Unified Hybridization Of Discontinuous Galerkin, Mixed ...€¦ · To CG or to HDG: A Comparative...

92
Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Stefan Girke WWU M¨ unster Institut f¨ ur Numerische und Angewandte Mathematik 10th of January, 2011 Stefan Girke (WWU M¨ unster Institut f¨ ur Numerische und Angewandte Mathematik) Hybridization 10th of January, 2011 1 / 43

Transcript of Unified Hybridization Of Discontinuous Galerkin, Mixed ...€¦ · To CG or to HDG: A Comparative...

  • Unified Hybridization Of Discontinuous Galerkin, Mixed,

    And Continuous Galerkin Methods For Second Order

    Elliptic Problems.

    Stefan Girke

    WWU MünsterInstitut für Numerische und Angewandte Mathematik

    10th of January, 2011

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 1 / 43

  • Inhalt

    1 introduction (an example)

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 2 / 43

  • Inhalt

    1 introduction (an example)

    2 the framework

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 2 / 43

  • Inhalt

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 2 / 43

  • Inhalt

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 2 / 43

  • Inhalt

    literature

    D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini.

    Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM journal on numerical analysis, 39(5):1749–1779, 2002.

    B. Cockburn and J. Gopalakrishnan.

    A characterization of hybridized mixed methods for second order elliptic problems.SIAM Journal on Numerical Analysis, 42(1):283–301, 2005.

    B. Cockburn, J. Gopalakrishnan, and R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order ellipticproblems.SIAM J. Numer. Anal, 47(2):1319–1365, 2009.

    R.M. Kirby, S.J. Sherwin, and B. Cockburn.

    To CG or to HDG: A Comparative Study.

    M. Vohraĺık, J. Maryska, and O. Severýn.

    Mixed and nonconforming finite element methods on a system of polygons.Applied Numerical Mathematics, 57(2):176 – 193, 2007.

    OC Zienkiewicz.

    Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke, Chapter 9, Pages 145-197of Stress Analysis, Edited by OC Zienkiewicz and GS Holister, Published by John Wiley & Sons, 1965.International Journal for Numerical Methods in Engineering, 52(3):287–342, 2001.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 3 / 43

  • introduction (an example)

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 4 / 43

  • introduction (an example)

    Second order elliptic boundary value problem

    Search solution u for

    ∇ · (a∇u) + du = f in Ω ⊂ Rn,u = g on ∂Ω,

    where

    a(x) is a bounded symmetric positive definite matrix-valued function,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 5 / 43

  • introduction (an example)

    Second order elliptic boundary value problem

    Search solution u for

    ∇ · (a∇u) + du = f in Ω ⊂ Rn,u = g on ∂Ω,

    where

    a(x) is a bounded symmetric positive definite matrix-valued function,

    d(x) is a bounded nonnegative function.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 5 / 43

  • introduction (an example)

    Second order elliptic boundary value problem

    Search solution u for

    ∇ · (a∇u) + du = f in Ω ⊂ Rn,u = g on ∂Ω,

    where

    a(x) is a bounded symmetric positive definite matrix-valued function,

    d(x) is a bounded nonnegative function.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 5 / 43

  • introduction (an example)

    Second order elliptic boundary value problem

    Search solution u for

    ∇ · (a∇u) + du = f in Ω ⊂ Rn,u = g on ∂Ω,

    where

    a(x) is a bounded symmetric positive definite matrix-valued function,

    d(x) is a bounded nonnegative function.

    This can be rewritten

    mixed form

    Search solution (q, u) for

    q+ a∇u = 0 in Ω,

    ∇ · q+ du = f in Ω,

    u = g on ∂Ω.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 5 / 43

  • introduction (an example)

    We’re choosing a triangulation of Ω, Th

    Th

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 6 / 43

  • introduction (an example)

    We’re choosing a triangulation of Ω, Th

    Th

    and using Raviart-Thomas elements Pk(K )n + xPk(K )

    RT0 RT1 RT2

    b

    b

    b b

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 6 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Eh = E◦h ∪ E

    ∂h ,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Eh = E◦h ∪ E

    ∂h ,

    (u, v)D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Eh = E◦h ∪ E

    ∂h ,

    (u, v)D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn,

    〈u, v〉D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn−1,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Eh = E◦h ∪ E

    ∂h ,

    (u, v)D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn,

    〈u, v〉D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn−1,

    (u, v)Th =∑

    K∈Th

    (v ,w)K for u, v on Ω,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Eh = E◦h ∪ E

    ∂h ,

    (u, v)D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn,

    〈u, v〉D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn−1,

    (u, v)Th =∑

    K∈Th

    (v ,w)K for u, v on Ω,

    〈µ, λ〉E =∑e∈E

    〈µ, λ〉e for µ, λ on E ⊂ Eh.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    Notation

    E◦h interior edges, E∂h boundary faces of Ω,

    Eh = E◦h ∪ E

    ∂h ,

    (u, v)D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn,

    〈u, v〉D :=∫Duvdx for u, v ∈ L2(D), D ⊂ Rn−1,

    (u, v)Th =∑

    K∈Th

    (v ,w)K for u, v on Ω,

    〈µ, λ〉E =∑e∈E

    〈µ, λ〉e for µ, λ on E ⊂ Eh.

    H(div,Ω) := {v ∈ L2(Ω)n | ∇ · v ∈ L2(Ω)}

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 7 / 43

  • introduction (an example)

    RT finite element approximation

    The approximation (qh, uh) is sought in the finite element spaceVRTh ×W

    RTh given by

    VRTh = {v ∈ H(div,Ω) | v|K ∈ Pk(K )n + xPk(K ) ∀K ∈ Th},

    W RTh = {w ∈ L2(Ω) | w |K ∈ P

    k(K ) ∀K ∈ Th}.

    and is defined by requiring that,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 8 / 43

  • introduction (an example)

    RT finite element approximation

    The approximation (qh, uh) is sought in the finite element spaceVRTh ×W

    RTh given by

    VRTh = {v ∈ H(div,Ω) | v|K ∈ Pk(K )n + xPk(K ) ∀K ∈ Th},

    W RTh = {w ∈ L2(Ω) | w |K ∈ P

    k(K ) ∀K ∈ Th}.

    and is defined by requiring that,

    (cqh, v)Ω − (uh,∇ · v)Ω = −〈g , v · n〉∂Ω ∀v ∈ VRTh ,

    (w ,∇ · qh)Ω − (duh,w)Ω = (f ,w)Ω ∀w ∈ WRTh ,

    with c = a−1 for each element K ∈ Th

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 8 / 43

  • introduction (an example)

    This yields to a matrix equation of the form:

    (A −BtB D )(QU) = (GH) ,where Q and U are vectors of coefficients of qh and uh with respect totheir corresponding finite element basis.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 9 / 43

  • introduction (an example)

    problem

    System is not positive definite.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 10 / 43

  • introduction (an example)

    problem

    System is not positive definite.

    solutions

    using expensive solver,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 10 / 43

  • introduction (an example)

    problem

    System is not positive definite.

    solutions

    using expensive solver,

    using a positive definite system by elimination of Q:solve equation

    (BA−1Bt + D)U = F+ BA−1Gfor U. Required inversion A−1 is difficult to compute and a full matrix.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 10 / 43

  • introduction (an example)

    problem

    System is not positive definite.

    solutions

    using expensive solver,

    using a positive definite system by elimination of Q:solve equation

    (BA−1Bt + D)U = F+ BA−1Gfor U. Required inversion A−1 is difficult to compute and a full matrix.hybridization:Introduce new unkowns λh (Lagrangian multipliers) and relax thecontinuity constraints between element interfaces for qh.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 10 / 43

  • introduction (an example)

    Definition (hybridized RT finite element approximation)

    The approximation (qh, uh, λh) is sought in the finite element space

    V̂hRT

    × ŴhRT

    × M̂◦hRT

    given by

    V̂hRT

    = {v ∈ L2(Ω)n | v|K ∈ Pk(K )n + xPk(K ) ∀K ∈ Th},

    ŴhRT

    = {w ∈ L2(Ω) | w |K ∈ Pk(K ) ∀K ∈ Th},

    M̂◦hRT

    = {µ ∈ L2(E◦h ) | µ|e ∈ Pk(e) ∀e ∈ E◦h}

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 11 / 43

  • introduction (an example)

    Definition (hybridized RT finite element approximation)

    The approximation (qh, uh, λh) is sought in the finite element space

    V̂hRT

    × ŴhRT

    × M̂◦hRT

    given by

    V̂hRT

    = {v ∈ L2(Ω)n | v|K ∈ Pk(K )n + xPk(K ) ∀K ∈ Th},

    ŴhRT

    = {w ∈ L2(Ω) | w |K ∈ Pk(K ) ∀K ∈ Th},

    M̂◦hRT

    = {µ ∈ L2(E◦h ) | µ|e ∈ Pk(e) ∀e ∈ E◦h}

    and is defined by requiring that,

    (cqh, v)Ω − (uh,∇ · v)Ω + 〈λh, JvK〉E◦h = −〈g , v · n〉∂Ω ∀v ∈ V̂hRT

    ,

    (w ,∇ · qh)Ω − (duh,w)Ω = (f ,w)Ω ∀w ∈ ŴhRT

    ,

    〈µ, JqhK〉E◦h = 0 ∀µ ∈ M̂◦h

    RT.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 11 / 43

  • introduction (an example)

    This yields to a matrix of the form

    A −B t −C t

    B D 0C 0 0

    QUΛ

    =

    GF0

    ,

    where Λ is the vector of dofs associated to the multiplier λh.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 12 / 43

  • introduction (an example)

    This yields to a matrix of the form

    A −B t −C t

    B D 0C 0 0

    QUΛ

    =

    GF0

    ,

    where Λ is the vector of dofs associated to the multiplier λh.New vectors of dofs Q and U define the same approximation (qh, uh) asthe original method.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 12 / 43

  • introduction (an example)

    This yields to a matrix of the form

    A −B t −C t

    B D 0C 0 0

    QUΛ

    =

    GF0

    ,

    where Λ is the vector of dofs associated to the multiplier λh.New vectors of dofs Q and U define the same approximation (qh, uh) asthe original method.

    Both Q and U can be easily eliminated

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 12 / 43

  • introduction (an example)

    This yields to a matrix of the form

    A −B t −C t

    B D 0C 0 0

    QUΛ

    =

    GF0

    ,

    where Λ is the vector of dofs associated to the multiplier λh.New vectors of dofs Q and U define the same approximation (qh, uh) asthe original method.

    Both Q and U can be easily eliminatedEΛ = H,E =CA−1(A − B t(BA−1B t + D)−1B)A−1C t ,H =− CA−1(A− B t(BA−1B t + D)−1B)A−1G− CA−1B t(BA−1B t + D)−1F .

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 12 / 43

  • introduction (an example)

    advantages of hybridization

    A is now a block diagonal matrix,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 13 / 43

  • introduction (an example)

    advantages of hybridization

    A is now a block diagonal matrix,E is symmetric positive definite,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 13 / 43

  • introduction (an example)

    advantages of hybridization

    A is now a block diagonal matrix,E is symmetric positive definite,number of dofs is remarkably smaller,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 13 / 43

  • introduction (an example)

    advantages of hybridization

    A is now a block diagonal matrix,E is symmetric positive definite,number of dofs is remarkably smaller,

    once Λ has been obtained, both Q and U can be computed efficientlyelement by element,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 13 / 43

  • introduction (an example)

    advantages of hybridization

    A is now a block diagonal matrix,E is symmetric positive definite,number of dofs is remarkably smaller,

    once Λ has been obtained, both Q and U can be computed efficientlyelement by element,

    the multiplier λh can be used to improve the approximation to u bymeans of local post-processing.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 13 / 43

  • introduction (an example)

    history of hybridization

    year event

    1965 first hybridization of finite elements for solving equationsof linear elasticity (often: static condensation)/“implementation trick“[6]

    1985 proof: hybrid variable contains extra informationabout the exact solution (⇒ local post-processing)[5]

    2004 hybridized RT and BDM methods of arbitrary order[2]2005 extended to finite element methods for

    stationary Stokes equation (DG, mixed)2009 unifying framework[3]2010 comparison CG-H vs. LDG-H[4]

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 14 / 43

  • the framework

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 15 / 43

  • the framework

    Unified framework provides approximations for

    1 (q, u) in the interior of the elements K ∈ Th, (qh, uh),

    2 u on the interior border of the elements, λh.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 16 / 43

  • the framework

    Definition (local solvers)

    For any single valued function m ∈ L2(∂K ), the functions (Qm,Um) arethe solutions of

    cQm+∇Um = 0 on K ,

    ∇ ·Qm+ dUm = 0 on K ,

    Um = m on ∂K

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 17 / 43

  • the framework

    Definition (local solvers)

    For any single valued function m ∈ L2(∂K ), the functions (Qm,Um) arethe solutions of

    cQm+∇Um = 0 on K ,

    ∇ ·Qm+ dUm = 0 on K ,

    Um = m on ∂K

    and for any single valued function f ∈ L2(K ), the functions (Qf ,Uf ) arethe solutions of

    cQf +∇Uf = 0 on K ,

    ∇ ·Qf + dUf = f on K ,

    Uf = 0 on ∂K .

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 17 / 43

  • the framework

    With λu g= +and the linearity of the problem we have that

    (q, u) = (Qλ+Qg +Qf ,Uλ+ Ug + Uf ).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 18 / 43

  • the framework

    With λu g= +and the linearity of the problem we have that

    (q, u) = (Qλ+Qg +Qf ,Uλ+ Ug + Uf ).

    The above property only holds iff

    Definition (transmission condition)

    JQλ+Qg +Qf K = 0

    This completely characterizes λ.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 18 / 43

  • the framework

    Definition (discrete local solvers)

    (Qm,Um) and (Qf ,Uf ) are the discrete versions of the local solvers.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 19 / 43

  • the framework

    Definition (discrete local solvers)

    (Qm,Um) and (Qf ,Uf ) are the discrete versions of the local solvers.

    Then the discrete solution can be written as

    (qh, uh) = (Qλh +Qgh +Qf ,Uλh + Ugh + Uf ),

    where λh ∈ M◦h and gh ∈ M

    ∂h are approximations to the values of u.

    uh λh ∈ M◦h gh ∈ M

    ∂h

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 19 / 43

  • the framework

    Definition (discrete version of transmission condition (weak))

    ah(λh, µ) = bh(µ) ∀µ ∈ M◦h

    is the discrete version of the transmission condition.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 20 / 43

  • the framework

    Notation

    V(K ) polynomial space in which q is approximated,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 21 / 43

  • the framework

    Notation

    V(K ) polynomial space in which q is approximated,

    W (K ) polynomial space in which u is approximated,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 21 / 43

  • the framework

    Notation

    V(K ) polynomial space in which q is approximated,

    W (K ) polynomial space in which u is approximated,

    Vh = {v | v|K ∈ V(K )},

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 21 / 43

  • the framework

    Notation

    V(K ) polynomial space in which q is approximated,

    W (K ) polynomial space in which u is approximated,

    Vh = {v | v|K ∈ V(K )},

    Wh = {w | w |K ∈ W (K )}.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 21 / 43

  • the framework

    Notation

    V(K ) polynomial space in which q is approximated,

    W (K ) polynomial space in which u is approximated,

    Vh = {v | v|K ∈ V(K )},

    Wh = {w | w |K ∈ W (K )}.

    In general: A function h on K is double-valued, each branch is denoted byhK+ or hK− .

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 21 / 43

  • the framework

    To define a hybridizable method, we had to define

    the discrete local solvers (Qm,Um) and (Qf ,Uf ),

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 22 / 43

  • the framework

    To define a hybridizable method, we had to define

    the discrete local solvers (Qm,Um) and (Qf ,Uf ),

    the transmission condition determining λh, ah and bh,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 22 / 43

  • the framework

    To define a hybridizable method, we had to define

    the discrete local solvers (Qm,Um) and (Qf ,Uf ),

    the transmission condition determining λh, ah and bh,

    the finite element spaces M◦h and M∂h ,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 22 / 43

  • the framework

    To define a hybridizable method, we had to define

    the discrete local solvers (Qm,Um) and (Qf ,Uf ),

    the transmission condition determining λh, ah and bh,

    the finite element spaces M◦h and M∂h ,

    the finite element spaces V(K ) and W (K ),

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 22 / 43

  • the framework

    To define a hybridizable method, we had to define

    the discrete local solvers (Qm,Um) and (Qf ,Uf ),

    the transmission condition determining λh, ah and bh,

    the finite element spaces M◦h and M∂h ,

    the finite element spaces V(K ) and W (K ),

    the trace spaces Q̂m and Q̂f (used in discrete local solvers).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 22 / 43

  • the framework

    To define a hybridizable method, we had to define

    the discrete local solvers (Qm,Um) and (Qf ,Uf ),

    the transmission condition determining λh, ah and bh,

    the finite element spaces M◦h and M∂h ,

    the finite element spaces V(K ) and W (K ),

    the trace spaces Q̂m and Q̂f (used in discrete local solvers).

    Finally, think about existence and uniqueness of λh.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 22 / 43

  • the framework

    Definition (trace space M◦h )

    M◦h := {µ ∈ M∂h | µ = 0 on ∂Ω}.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 23 / 43

  • the framework

    Definition (discrete local solver)

    1 maps m ∈ M∂h to the function (Qm,Um):

    (cQm, v)K − (Um,∇ · v)K = −〈m, v · n〉∂K ∀v ∈ V(K ),

    −(∇w ,Qm)K + 〈w , Q̂m · n〉∂K + (dUm,w)K = 0 ∀w ∈ W (K ).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 24 / 43

  • the framework

    Definition (discrete local solver)

    1 maps m ∈ M∂h to the function (Qm,Um):

    (cQm, v)K − (Um,∇ · v)K = −〈m, v · n〉∂K ∀v ∈ V(K ),

    −(∇w ,Qm)K + 〈w , Q̂m · n〉∂K + (dUm,w)K = 0 ∀w ∈ W (K ).

    2 maps f ∈ L2(Ω) to the pair (Qf ,Uf ):

    (cQf , v)K − (Uf ,∇ · v)K = 0 ∀v ∈ V(K ),

    −(∇w ,Qf )K + 〈w , Q̂f · n〉∂K + (dUf ,w)K = (f ,w)K ∀w ∈ W (K ).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 24 / 43

  • the framework

    Definition (characterization of λh)

    ah(η, µ) = (cQη,Qµ)Th + (dUη,Uµ)Th + 〈1, J(Uµ− µ)(Q̂η −Qη)K〉Eh ,

    bh(µ) = 〈gh, JQ̂µK〉Eh + (f ,Uµ)Th − 〈1, J(Uµ− µ)(Q̂f −Qf )K〉Eh

    + 〈1, JUf (Q̂µ−Qµ)K〉Eh

    − 〈1, J(Uµ− µ)(Q̂gh −Qgh)K〉Eh

    + 〈1, J(Ugh − g)(Q̂µ−Qµ)K〉Eh .

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 25 / 43

  • the framework

    Theorem (existence and uniqueness of λh)

    If the three assumptions

    1

    2

    3

    are fulfilled, then there is a unique solution λh of the weak formulation.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 26 / 43

  • the framework

    Theorem (existence and uniqueness of λh)

    If the three assumptions

    1 existence and uniqueness of the local solvers,

    2

    3

    are fulfilled, then there is a unique solution λh of the weak formulation.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 26 / 43

  • the framework

    Theorem (existence and uniqueness of λh)

    If the three assumptions

    1 existence and uniqueness of the local solvers,

    2 positive semidefiniteness of the local solvers and

    3

    are fulfilled, then there is a unique solution λh of the weak formulation.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 26 / 43

  • the framework

    Theorem (existence and uniqueness of λh)

    If the three assumptions

    1 existence and uniqueness of the local solvers,

    2 positive semidefiniteness of the local solvers and

    3 the “gluing condition” (If µ ∈ M∂h , then for every interior face thereexists a branch ∂K with P∂Kµ = µ.)

    are fulfilled, then there is a unique solution λh of the weak formulation.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 26 / 43

  • examples for hybridizable methods

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 27 / 43

  • examples for hybridizable methods

    general assumptions

    same local solvers in every element K ,

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 28 / 43

  • examples for hybridizable methods

    general assumptions

    same local solvers in every element K ,

    conforming simplicial triangulation.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 28 / 43

  • examples for hybridizable methods

    general assumptions

    same local solvers in every element K ,

    conforming simplicial triangulation.

    Mch,k := {µ ∈ C(Eh) | µ|e ∈ Pk(e) for all faces e ∈ Eh}

    Mh,k := {µ ∈ L2(Eh) | µ|e ∈ Pk(e) for all faces e ∈ E

    ◦h}

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 28 / 43

  • examples for hybridizable methods

    RT-H (Raviart Thomas):

    V(K )×W (K ) Pk(K )n + xPk(K )× Pk(K )

    M∂h Mh,kQ̂m Qm

    Q̂f Qf

    ah(η, µ) (cQη,Qµ)Th + (dUη,Uµ)Thbh(µ) 〈gh,Qµ · n〉∂Ω + (f ,Uµ)ThConservativity strong

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 29 / 43

  • examples for hybridizable methods

    BDM-H (Brezzi Douglas Marini):

    V(K )×W (K ) Pk(K )n × Pk−1(K )

    M∂h Mh,kQ̂m Qm

    Q̂f Qf

    ah(η, µ) (cQη,Qµ)Th + (dUη,Uµ)Thbh(µ) 〈gh,Qµ · n〉∂Ω + (f ,Uµ)ThConservativity strong

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 30 / 43

  • examples for hybridizable methods

    LDG-H (Local Discontinuous Galerkin):V(K )×W (K ) 1.) Pk(K )

    n × Pk−1(K )2.) Pk(K )

    n × Pk(K )3.) Pk−1(K )

    n × Pk(K )

    M∂h Mh,kQ̂m Qm+ τK (Um−m)n

    Q̂f Qf + τK (Uf )n

    ah(η, µ) (cQη,Qµ)Th + (dUη,Uµ)Th+〈1, J(Uµ− µ)(τK (Uη − η)n)K〉Eh

    bh(µ) 〈gh,Qµ · n+ τKUµ〉∂Ω + (f ,Uµ)ThConservativity strongThe stabilization parameter τK is nonnegative constant on each face in Eh,double-valued on E◦h .

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 31 / 43

  • examples for hybridizable methods

    CG-H (Continuous Galerkin):V(K )×W (K ) Pk−1(K )

    n × Pk(K )

    M∂h Mch,k

    Q̂m a new unkown variable

    Q̂f a new unkown variable

    ah(η, µ) (a∇Uη,∇Uµ)Th + (dUη,Uµ)Thbh(µ) 〈gh, JQ̂µK〉Eh + (f ,Uµ)ThConservativity weak

    Assume that a(x) is a constant on each element.CG-H is an LDG-H method with τ → ∞ .

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 32 / 43

  • examples for hybridizable methods

    Are all methods hybridizable?

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 33 / 43

  • examples for hybridizable methods

    Are all methods hybridizable?No.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 33 / 43

  • examples for hybridizable methods

    Are all methods hybridizable?No.

    Example (DG-methods)

    Remember the lecture “Scientific Computing” or see [1].A hybrizable method has to be single valued for ûh (= λh).

    Method ûhBassi-Rebay {uh}Brezzi et al. {uh}LDG {uh} − β · JuhKIP {uh}Bassi et al. {uh}Baumann-Oden {uh}+ nK · JuhKNIPG {uh}+ nK · JuhKBabuska-Zlamal (uh|K )|∂KBrezzi et al. (uh|K )|∂K

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 33 / 43

  • Other novel methods

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 34 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 35 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    hybridizable methods well suited for adaptivity:V(K )×W (K ) 1.) Pk(K)(K )

    n + xPk(K) × Pk(K)(K )

    2.) Pk(K)(K )n × Pk(K)−1(K )

    3.) Pk(K)(K )n × Pk(K)(K )

    4.) Pk(K)−1(K )n × Pk(K)(K )

    M∂h {µ | µ|e ∈ Mh,k(e) ∀e ∈ E◦h}

    ∩{µ | µ|∂K ∈ C({x ∈ ∂K | τK (x) = ∞})}

    Q̂m Qm+ τK (Um−m)n

    Q̂f Qf + τK (Uf )n

    ah(η, µ) depending on V(K ),W (K )bh(µ) depending on V(K ),W (K )with τK 6= 0 for3.) (on at least one face) and4.) (for alle faces).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 36 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    For e = ∂K+ ∩ ∂K−, we set

    k(e) :=

    max{k(K+), k(K−)}, if τ+ < ∞ and τ− < ∞

    k(K±), if τ± = ∞ and τ∓ < ∞

    min{k(K+), k(K−)}, if τ+ = ∞ and τ− = ∞.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 37 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    assumption

    [0,∞] ∋ τK

    τK ∈ (0,∞)

    K

    interior face E◦h

    face of Th corresponding to LDG-H

    depending on the selected method

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 38 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    Main features of this class of methods:

    1 variable degree approximation spaces on conforming meshes (k(K )),

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 39 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    Main features of this class of methods:

    1 variable degree approximation spaces on conforming meshes (k(K )),

    2 automatical coupling of different methods on conforming meshes (τKdetermines method),

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 39 / 43

  • Other novel methods hybridizable methods well suited for adaptivity

    Main features of this class of methods:

    1 variable degree approximation spaces on conforming meshes (k(K )),

    2 automatical coupling of different methods on conforming meshes (τKdetermines method),

    3 mortaring capabilities for nonconforming meshes (choice of τ forhanging nodes).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 39 / 43

  • Other novel methods The RT-method on meshes with hanging nodes

    1 introduction (an example)

    2 the framework

    3 examples for hybridizable methods

    4 Other novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 40 / 43

  • Other novel methods The RT-method on meshes with hanging nodes

    Considere the case of variable degree RT-H method with τ ≡ 0everywhere (assumption in last method is violated).

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 41 / 43

  • Other novel methods The RT-method on meshes with hanging nodes

    Considere the case of variable degree RT-H method with τ ≡ 0everywhere (assumption in last method is violated).

    Mesh is locally refined into four congruent triangles.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 41 / 43

  • Other novel methods The RT-method on meshes with hanging nodes

    Considere the case of variable degree RT-H method with τ ≡ 0everywhere (assumption in last method is violated).

    Mesh is locally refined into four congruent triangles.

    Idea: Impose special conditions on the meshes and link the definitionof k(K ) to the structure of the mesh.

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 41 / 43

  • Other novel methods The RT-method on meshes with hanging nodes

    k(K1)k(K2)

    k(K4)

    k(K3)

    "≥"

    "≥"

    max{k(K

    3),k(K

    4)}

    max{k(K2), k(K4)}

    arbitrarily

    Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 42 / 43

  • Other novel methods The RT-method on meshes with hanging nodes

    Thanks for your attention!Stefan Girke (WWU Münster Institut für Numerische und Angewandte Mathematik)Hybridization 10th of January, 2011 43 / 43

    Inhaltintroduction (an example)the frameworkexamples for hybridizable methodsOther novel methodshybridizable methods well suited for adaptivityThe RT-method on meshes with hanging nodes