5 formula review sheet - Mrs. Price's Math Site - · PDF file ·...
Log/Exponent Properties: ln(1) = 0 ln(e) = 1 ln(an) = n*ln(a) ln(ab) = ln(a) + ln(b)
baba lnlnln =
Exponent Properties: ea * eb = ea+b (ea)b = eab e0 = 1
Log Differentiation steps: 1) Take ln of both sides. 2) Expand right side. 3) Find derivative 4) Solve for dy/dx Evaluate derivative of inverse: (find !! !() 1.Set f(x) = a and solve for x (guess and check) 2. Find f (x) 3. Plug in x value from step #1 into f (x). 4. Flip value.
Log Derivatives: Exponential Derivatives ddxln | u |= u '
u
ddxeu = eu u '
uu
au
dxd
a'*
ln1log =
ddxau = lnaau *u '
Trig Derivatives: d
dxsinu = cosu*u '
ddxtanu = sec2 u*u '
ddxsecu = secu tanu*u '
ddxcosu = sinu*u '
ddxcotu = csc2 u*u '
ddxcscu = cscucotu*u '
Inverse Trig Derivatives: ddxarcsinu = u '
1u2 ddxarctanu = u '
1+u2 ddxarcsecu = u '
u u2 1
ddxarccosu = u '
1u2 ddxarccotu = u '
1+u2
ddxarccscu = u '
u u2 1
Integral Formulas: Power Rule:
un du = un+1
n+1+C
Log Rule: 1udu = ln | u |+C
Exponential Rule: (Base e) dueu = e
u + C
Exponential Rule (base other than e)
au du = au
lna+C
*Note: lna is a constant*
Trig Integrals: sinudu = cosu+C cosudu = sinu+C sec2 udu = tanu+C secu tanudu = secu+C csc2 udu = cotu+C cscucotudu = cscu+C
C + |cosu|-lntan = udu Cuudu += sinlncot
udusec = ln|sec u + tan u| + C
uducsc = -ln|csc u + cot u| + C
Inverse Trig Integrals:
+=
Cau
uadu arcsin
22 +=+ Ca
uaua
du arctan122
+=
Cau
aauudu ||secarc1
22
!"#! ! = and log! ! =
log! = ln ln
Interest Formulas
= !1 +!(!")
A = Pert