Unidad 1 Información General

87
DOCUMENTO BASE QUÍMICA I SECRETARÍA DE EDUCACIÓN JALISCO COORDINACIÓN DE EDUCACIÓN MEDIA SUPERIOR, SUPERIOR Y TECNOLÓGICA DIRECCIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DEL BACHILLERATO EN LA MODALIDAD INTENSIVA SEMIESCOLARIZADA Guadalajara, Jalisco Febrero de 2007 QUÍMICA I PROYECTOS ACADÉMICOS DE LA DGEMS 1

Transcript of Unidad 1 Información General

Page 1: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

SECRETARÍA DE EDUCACIÓN JALISCO

COORDINACIÓN DE EDUCACIÓN MEDIA SUPERIOR, SUPERIOR Y TECNOLÓGICA

DIRECCIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR

DIRECCIÓN DEL BACHILLERATO EN LA MODALIDAD INTENSIVA SEMIESCOLARIZADA

Guadalajara, JaliscoFebrero de 2007

QUÍMICA I

PROYECTOS ACADÉMICOS DE LA DGEMS

1

Page 2: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

SECRETARÍA DE EDUCACIÓN JALISCOMATEMÁTICAS I

DIRECTORIOSECRETARIO DE EDUCACIÓN JALISCO

LIC. MIGUEL ÁNGEL MARTÍNEZ ESPINOSA

COORDINADOR DE EDUCACIÓN MEDIA SUPERIOR, SUPERIOR Y TECNOLÓGICA

LIC. EDUARDO DÍAZ BECERRA

DIRECCIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIORING. ANTONIO MAGAÑA ZÚÑIGA

DIRECCIÓN DEL BACHILLERATO EN LA MODALIDAD INTENSIVA SEMIESCOLARIZADA

MTRA. DIMNA SILVIA GONZÁLEZ HERNÁNDEZ

PROYECTOS ACADÉMICOS DE LA DIRECCIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR

PROFR. JUAN ANTONIO JIMÉNEZ GONZÁLEZ

Compilación José Joaquín Sánchez

Alejandro Gaona Andalón

Academia:Aguayo Vargas Eduwiges del C.

Aldana Meza BrendaElizalde Camino Salvador

Flores Maciel Ma. De LourdesPérez Cisneros Porfirio RafaelIbarra Moreno Ma. Rosaisela

Vallejo Vázquez Josué Abraham

2

Page 3: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

UNIDAD 1

1.1. La química: una ciencia interdisciplinaria.

El mundo actual gracias a la química se desarrolla día con día, logrando mayores beneficios para el hombre, ya que esta ciencia interviene en todos los aspectos de nuestra vida cotidiana, desde el nacimiento hasta la muerte.

En el universo las reacciones químicas se realizan espontáneamente, produciendo diversas sustancias. En la tierra, las reacciones químicas también ocurren espontáneamente en forma rápida, debido sobre todo a la presencia del oxígeno en el aire y en las aguas de los mares, ríos y lagos.

Los vegetales producen una gran variedad de compuestos utilizando el bióxido de carbono de la atmósfera, el agua, los minerales del suelo, y como fuente de energía, la luz solar.

La vida animal se mantiene gracias a la combustión que realiza el organismo, produciéndose bióxido de carbono que se expulsa en la respiración, liberándose la energía necesaria para que se efectúen las complejas reacciones químicas que los organismos necesitan para mantenerse vivos.

Se asegura que nada hay que escape a la intervención de la química, sea de una forma u otra. Se le encuentra en una célula o una estrella, como manifestaciones de la naturaleza.

En muchos casos el hombre se sirve de ella para satisfacer sus necesidades creando bienes materiales como vestidos, alimentos, combustibles, etc.

Por todo lo anterior expuesto, concluimos que la química es una ciencia interdisciplinaria, ya que para su desarrollo, es necesario su relación con los seres vivos (Biología), en el estudio de las partículas subatómicas (Física), con el petróleo y sus derivados (Matemáticas).

a) Concepto de ciencia.

La ciencia es un conjunto de conocimientos razonados y sistematizados opuestos al conocimiento vulgar.

Podemos afirmar que la ciencia es uno de los productos mas elaborados del ser humano pues a través de ella el hombre ha comprendido, profundizado, explicado y ejercido un control sobre muchos de los procesos naturales y sociales.

Las principales características de la ciencia son:

Sistemática: ya que se emplea el método científico para sus investigaciones

Comprobable: porque puede verificarse si es falso o verdadero lo que se propone como conocimiento

Perfectible: ya que constantemente se modifican sus enunciados, pues el hombre al aumentar sus conocimientos la corrige y mejora.

3

Page 4: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Natural: estudia todo lo que se encuentra en el medio ambiente.

b) Ciencia formales y factuales.

La ciencia se divide para su estudio en:

Las ciencias formales son aquellas que estudian ideas. Su carácter principal es que demuestran o prueban sus enunciados en principios lógicos. Ejemplos: lógica y matemáticas.

Las ciencias factuales comprueban mediante la observación y la experimentación sus hipótesis leyes o teorías. Ejemplos: las ciencias naturales y sociales.

c) Método científico.

El método científico experimental es el más adecuado para trabajar en química, que es una ciencia factual. Es el producto de una serie de investigaciones razonadas y organizadas de tal maneras que nos llevan a una solución del problema planteado.

No siempre es posible experimentar con todos los fenómenos naturales, pues en muchos casos el investigador no interviene en las causas del fenómeno en estudio, por ello para no alterar de manera intencionada y controlada ninguna de las variables, solo puede llevar a cabo su investigación científica mediante la observación sistemática y minuciosa de dichos fenómenos cuando se presentan.

Las etapas o pasos del método científico experimental son:

1. Definición del problema: en esta etapa se plantean las preguntas a las que se quieran responder con claridad, consta de las siguientes partes:

Observación del fenómeno y expresión de éste en un lenguaje sencillo, natural o llano. Realizar consulta bibliográfica sobre ese fenómeno.

2. - Plantear hipótesis de trabajo: Es en sí una predicción (suposición) en la que se explica cómo y por qué sucede el fenómeno.

El enunciado de la hipótesis debe involucrar las variables del fenómeno, ya sea cualitativas (no medibles) ó cuantitativas (medibles) debe formularse mediante proposiciones afirmativas, debe ser clara y debe basarse en la investigación bibliográfica. La hipótesis estará formulada de tal manera que sus consecuencias puedan ser comprobadas mediante la experimentación.

Debemos de escoger un método de enjuiciamiento que nos ayude a explicar el fenómeno observado.

3. - Elaboración de un diseño experimental: en esta etapa se escoge o elabora el procedimiento experimental que se va a usar y los instrumentos de medición capaces de medir y controlar las variables del fenómeno.

4

Page 5: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

El procedimiento experimental es la secuencia de operaciones que va a realizar el investigador. Es el investigador quien decide qué medir y cómo hacerlo, por lo cual considera los aspectos de equipo, tiempo y dinero disponible.Una vez que se han llevado a cabo los experimentos de prueba, al realizar el experimento final se deberán tomar en cuenta todas las mediciones hechas, así como, anomalías y detalles que ocurran a la hora de realizarlo.

4. - Análisis del resultado: una vez obtenidas las mediciones, es necesario el representarlas por medio de tablas y/o gráficas que nos ayudan a representar el fenómeno en forma cuantitativa los cuales deben de ayudar a contestar lo más claramente posible las preguntas planteadas.

5.- Obtención de conclusiones: en este punto toca responder con claridad las preguntas planteadas en el experimento y manifestar si fue válida o no la hipótesis de trabajo.

Si hay preguntas que no se puedan responder deberá establecer el por qué o, si el caso lo amerita, hacer una conjetura acerca de la hipótesis o modelo que describa el fenómeno estudiado.

6.- Elaboración del informe escrito: de los factores más importante a la hora de escribir un informe científico es la claridad, también tomar en cuenta al nivel académico a quien va dirigido y el lenguaje a usar. Otra cosa importante es la presentación del trabajo.

Definición.

La química es la ciencia que trata de la composición, estructura, propiedades y transformaciones de la materia así como de las leyes que rigen esos cambios.

Así, todo el universo es su objeto de estudio. La química pertenece al grupo de la ciencias fácticas (factuales) ya que estudia y mide hechos basados en la observación y la experimentación.

Como toda ciencia experimental, sigue los pasos del método científico para llegar al establecimiento de teorías y leyes que describen el comportamiento de la naturaleza.

1.1.1 Relación con otras ciencias (subdivisiones).

El campo del estudio de la química es tan amplio, que no es posible, tan solo, interesarse en un dominio particular y así contribuir a su desenvolvimiento. Por eso la química al relacionarse con otras ciencias, forma nuevas ramas o subdivisiones.

Las subdivisiones de la química son:

Química inorgánica: campo de la química que estudia las reacciones y propiedades de los elementos químicos y sus compuestos, excepto el carbono y sus compuestos, que se estudian en la química orgánica. Históricamente la química inorgánica empezó con el estudio de los minerales y la búsqueda de formas de extracción de los metales a partir de los yacimientos.

Química orgánica: rama de la química en la que se estudian el carbono, sus compuestos y reacciones. Existe una amplia gama de sustancias (medicamentos, vitaminas, plásticos, fibras sintéticas y naturales, hidratos de carbono, proteínas y grasas) formadas por moléculas orgánicas.

5

Page 6: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Química analítica: una de las ramas más importantes de la química moderna. Se subdivide en dos áreas principales, el análisis cualitativo y el cuantitativo. El primero identifica los componentes desconocidos existentes en una sustancia, y el segundo indica las cantidades relativas de dichos componentes.

Bioquímica: estudio de las sustancias presentes en los organismos vivos y de las reacciones químicas en las que se basan los procesos vitales. Esta ciencia es una rama de la Química y de la Biología. El prefijo bio-procede de bios, término griego que significa ‘vida’. Su objetivo principal es el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.

Otros campos especializados son: ingeniería química, metalurgia, petroquímica, química nuclear.

1.2 Materia.

1.2.1 Características y manifestaciones de la materia.

A la fecha no se ha podido obtener una definición clara y sencilla de lo que es materia. Algunos autores la definen como “todo lo que ocupa un lugar en el espacio y tiene masa”. Todo lo que constituye el universo es materia.

De acuerdo con las teorías de la física relativista, la materia se manifiesta como masa y energía, en un espacio y tiempo determinados.

La existencia de materia en forma de partículas se denomina masa.

A la energía actualmente se le considera como el principio de actividad interna de la masa.

La materia y sus manifestaciones se rigen bajo las siguientes leyes:

LEY DE LA CONSERVACIÓN DE LA MASA. Esta ley fue enunciada por Lavoisier y establece que “la masa no se crea ni se destruye, sólo se transforma”.

LEY DE LA CONSERVACIÓN DE LA ENERGÍA. Esta ley fue enunciada por Mayer y establece que “la energía del Universo se mantiene constante de tal manera que no puede ser creada ni destruida y sí cambiar de una forma a otra”.

LEY DE LA CONSERVACIÓN DE LA MATERIA. Esta ley se fundamenta en la Teoría de la Relatividad de Albert Einstein, y dice que “la cantidad de masa–energía se manifiesta en un determinado espacio-tiempo constante”.

1.2.2 Propiedades químicas y físicas, intensivas y extensivas de la masa.

6

Page 7: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

La masa se manifiesta ante nuestros sentidos como elementos, compuestos, mezclas, sólidos, líquidos y gases.

La masa presenta propiedades generales (extensivas) y específicas (intensivas).

Las generales, también llamadas extensivas, son aditivas y las presentan todas las substancias, pues dependen de la cantidad de masa en estudio y son: masa, peso, inercia, volumen, divisibilidad, porosidad; no nos sirven de mucho en cuanto a su valor para identificar una sustancia.

Las propiedades específicas o intensivas sí nos sirven para identificar o diferenciar una sustancia de otra. Su valor es específico y no depende de la cantidad de masa en estudio. Algunos ejemplos son: temperatura, densidad, color, índice de refracción y reflexión, puntos de fusión y ebullición, poder oxidante y reductor, acidez, basicidad, dureza, solubilidad, elasticidad, presión vapor, etc.

Estas propiedades también las podemos clasificar como: físicas (masa, peso, divisibilidad, dureza elasticidad, etc.) y químicas (poder oxidante, poder reductor, acidez, basicidad).

1.2.3 Estados de agregación.

Se ha dicho que la masa se hace notar en forma de partículas y que al agregarse constituyen las sustancias. Si las partículas conservan determinada cantidad de energía cinética, existirá cierto grado de cohesión entre ellas. Los estados de agregación de la masa son: sólido, líquido y gas.

Las sustancias en estado sólido ocupan un volumen definido normalmente tienen forma y firmeza determinadas, la movilidad de las partículas que las constituyen es casi nula, existiendo una gran cohesión, son incompresibles y no fluyen.

Un líquido ocupa un volumen definido, pero es necesario colocarlo en un recipiente, y éste tomara la forma del recipiente, la movilidad y las fuerzas de cohesión son intermedias, son incompresibles y fluyen.

Un gas no tiene forma ni volumen definidos, por lo que se almacena en un recipiente cerrado. El gas tiende a ocupar todo el volumen del recipiente en que está confinado y sus partículas poseen gran energía cinética, presentando movimientos desordenados, fluye y es compresible.

1.2.4 Cambios de estado.

En nuestro ambiente y bajo ciertas condiciones, las substancias se presentan en uno de los estados de agregación antes mencionados, pero pueden cambiar de un estado a otro si las condiciones cambian. Estas condiciones son presión y temperatura. Los cambios de estado son:

1. Fusión . Cambio que sufren las sustancias al pasar del estado sólido al líquido al incrementarse el calor.

2. Evaporación . Cambio que se experimenta cuando un líquido pasa al estado de vapor o gas por incremento de calor.

7

Page 8: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

3. Sublimación . Es el paso del estado sólido al gaseoso o vapor sin pasar por el estado líquido, necesitándose calor. El cambio contrario, de gas o vapor a sólido, se llama degradación.

4. Solidificación . Este cambio requiere de eliminar calor y ocurre cuando un líquido cambia al estado sólido.

5. Condensación . Es el paso del estado de vapor al estado líquido. Este cambio también supone la eliminación de calor.

6. Licuefacción . Es el paso del estado gaseoso al estado líquido. Además de eliminar calor debe aumentarse la presión para conseguir el cambio.

La diferencia entre un vapor y un gas es que el vapor se condensa y el gas se licua.

1.3 Energía.

Energia: es la capacidad de los cuerpos para realizar un trabajo.

1.3.1 Características y manifestaciones de la energía.

Al hablar de la energía existen solo dos tipos: la potencial y la cinética.

La energía potencial es la energía almacenada en una partícula debido a su posición dentro de un campo de fuerzas eléctricas magnéticas o gravitacionales.

La energía cinética, es la energía que poseen los cuerpos en movimiento, o bien la energía debida a una partícula y en virtud de su velocidad.

Con la transformación de estas dos, ocurren otras manifestaciones. Algunas manifestaciones energéticas comunes son: solar, química, hidráulica, luminosa, eólica, mecánica, eléctrica, térmica o calorífica, atómica o nuclear, geodésica, biomasa.

1.3.2 Beneficios y riesgos en el consumo de la energía.

Los beneficios que ofrecen el aprovechamiento de las diferentes manifestaciones son muchas, todas enfocadas hacia el confort y avance de la humanidad, lamentablemente muchos de estos beneficios son a corto plazo ya que muchas de estas energías son no renovables, es decir, no se pueden producir de manera artificial.

Actualmente con el consumo excesivo y al ritmo que lo estamos viviendo, estos materiales se agotarán y si no se buscan fuentes alternas de energía, la humanidad podría verse paralizada y retrocedería a tiempos antiguos.

1.3.3 Aplicaciones de la energía no contaminantes.

8

Page 9: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

La energía lumínica puede aprovecharse en las regiones donde la mayor parte del tiempo tiene días soleados, ya que se han desarrollado equipos que utilizan esta energía.

Las celdas solares son dispositivos capaces de convertir la energía lumínica en eléctrica, está constituida por una celda plana de material semiconductor que genera una corriente eléctrica, el flujo de electrones es colectado y transportado por medio de contactos metálicos dispuestos en forma de enrejado. Un módulo fotovoltaico consiste en un grupo de celdas montadas en un soporte rígido e interconectadas eléctricamente, además es de fácil mantenimiento.

Con la energía nuclear o atómica es posible suministrar calor y electricidad. Las centrales núcleo eléctricas son muy rentables, ya que es muy poca la cantidad de combustible (uranio) que necesita. En las núcleo eléctricas el calor se obtiene de la fusión del uranio.

La biomasa se trata de toda materia orgánica que existe en la naturaleza (árboles, arbustos, algas, desechos orgánicos, animales, estiércol, etcétera) que sean susceptibles de transformarse en energía por medio de fermentación anaerobia o en ausencia de aire y en un recipiente cerrado llamado digestor. Con la biomasa pueden generarse combustibles sólidos, gaseosos y líquidos para producir vapor electricidad y gases (biogás).

1.4 Cambios de la materia.

A las modificaciones o cambios que experimentan las sustancias bajo la acción de las diferentes formas de energía se les llama fenómenos.

a) Cambio físico.

Las modificaciones o cambios que no alteran la composición íntima de la sustancia, o que solo lo hacen de modo aparente y transitorio, reciben el nombre de fenómenos físicos.

Estos fenómenos desparecen al cesar la causa que los origina, en su mayoría son fenómenos reversibles. Ejemplos son: dilatación de un metal, transmisión del calor, velocidad, aceleración, etc.

b) Cambio Químico.

Cuando el cambio experimentado modifica permanentemente la naturaleza íntima de la sustancia y no es reversible, el fenómeno es de tipo químico.

Antes y después del cambio se tienen sustancias diferentes con propiedades diferentes. Ejemplos son: digestión de los alimentos, corrosión de los metales, explosión de una bomba, revelado de una fotografía, combustión de un cerillo, fotosíntesis, fermentación.

c) Cambio Nuclear.

Fenómeno o cambio que consiste en la desintegración espontánea o decaimiento de los núcleos atómicos de ciertos elementos, acompañada de emisión de partículas o radiaciones electromagnéticas.

9

Page 10: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Fue el científico Francés Becquerel el primero en descubrir la radioactividad al observar que el uranio producía un tipo de rayos capaz de atravesar varias hojas de papel negro e impresionar una placa fotográfica colocada al otro lado.

El descubrimiento de la radiactividad artificial ha sido uno de los logros más importante de la física nuclear, ya que actualmente se producen en la industria una gran variedad de elementos radiactivos con múltiples aplicaciones en la investigación científica, la medicina, la agricultura y la industria.

COMPLEMENTO DE LA PRIMERA UNIDAD

Elementos, compuestos y mezclas.

Las sustancias químicas se pueden clasificar en puras o no. Las sustancias puras se clasifican en elementos y compuestos.

Los elementos son sustancias simples que no pueden descomponerse por métodos químicos ordinarios en algo más sencillo.

En la actualidad se conocen 118 elementos, 92 de los cuales son naturales y el resto son artificiales. La mayoría son sólidos, cinco son líquidos en condiciones ambientales y doce son gaseosos. Varios de ellos se conocen desde tiempos muy antiguos, unos son abundantes, otros extremadamente raros, algunos son radiactivos y otros se han sintetizado en laboratorios con una vida promedio muy corta.

Los elementos se representan por símbolos y están ordenados por un número y por sus propiedades en un arreglo llamado tabla periódica.

La mínima unidad material que puede existir representando las características de un elemento, es el átomo. Un elemento tiene átomos iguales entre si y diferentes a los de otro elemento.

Los compuestos son sustancias que resultan de la unión química de dos o más elementos en proporciones definidas, se combinan de tal manera que ya no es posible identificarlos por sus

propiedades originales e individuales y sólo una acción química los puede separar.

Los compuestos se representan por fórmulas y la mínima unidad material que puede existir representando las características de los compuestos es la molécula. Algunos ejemplos son: agua(H2O), Oxido de calcio (CaO), cloruro de sodio(NaCl)

Las mezclas son el resultado de la unión física de dos o más sustancias(elementos o compuestos) que al hacerlo conservan sus propiedades individuales. La composición de las mezclas es variable y sus

componentes siempre podrán separarse por medios físicos o mecánicos.

Las mezclas pueden ser clasificadas como:

10

Page 11: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Homogéneas: son las que contienen la misma cantidad de sus componentes en toda la muestra, no es posible a simple vista ver los componentes, se encuentran tan íntimamente ligados que forman una sola fase.

Heterogéneas: se distinguen fácilmente sus componentes y las diferentes fases que las forman, la composición no es constante en toda la muestra.

Además existen mezclas sólidas, gaseosas y líquidas. Las mezclas en estados intermedios constituyen los sistemas de dispersión.

MezclasSólidas Líquidas Gaseosas

CementoBronceGranitoPapelPólvoraTierraAcero

PetróleoAgua de marTintaRefrescoAgua mineral

AireGas

Para la separación de mezclas los métodos más comunes son:

1. Decantación. Método para separar un sólido, de grano grueso e insoluble, de un líquido. Consiste en verter el líquido después que se ha sedimentado el sólido. Este método también se aplica en la separación de dos líquidos no miscibles y de diferentes densidades, utilizando un embudo de separación.

2. Filtración. Permite separar un sólido insoluble (de grano relativamente fino) de un líquido. Para tal operación se emplea un medio poroso de filtración o membrana que deja pasar el líquido y retiene el sólido.

3. Centrifugación. Método utilizado para separar un sólido (insoluble de grano muy fino y de difícil sedimentación) de un líquido. La operación se lleva a cabo en un aparato llamado centrífuga, en el que por medio de un movimiento de translación acelerado se aumenta la fuerza gravitacional provocando la sedimentación del sólido o de las partículas de mayor densidad.

4. Destilación. Método que permite separar mezclas de líquidos miscibles, aprovechando sus diferentes puntos de ebullición. Este procedimiento incluye una evaporación y condensación sucesivas. Existen diferentes tipos de destilación, entre ellos los más comunes son: simple, fraccionada, por arrastre de vapor, al vacío, etc.

5. Cristalización. Este método consiste en provocar la separación de un sólido que se encuentra disuelto en una solución; finalmente el sólido queda como cristal y el proceso involucra cambios de temperatura, agitación, eliminación del solvente, etc. Otra forma de lograr una cristalización es cuando una mezcla sólido – líquido contiene un solvente o líquido volátil.

11

Page 12: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

6. Evaporación. Es la operación por la cual se separa un sólido disuelto en un líquido y por incremento de temperatura hasta que el líquido hierve o ebulle y pasa al estado de vapor, quedando el sólido como residuo en forma de polvo seco. El líquido puede o no recuperarse.

7. Sublimación. Método utilizado para la separación de sólidos, aprovechando que alguno de ellos es sublimable, pasando del estado sólido al líquido por incremento de temperatura.

8. Diferencia de solubilidad. Permite separar sólidos de líquidos o líquidos de líquidos al contacto con un solvente que selecciona uno de los componentes de la mezcla. Este componente es soluble en el solvente adecuado y es arrastrado para su separación.

9. Imantación. En este método se aprovecha la propiedad de alguno de los componentes de la mezcla para ser atraído por un campo magnético.

10. Cromatografía. Este método consiste en separar mezclas de gases o de líquidos por el paso de éstas a través de un medio poroso y adecuado, con ayuda de solventes. El equipo para tal operación puede ser tan simple como una columna rellena, un papel o una placa que contiene un medio poroso, o bien un equipo tan sofisticado como lo es un cromatógrafo.

12

Page 13: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

UNIDAD 2

2.1. Primeras aproximaciones al modelo atómico actual.

El atomismo ha sido la especulación científica más atrevida y fructífera que surgió de la antigua Grecia. Leucipo y Demócrito desarrollaron la Primera Teoría Atómica, que sugería que toda la materia estaba formada por partículas idénticas e indivisibles, llamadas átomos.

Empédocles, explicó la composición de la materia de otra forma, decía que la materia estaba compuesta de cuatro sustancias básicas o “elementos”: tierra, aire, fuego y agua; misma que fue apoyada por Aristóteles.

2.1.1. Leyes ponderales y la teoría atómica de Dalton.

A finales del siglo XVIII Jhon Dalton publica su obra “Nuevo Sistema de Filosofía Química”, la base de la hipótesis expuesta está en el establecimiento de una relación de los conceptos de elemento químico y átomo. Tomó como punto de partida los siguientes hechos y evidencias experimentales:

La ley de la conservación de la masa de Lavoisier. (Ley ponderal) Ley de las proporciones constantes de Proust. (Ley ponderal) Los elementos no pueden descomponerse en otras sustancias. En la formación de un compuesto, los elementos no desaparecen, pueden volverse a recuperar por

descomposición del compuesto.

Para explicar estos hechos, propuso su modelo atómico mediante cuatro postulados:

Toda materia está formada por átomos. Todos los átomos de cualquier elemento son iguales entre sí, pero diferentes a otros elementos. Los cambios químicos son cambios en las combinaciones de los átomos entre sí. Los átomos son como esferas de materia indivisibles.

2.2. Partículas subatómicas.

Las partículas fundamentales del átomo son: electrón, protón y neutrón; y sus características se muestran en la siguiente tabla:

Nombre SímboloMasa

(gramos)Carga

eléctricaElectrón e- 9.11 X 10-28 -1Protón p+ 1.67 X 10-24 +1Neutron n° 1.68 X 10-24 0

2.2.1. El protón y los rayos canales.

Hasta el descubrimiento del electrón, no tenía sentido buscar una partícula subatómica positiva, pero de hecho el protón podía haberse descubierto antes que el electrón, puesto que el físico alemán Eugen Goldstein (1850-1931), al estudiar los rayos catódicos, observó en 1886, que empleando un tubo de rayos catódicos modificado, con el cátodo perforado, pasaban unos rayos catódicos y podían ser

13

Page 14: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

estudiados en su avance hacia una pantalla, situada detrás del cátodo, y en la cual producían una fluorescencia característica. Los denominó rayos canales.

En 1895 el francés Jean Perrin (1870-1942) demostró que los rayos canales consistían en partículas cargadas positivamente, pues sufrían desviaciones hacia la placa negativa de un campo eléctrico externo al que podían ser sometidos. A estos rayos J. J. Thomson les dio, en 1907, el nombre de rayos positivos.

Los rayos canales o positivos están constituidos por iones positivos y dependen del gas encerrado en el tubo. Si el gas es hidrógeno, la relación carga/masa es la mayor de todas las encontradas para los rayos positivos, lo cual sugirió que el ión positivo del átomo de hidrógeno era otra partícula subatómica: el protón, denominado así por Ernest Rutherford en 1914.  Por tanto: La masa del protón es 1836 veces mayor que la del electrón, siendo su carga igual pero de signo contrario.

2.2.2. El electrón y el modelo atómico de Thomson.

El descubrimiento del electrón ha sido un hecho relevante para la química, pues las explicaciones actuales de los fenómenos químicos se basan en la existencia de los electrones.

Los pasos previos a su descubrimiento son los siguientes:

Tras las experiencias de la electrólisis, y al estudiar las propiedades eléctricas de la materia, Faraday intentó producir descargas eléctricas en recipientes en los que había hecho parcialmente vacío. Notó que se producían unas tenues fluorescencias o luminiscencias, pero como el grado de vacío conseguido no era elevado, no pudo extraer más conclusiones.

El alemán Heinrich Geissler (1814-1879) inventó en 1857 una bomba de vacío más eficaz y la conectó a un tuvo donde estaban situados dos electrodos metálicos. El dispositivo así formado recibe el nombre de tubo de Geissler.

Al encerrar en un tubo de Geissler un gas y conectar los electrodos a un generador eléctrico no se observa fenómeno alguno, aunque se aplique un alto voltaje, ya que los gases son aislantes casi perfectos en condiciones habituales. Pero al hacer el vacío, manteniendo un voltaje elevado, se empieza a observar un hilo luminoso de forma sinuosa que enlaza los electrodos y se acusa el paso de una corriente eléctrica.

Si el vacío se intensifica en el tubo de Geissler, el hilo luminoso desaparece y en estas circunstancias puede verse una fluorescencia en la pared del tubo opuesta al cátodo.

Pronto comenzó una carrera para analizar la causa de esta fluorescencia. Así, se fue disminuyendo la presión del gas encerrado en el interior del tubo, con objeto de mejorar el vacío, y se fue aumentando la diferencia de potencial entre los electrodos. De esta forma, la fluorescencia producía sensación al arranque de partículas del electrodo negativo, que se propagaban en línea recta y que, al chocar con el cristal del tubo en su parte posterior, producían la característica fluorescencia. Asimismo, también se comprobó que un imán podía desplazar la mancha fluorescente producida.

14

Page 15: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

El inglés William Crookes (1832-1919) mejoró el tubo de Geissler, el cual amplió al colocar un par de placas adicionales para crear un campo eléctrico externo. Su tubo se conoce como tubo de rayos catódicos, ya que se admitió que los fenómenos observados eran debidos a la producción de unos rayos en la descarga del cátodo (electrodo negativo), al aplicar una diferencia de potencial muy elevada entre el cátodo y el ánodo (electrodo positivo). Los rayos son desviados por la acción del campo eléctrico externo hacia la placa positiva y, al final del trayecto, cuando chocan contra las paredes del tubo, producen una fluorescencia característica.

En 1894 Joseph John Thomson (1856-1940) midió la velocidad del flujo catódico, y tres años después la desviación de los rayos catódicos hacia la placa positiva del campo eléctrico externo a que son sometidos dentro del tubo de Crookes. Con ello calculó el cociente de la carga entre la masa (q/m) de las partículas de los rayos catódicos.

Lo sorprendente de esta experiencia es que el valor obtenido de q/m es siempre el mismo, independientemente del gas existente inicialmente en el tubo. Además, es 1836 veces mayor que el valor de q/m obtenido para el ión del átomo de hidrógeno  producido en los fenómenos de electrólisis. Se admitió que el valor numérico de la carga eléctrica es igual a la carga mínima de los iones de las experiencias electroquímica de Faraday, por lo que la masa de las partículas de los rayos catódicos es 1836 veces menor que la del ión del átomo de hidrógeno (átomo más pequeño).

El irlandés George Stoney (1826-1911) sugirió en 1891 el nombre de electrón para la mínima carga eléctrica existente en los fenómenos electroquímicos. Los experimentos de J.J. Thomson demostraron que los rayos catódicos eran corrientes de electrones, por lo que se reconoce a Thomson como el descubridor del electrón.

Thomson considero la existencia de e- en el átomo, supuso que el átomo estaba formado por e- que se mueven dentro de una esfera de electrificación.

El electrón es la partícula de carga negativa que se toma como unidad de carga eléctrica.

En 1906 el americano Robert Millikan (1868-1953) determinó la carga del electrón, por  lo que la masa del electrón fue hallada inmediatamente a partir del valor de q/m obtenido por J.J. Thomson.

2.2.3. El neutrón y los experimentos de Chadwik.

El descubrimiento del electrón y del protón permite asignar un carácter neutro a la materia desde el punto de vista eléctrico, si los átomos contienen igual número de protones que de electrones. Por otra parte, estas partículas tienen carga y su detección en campos eléctricos y magnéticos es sencilla. Era por ello difícil descubrir una partícula subatómica sin carga.

15

Page 16: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Posteriormente al descubrimiento del protón se realizaron diversas pruebas consistentes en someter a los átomos de distintos elementos químicos ligeros como el berilio, a bombardeos de partículas alfa. De este modo se originaba la emisión de un cierto tipo de radiación, cuya presencia se manifiesta por la expulsión de protones de sustancias como la parafina, utilizada en este tipo de experimentos por poseer un gran número de hidrógenos.

En 1932 el inglés James Chadwick (1891-1974) demostró que la mejor manera de explicar los efectos producidos es suponer que las partículas alfa provocan la expulsión de partículas neutras del núcleo del átomo de berilio y que dichas partículas neutras producen a su vez la expulsión de protones de la parafina.

Dicha partícula recibió el nombre de neutrón, por carecer de carga eléctrica, siendo su masa similar a la del protón. Por tanto: La masa del neutrón es 1839 veces mayor que la del electrón.

2.2.4. Número atómico, masa atómica y número de masa.

El número atómico (N. A.) es igual al número de protones que contiene un átomo. En un átomo en estado basal(eléctricamente neutro) el número de protones es igual al número de electrones.

N. A. = # p+ = # e-

El número de masa (número másico) se refiere al número de neutrones más el número de protones que contiene un átomo.

Número de masa = # nº + # p+

El peso atómico es el peso promedio de las masas atómicas de los diferentes isótopos de los átomos del mismo elemento.

Para obtener el peso atómico de un elemento, se suma el producto del número másico por el porcentaje de cada isótopo y se divide entre 100.

P. A. = NM% + NM% + NM% 100

2.2.5. Isótopos y sus aplicaciones.

Los isótopos son átomos del mismo elemento que tienen el mismo número atómico pero diferente número másico, esto es, que existen algunos átomos de un mismo elemento con diferente número másico.

Cuando un isótopo es capaz de emitir radiaciones en forma espontánea recibe el nombre de radioisótopo. Pueden obtenerse radioisótopos artificiales al bombardear con neutrones algunos elementos químicos, con múltiples aplicaciones en la investigación científica, la medicina, la agricultura y la industria.

16

Page 17: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

2.3. La radiación y el Modelo de Rutherford.

Rutherford nació en Brighwater, Nueva Zelanda, en 1871. Graduado en física, dedicó sus primeras investigaciones al electromagnetismo. Por sus resultados, obtuvo una beca que le permitió trasladarse a Inglaterra a trabajar con J. J. Thomson en el Laboratorio Cavendish, al que llegó en 1895. En Cambridge, Rutherford siguió la línea de investigación local estudiando los efectos de los rayos X y de las radiaciones de Becquerel sobre la conducción eléctrica de gases enrarecidos. En 1898 demostró que los rayos X y la radiactividad tienen efectos similares sobre los gases y encontró que hay al menos dos tipos diferentes de radiactividad que él bautizó como   y .  Los rayos  resultaban ser casi tan penetrantes como los rayos X, en contraste con los rayos  que eran detenidos con una hoja muy delgada de aluminio. Posteriormente se descubrió otro tipo de radiación, mucho más penetrante que las anteriores, que se denominó rayos . Estos rayos, capaces de penetrar placas gruesas de metal, son radiación electromagnética de más alta energía que los rayos X.

Rutherford, quien en septiembre de 1898 había aceptado un cargo en la Universidad de McGill en Montreal, recién llegado a Canadá se dedicó a estudiar la naturaleza de los rayos a. Pronto encontró que, si bien más difíciles de deflectar, éstos también eran sensibles a los campos magnéticos y eléctricos. Suponiendo entonces que se trataba de partículas cargadas, a partir de 1903, Rutherford estudió sus deflecciones para determinar la relación carga / masa de los rayos a. Finalmente, en 1906, sugirió que los rayos a no eran otra cosa que iones de helio. Esta hipótesis era apoyada por la aparente emanación de helio en materiales radiactivos, descubierta por William Ramsay (Premio Nóbel de química 1904) en 1895 en el uranio y por el mismo Ramsay y Frederick Soddy (Premio Nóbel de Química, 1921) en sales de radio hacia 1903. En 1908 Rutherford recibió el Premio Nóbel de Química por este trabajo.

El descubrimiento del núcleo puede considerarse como un descubrimiento indirecto del protón, puesto que este último no es más que el núcleo del átomo de hidrógeno. Sin embargo, hay una diferencia, sutil pero importante, entre el núcleo del hidrógeno y el concepto de protón como partícula elemental y constituyente fundamental de la materia. Como veremos a continuación, no fue sino hasta 1919 que el propio Rutherford demostró, a través de la desintegración del núcleo de nitrógeno, que éste estaba constituido por partículas, a las que posteriormente bautizó como protones y que podían ser identificadas con los núcleos del hidrógeno.

El modelo atómico Rutherford propone que los e- se encuentran en la periferia del átomo y el núcleo que es muy pequeño en el centro.

2.4. Modelo atómico actual.

El modelo atómico actual fue desarrollado por el Austriaco Erwin Schrödinger, en el que describe el comportamiento del electrón en función de sus características ondulatorias.

Este modelo ha soportado la prueba del tiempo y actualmente todavía proporciona los conceptos mediante los cuales los científicos explican el comportamiento de los sistemas atómicos y moleculares. Esta teoría deriva de tres conceptos fundamentales:

Concepto de estados estacionarios de energía del electrón propuesto por Bohr.

17

Page 18: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Los electrones se encuentran en el nivel de mínima energía (estado basal o fundamental), pero pueden absorber energía, pasando a un nivel superior, más alejado del núcleo (estado excitado); este estado es inestable y al regresar el electrón a su nivel original emite la energía absorbida en forma de radiación electromagnética (fotón).

Naturaleza dual de la masa sugerida por Luis de Broglie.

De Broglie concluyó que la masa, como la luz, tiene ambas características de partícula y de onda.

Principio de incertidumbre de Heinsenberg.

Heinsenberg presentó el principio de incertidumbre como consecuencia de la dualidad de la naturaleza del electrón, que dice así: es imposible en un momento dado establecer la posición y velocidad del electrón en un nivel energético.

2.4.1. Los números cuánticos y los modelos de Bhor y Sommerfeld.

En 1913 Niels Bohr propuso un modelo atómico cuántico, estableció que los e-, se mueven en niveles estacionarios de energía, y sus trayectorias son circulares, semejantes a las trayectorias de los planetas del sistema solar.

Mientras los e- describen una órbita, no hay emisión ni absorción de energía (estado basal), pero pueden absorber energía, pasando a un nivel superior, más alejado del núcleo (estado excitado); este estado es inestable y al regresar el e- a su nivel original emite la energía absorbida en forma de radiación electromagnética(fotón).

A pesar de los resultados sorprendentes de la teoría de Bohr, aparecieron ciertas cuestiones que la hacían incompleta. Por eso en 1916 el físico alemán Arnold Sommerfeld propuso como extensión a la teoría de Bohr, que las órbitas electrónicas podrían ser elípticas.

18

Page 19: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Con un estudio más detallado de los espectros atómicos, descubrió que las líneas de los espectros elementales estaban formadas por otras líneas más finas que representaban subniveles de energía.

Fue así como Schrödinger, después de sopesar las ideas de Bohr y De Broglie, y tratando de aunar todas, dedujo una ecuación matemática en la que el electrón era tratado en función de su comportamiento ondulatorio.

2.4.2. Los orbitales atómicos.

Schörindger dedujo una ecuación matemática en donde el e- es tratado en función del comportamiento ondulatorio. Y de esa manera nació el concepto de orbital, que es una región en el espacio donde existe la mayor probabilidad de encontrar un e- en el átomo.

De acuerdo con la ecuación de onda de Schrödinger, la posición probable de un electrón está determinada por cuatro parámetros llamados cuánticos, los cuales tienen valores dependientes entre sí.

Los números cuánticos son el resultado dela ecuación de Schrödinger, y la tabulación de ellos nos indica la zona atómica donde es más probable encontrar un electrón.

Las literales que representan a los números cuánticos son: n, l, m y ms.

Número cuántico principal(n). Designa el nivel energético principal en el cual se localiza un electrón dado, este número también expresa la energía de los niveles dentro del átomo, puede asumir cualquier valor entero, de 1 a infinito, aunque con 7 valores (1,2,3,4,5,6,7), es posible satisfacer a los átomos conocidos actualmente.

Número cuántico secundario(l). Determina la energía asociada con el movimiento del electrón alrededor del núcleo; el valor de l indica el tipo de subnivel en el cual se localiza al electrón y se relaciona con la forma de la nube electrónica.

Cada nivel electrónico se divide en subniveles que contienen electrones de la misma energía.

Los valores de l están determinados por el valor de n; para cierto nivel, l, puede asumir cualquier valor entero desde 0 hasta n – 1. Así:

Nivel principal “n” Número de Subnivel(es) “ l ” Letra que lo(s) representa(n). Valor1 1 s 02 2 s, p 0, 1

19

Page 20: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

3 3 s, p, d 0, 1, 24 4 s, p, d, f 0, 1, 2, 35 4 s, p, d, f 0, 1, 2, 36 3 s, p, d, 0, 1, 2 7 2 s, p, 0, 1

De esta manera podemos decir que para l:

s = 0p = 1d = 2f = 3

núcleo

sub nivel s s p s p d s p d f s p d f s p d s pnivel n = 1 2 3 4 5 6 7

Número cuántico magnético (m). Representa la orientación espacial de los orbitales contenidos en los subniveles energéticos, cuando éstos están sometidos a un campo magnético. Los subniveles energéticos están formados por orbitales. Un orbital es la región del espacio energético donde hay mayor probabilidad de encontrar un electrón.

El número de e- por subnivel depende del valor de éste y está dado por la relación 2 l + 1 que puede ser desde –l hasta +l, pasando por cero.

En un subnivel s(l = 0), hay un solo orbital al que m da un valor de cero.

s0

En un subnivel p(l = 1), hay tres orbitales, a los que m da los valores de: -1, 0, +1, respectivamente.

p p p -1 0 +1

En un subnivel d(l = 2), hay cinco orbitales, a los que m da los valores de: -2, -1, 0, +1, +2, respectivamente.

d d d d d -2 -1 0 +1 +2

20

Page 21: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

En un subnivel f(l = 0), hay siete orbitales, a los que m da los valores de: -3, -2, -1, 0, +1, +2, +3, respectivamente.

f f f f f f f -3 -2 -1 0 +1 +2 +3

De esta manera cada orbital, de cada uno de los subniveles, queda perfectamente bien identificado por el número cuántico magnético “m”.

Número cuántico spin(ms). Expresa el campo eléctrico generado por el electrón al girar sobre su propio eje, que solo puede tener dos direcciones, una en dirección de las manecillas del reloj(-1/2), y la otra con sentido contrario(+1/2).

En cada orbital puede haber como máximo dos electrones uno con giro positivo y el otro con giro negativo.

Ahora bien, resumiendo los datos de los números cuánticos nos proporcionan, podemos decir que:

Un orbital soporta como máximo dos electrones. Los orbitales que tienen la misma energía forman los subniveles atómicos. Un subnivel s, con un solo orbital, soporta como máximo 2 electrones.

Un subnivel p, con tres orbitales, soporta como máximo 6 electrones.Un subnivel d, con cinco orbitales, soporta como máximo 10 electrones.Un subnivel f, con siete orbitales, soporta como máximo 14 electrones.

En el primer nivel energético(n = 1) habrá máximo 2 electrones, ya que tiene solo un orbital s.En el segundo nivel energético(n = 2) puede haber hasta 8 electrones: dos del orbital s y seis de los tres orbitales p.En el tercer nivel energético(n = 3) puede haber hasta 18 electrones: dos del orbital s, seis de los tres orbitales p, y 10 de los cinco orbitales del subnivel d.En el cuarto nivel energético(n = 4) puede haber hasta 32 electrones: dos del orbital s, seis de los tres orbitales p, 10 de los cinco orbitales del subnivel d, y 14 de los siete orbitales del subnivel f.De esta misma manera es posible calcular la cantidad de electrones, en el quinto nivel energético (n = 5), hay la misma cantidad de electrones que en el cuarto nivel energético(32 e-); en el sexto nivel energético (n = 6), hay la misma cantidad que en el tercer nivel(18 e-); y en el séptimo nivel energético (n = 7), hay la misma cantidad que en el segundo subnivel energético(8 e-).

2.4.3. La configuración electrónica.

Es posible expresar la configuración electrónica de un átomo en su estado de mínima energía(estado basal), en el que se indica el número de electrones en cada orbital de cada nivel energético.

Para ello se seguirá un proceso imaginario de orbitales aplicando las reglas citadas a continuación:

Principio de exclusión de Pauli.

21

Page 22: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

No es posible la existencia de dos electrones en el mismo átomo que tengan sus cuatro números cuánticos iguales.

Principio de edificación progresiva o regla de Auf – Bau.

De acuerdo con el principio de máxima sencillez, la energía de los orbitales aumenta al incrementarse el valor de n + l; cuando hay dos subniveles con el mismo valor de n + l, las energías aumentan con el valor de “n”. Por lo tanto, la ocupación de orbitales a un mismo número cuántico principal no es progresiva.

Así, si tomamos la secuencia que obtuvimos en el número cuántico secundario y aplicamos la fórmula n + l, para cada nivel y subnivel de energía, obtenemos la siguiente secuencia:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

La separación de energía en los subniveles de los átomos poli electrónicos origina que se superpongan o traslapen, en valor de energía, orbitales con diferentes valores de “n”. “Cada nuevo electrón añadido a un átomo entrará en el orbital de mínima energía”.

Principio de máxima multiplicidad o regla de Hund.

Los electrones entran de uno en uno en los orbitales que contienen la misma energía, cuando estos orbitales se completan con un electrón, entonces cada uno de ellos se satura con dos electrones en el mismo orden.

Para el desarrollo de la configuración electrónica de un átomo, se anota el nivel (1,2,3,4,5,6,7), el tipo de subnivel (s, p, d, f) y como súper – índice el número de electrones que cada subnivel contenga. Ejemplo:

Número de electrones

1H = 1s1 subnivel

nivel principal

Uso de Kernel.

Como podemos ver las configuraciones electrónicas para los átomos poli electrónicos serian muy laboriosos, en estos casos es posible utilizar el Kernel , que es una abreviación de las distribuciones electrónicas.

El Kernel es la configuración de cualquier gas noble la podemos representar:

[ 2He]2s, [ 10Ne]3s, [ 18Ar]4s, [ 36Kr]5s, [ 54Xe]6s, [ 86Rn]7s

22

Page 23: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Para simplificar una configuración electrónica, debe de partirse del gas noble cuyo número de electrones sea inmediato inferior al del átomo que se desea representar. Ejemplos:

24Cr = [ 18Ar] 4s2, 3d4

95Am = [ 86Rn] 7s2, 5f 7

Diagrama energético.

Existe otra manera de representar la distribución electrónica de un átomo con base en los diagramas energéticos, que son las mismas configuraciones electrónicas con algunas modificaciones.

En los diagramas energéticos los electrones se representan con flechas y se anotan sobre guiones que son los orbitales correspondientes a cada subnivel, así s con 1; p con 3; d con 5 y f con 7. debajo del guión se anota el número del nivel energético y el subnivel que corresponde a cada orbital.

La flecha hacia arriba representa un electrón con giro positivo y la flecha hacia abajo es un electrón con giro negativo.

Para el llenado de los diagramas energéticos se aplican los mismos principios de: principio de exclusión de Pauli, regla de Auf – Bau, regla de Hund. Ejemplo:

5B = _____ _____ _____ _____ _____ 1s 2s 2p 2p 2p

Electrón diferencial.

Se llama así al último electrón que entra en un átomo de acuerdo con las reglas de ocupación de orbitales; es decir lo que distingue a un átomo de un elemento del que lo precede en la clasificación

periódica.

Si se desea identificar por los valores de sus 4 números cuánticos al electrón diferencial de un átomo dado deberán considerarse, el orbital donde se encuentra este. Veamos el siguiente ejemplo:

6C = _____ _____ _____ _____ _____ 1s 2s 2p 2p 2p

electrón diferencial

Dado que el ultimo electrón se encuentra en un orbital 2p, entonces n = 2; al subnivel p, l le da un valor de 1; de los tres orbitales del subnivel p, el electrón diferencial ocupa el que “m” da el valor de 0 y como la flecha se dirige hacia arriba “s” = +1/2.

n = 2 l = p = 1 m = 0 s = +1/2

2.5. Tabla periódica actual.

23

Page 24: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

La ley química que afirma que las propiedades de todos los elementos son funciones periódicas de sus masas atómicas fue desarrollada independientemente por dos químicos: en 1869 por el ruso Dimitri I. Mendeléiev y en 1870 por el alemán Julius Lothar Meyer. La clave del éxito de sus esfuerzos fue comprender que los intentos anteriores habían fallado porque todavía quedaba un cierto número de elementos por descubrir, y había que dejar los huecos para esos elementos en la tabla. Por ejemplo, aunque no existía ningún elemento conocido hasta entonces con una masa atómica entre la del calcio y la del titanio, Mendeléiev le dejó un sitio vacante en su sistema periódico. Este lugar fue asignado más tarde al elemento escandio, descubierto en 1879, que tiene unas propiedades que justifican su posición en esa secuencia. El descubrimiento del escandio sólo fue parte de una serie de verificaciones de las predicciones basadas en la ley periódica, y la validación del sistema periódico aceleró el desarrollo de la química inorgánica.

El sistema periódico ha experimentado dos avances principales desde su formulación original por parte de Mendeléiev y Meyer. La primera revisión extendió el sistema para incluir toda una nueva familia de elementos. Este grupo comprendía los tres primeros elementos de los gases nobles o inertes, argón, helio y neón, descubiertos en la atmósfera entre 1894 y 1898 por el matemático y físico británico John William Strutt Rayleigh y el químico británico William Ramsay. El segundo avance fue la interpretación de la causa de la periodicidad de los elementos en términos de la teoría de Bohr (1913) sobre la estructura electrónica del átomo.

2.5.1. Ubicación y clasificación de los elementos.

La aplicación de la teoría cuántica sobre la estructura atómica a la ley periódica llevó a reformar el sistema periódico en la llamada forma larga, en la que prima su interpretación electrónica. En el sistema periódico largo, cada periodo corresponde a la formación de una nueva capa de electrones. Los elementos alineados tienen estructuras electrónicas estrictamente análogas. El principio y el final de un periodo largo representan la adición de electrones en una capa de valencia; en la parte central aumenta el número de electrones de una capa subyacente.

2.5.2. Grupos y periodos, Bloques s, p, d y f.

Todos los elementos químicos dispuestos por orden de número atómico creciente y en una forma que refleja la estructura de los elementos.

Los elementos están ordenados en siete hileras horizontales llamadas periodosy en 18 columnas verticales llamadas grupos.

El primer periodo, que contiene dos elementos, el hidrógeno y el helio, y los dos periodos siguientes, cada uno con ocho elementos, se llaman periodos cortos.

Los periodos restantes, llamados periodos largos, contienen 18 elementos en el caso de los periodos 4 y 5, o 32 elementos en el del periodo 6. El periodo largo 7 incluye el grupo de los actínidos, que ha sido completado sintetizando núcleos radiactivos más allá del elemento 92, el uranio.

Los grupos o columnas verticales de la tabla periódica fueron clasificados tradicionalmente de izquierda a derecha utilizando números romanos seguidos de las letras “A” o “B”, en donde la “B” se refiere a los elementos de transición.

24

Page 25: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

En la actualidad ha ganado popularidad otro sistema de clasificación, que ha sido adoptado por la Unión Internacional de Química Pura y Aplicada (IUPAC, siglas en inglés). Este nuevo sistema enumera los grupos consecutivamente del 1 al 18 a través de la tabla periódica. Aunque en este curso utilizaremos la clasificación de los grupos como “A” y “B”.

Todos los elementos de un grupo presentan una gran semejanza y, por lo general, difieren de los elementos de los demás grupos. Por ejemplo:

Los elementos del grupo 1 (o IA), a excepción del hidrógeno, son metales con valencia química +1; así igual los elementos del grupo 2 (o IIA) y su configuración electrónica termina en el orbital s.

Mientras que los grupos del 13 al 18 (o IIA al VIIIA), su configuración electrónica termina en el orbital p.

Los elementos de los grupos 3 al 12 (o IB al VIIIB) su configuración termina en el orbital d. Los llamados elementos de transición interna terminan su configuración electrónica en el orbital f.

En la clasificación periódica, los gases nobles, que no son reactivos en la mayoría de los casos (valencia = 0), están interpuestos entre un grupo de metales altamente reactivos que forman compuestos con valencia +1 y un grupo de no metales también muy reactivos que forman compuestos con valencia -1.

Este fenómeno condujo a la teoría de que la periodicidad de las propiedades resulta de la disposición de los electrones en capas alrededor del núcleo atómico.

Según la misma teoría, los gases nobles son por lo general inertes porque sus capas electrónicas están completas; por lo tanto, otros elementos deben tener algunas capas que están sólo parcialmente ocupadas, y sus reactividades químicas están relacionadas con los electrones de esas capas incompletas.

Los elementos representativos son aquellos que pertenecen a los del grupo “A”, tienen orbitales “s” o “p” para su electrón diferencial o electrones de valencia.

Los elementos con electrones de valencia en orbitales “d” se les llama elementos de transición y corresponden a los elementos del grupo “B”. Dentro de estos elementos están los lantánidos y actínidos sus electrones de valencia están en orbitales “f” y se les llama de transición interna.

2.5.3. Metales, No metales y semimetales. Su utilidad e importancia en México.

Se distingue dos regiones de los elementos, los metálicos a la izquierda de la tabla y cuyo comportamiento es el de perder electrones convirtiéndose en cationes.

La otra región esta a la derecha y corresponde a los no metales, cuyo comportamiento es el de ganar electrones convirtiéndose en aniones.

El carácter metálico en la tabla periódica aumenta de derecha a izquierda en un periodo y de arriba hacia abajo en un grupo.Así el elemento más metálico es el francio (Fr) y el elemento más no metálico es el Flúor (F).

25

Page 26: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Los elementos no metales o semi metales son elementos que se encuentran en la región fronteriza entre los metales y no metales, su comportamiento en algunos casos corresponde al de un metal además de su aspecto y en otros casos se parecen a un no metal, estos son: Al, Si, As, SB, Te, At.

Aproximadamente el 10 % son no metales, el 5.5 % son gases nobles, El 79 % son metales y el resto son semi metales.

Los elementos importantes por su grado de abundancia o deficiencia son:

Aluminio (Al): es un metal ligero, resiste muy bien la corrosión, resiste impactos, se puede laminar o hilar, se emplea en la construcción, en la industria automotriz, en la aviación. Se le extrae de la bauxita, en Veracruz hay una planta productora de lingotes de aluminio.

Azufre (S): es un no metal, sólido, de color amarillo, lo encontramos en yacimientos volcánicos y en aguas sulfuradas; es empleado para elaborar fertilizantes, medicamentos, insecticidas, productos petroquímicos.

Cobalto (Co): Metal de color blanco, utilizado para elaborar aceros especiales, pues resiste la corrosión, la fricción y el calor. Se emplea en herramientas, imanes y motores. Cuando esta en polvo es utilizado como pigmento azul para el vidrio, se han encontrado yacimientos de minerales oxidados y sulfurados en Sonora, Jalisco, Michoacán, entre otros.

Cobre (Cu): metal de color rojo, con el aire húmedo se pone de color verde, empleado como conductor de la corriente eléctrico, también para la elaboración de monedas, y en aleaciones como el latón y bronce. Los estados productores de este metal son: Chihuahua, Sonora y Zacatecas.

Hierro (Fe): metal de color gris, dúctil y maleable, se oxida la contacto con el aire húmedo. Se extrae de algunos minerales como la pirita, limonita, hematita. Se emplea en la industria, el arte, en la medicina, para fabricar acero, cemento, en las fundiciones; la sangre contiene hierro en la hemoglobina. Los estados minerales son: Jalisco, Baja California, Colima, Durango, Guerrero y Michoacán.

Flúor (F): no metal, que encontramos en la fluorita, en las calizas, la fluorita se utiliza para obtener HF, en la industria química, cerámica y la potabilización del agua. Los estados con depósitos de fluorita son: San Luis Potosí, Coahuila, Durango y Chihuahua.

Fósforo (P): no metal, contenido en las rocas fosfóricas o en la fosforita, se encuentran en los huesos y los dientes. Se utiliza en la elaboración de detergentes, plásticos, cerillos, explosivos, alimentos para ganado, como fertilizante, en la industria textil, fotografía, cerámica, alimentos para ganado y aves. Los estados con yacimientos son: Zacatecas, Nuevo León, Baja California y Coahuila.

Mercurio (Hg): metal líquido a temperatura ambiente, de color blanco brillante, conductor de la corriente eléctrica y resistente a la corrosión. Se utiliza en la construcción de instrumentos de preescisión, termómetros, baterías, barómetros, amalgamas dentales, medicamentos, insecticidas. Los estados con yacimientos son: Querétaro, Zacatecas, San Luis Potosí, Durango, Guerrero.

Plata (Ag): Metal de color blanco, conductor de la electricidad, del calor, maleable y dúctil, se emplea en la fabricación de vajillas y joyas, en la fotografía, aparatos eléctricos, aleaciones, soldaduras, se usa

26

Page 27: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

en la acuñación de monedas, los estados productores son: Guanajuato, Guerrero, San Luis Potosí e Hidalgo.

Plomo (Pb): metal blando, de bajo punto de fusión, poco elástico, resistente a la corrosión, se obtiene de la galeana, se usa en baterías, acumuladores, pigmentos, pinturas, linotipos, soldaduras, los principales estados productores son: Chihuahua y Zacatecas.

Oro (Au): metal de color amarillo, maleable, dúctil, brillante, de gran valor. Se utiliza de patrón monetario internacional. Se emplea en la joyería, piezas dentales, etc. Los yacimientos en el pais son escasos, pero lo hay en Chiapas, Guanajuato, Chihuahua, Durango, Guerrero, Hidalgo, Oaxaca, Michoacán, San Luis Potosí y Zacatecas.

Uranio (U): elemento raro en la naturaleza, nunca esta en estado libre, existen aproximadamente 150 minerales que lo contienen, es utilizado como combustible nuclear.

27

Page 28: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

UNIDAD 3.

3.1 El Modelo de enlace iónico.

Los elementos forman compuestos, los compuestos son sustancias que se pueden descomponer en dos o más sustancias sencillas(elementos) por medios químicos.

Un cambio químico es el que transforma los elementos en compuestos y viceversa. Esto es el resultado de las combinaciones de los átomos, uno da los electrones, otro los recibe y se forma una nueva sustancia.

Los átomos están unidos por fuerzas al constituir compuesto, estas fuerzas son los enlaces químicos.

La mínima unidad que presenta propiedades de un compuesto es la molécula.

Las moléculas de los compuestos se representan por formulas es decir representaciones por medio de símbolos y números que indican la clase y número de átomos que se combinan.

Antes de conocer el tipo de enlace y las propiedades que derivan de cada uno es necesario conocer los tipos fórmulas con que se habrán de explicar los enlaces.

Fórmula molecular o condensada: indica la clase y el número de átomos de constituye la molécula de un compuesto, por ejemplo; el propano:

C3H8

Fórmula semi desarrollada: expresa por medio de grupos o radicales los átomos que forman la molécula. Este tipo de fórmula es más común para los compuestos orgánicos, y también se les llama de fórmula de estructura:

CH3 CH2 CH3

Fórmula desarrollada o gráfica: da idea de la distribución de los átomos en el espacio.

H H H| | |

H – C – C – C – H| | |

H H H

Cada línea (--) representa un enlace, de esta manera se tiene una idea sobre que átomo está unido a otro.

28

Page 29: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

3.1.1. Regla del octeto.

La tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de electrones tal, que adquieran configuración semejante a la de un gas noble.

Como los gases nobles terminan su configuración electrónica en s2p6 con un total de ocho electrones los otros elementos ganarán o perderán electrones hasta quedar con esa cantidad en

su capa externa. Esto se conoce como regla del octeto.

3.1.2. Estructuras de Lewis.

Gilbert N. Lewis propuso representar los electrones de valencia por cruces o puntos a fin de visualizar la transferencia o compartición de electrones en un enlace químico, cuando los átomos se unen, ejemplos:

H He Na Ne Cl Ca O Ar

Se observa que los gases nobles tienen completo su octeto, que el oxigeno y el cloro ganarán electrones para completarlo y el sodio y el calcio los perderán. El hidrógeno completará dos electrones pareciéndose al helio.

Son excepciones a esta regla los elementos del segundo periodo tales como Be, B y los de sus respectivos grupos, ya que el berilio completa solo cuatro electrones y el boro completa seis, al combinarse. Otras excepciones son para el fósforo y el azufre, que llegan a completar 10, 12 y hasta 14 electrones.

3.1.3. Formación de iones y las propiedades periódicas.

Las propiedades periódicas son:

Valencia o Estado de Oxidación.

Número que representa la capacidad de un átomo o radical individual para combinarse con otros átomos o radicales. El valor expresa el número de electrones que un átomo puede dar a —o aceptar de— otro átomo (o radical) durante una reacción química.

El concepto de número o estado de oxidación, se refiere a la carga eléctrica que presenta un elemento dentro de un compuesto y que no se relaciona directamente con el grupo de la tabla periódica donde se localiza. Una posible explicación de las valencias es el acomodo de lo electrones entre los orbitales, traslapándose para completar unos y dejar vacíos otros. También se dice que es la carga eléctrica formal que se asigna a un átomo en un compuesto.

Radio atómico.

Generalmente aumenta con el número atómico en un grupo, en un periodo disminuye de izquierda a derecha debido a una contracción de la nube electrónica al ser atraída por el grupo.

Volumen atómico.

29

Page 30: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

El volumen de un átomo no es una cantidad completamente definida debido a que tampoco lo es el límite de la nube electrónica. Hacia el centro de la tabla periódica se hacen más pequeños los átomos, lo que significa el aumento de densidad ya que se contiene una gran masa en un volumen pequeño. El elemento más denso es el osmio.

Afinidad electrónica.

Cuando un elemento en estado gaseoso capta un electrón hay una variación de energía, ha esta variación se le llama afinidad electrónica. Esta afinidad es mayor para los elementos no metales. La facilidad con la que los elementos captan electrones es consecuencia de la configuración electrónica, siendo mucho mayor para los elementos situados cerca de los gases nobles.

Energía de ionización(E. I.).

Es la energía necesaria para arrancar un electrón de un átomo aislado en estado gaseoso. Este aumenta de abajo hacia arriba en un grupo y de derecha a izquierda en un periodo.

Electronegatividad.

Es una medida relativa del poder de atracción de electrones que tiene un átomo cuando forma parte de un en lace químico. Así el elemento más electronegativo es el fluor(F) y el elemento más electropositivo es el francio(Fr). Con esta propiedad se puede saber si un átomo cede o gana electrones a otro átomo. El átomo del elemento más electronegativo gana electrones al menos electronegativo.

Así, todos los elementos de la tabla periódica ceden electrones al oxigeno(O), excepto el fluor, ya que este es más electronegativo que el oxigeno.

Como ya se había mencionado anteriormente en el punto 2.2, los átomos están compuestos por protones, electrones y neutrones, y que un átomo en estado basal es eléctricamente neutro, es decir tiene la misma cantidad de electrones y protones.

Podemos clasificar a los electrones de los átomos de acuerdo a su distancia con el núcleo en:

Internos: los que están cercanos al núcleo. Externos: mejor llamados de valencia, por estar alejados del núcleo.Los átomos son capaces de donar o ganar electrones, con lo que pierden su neutralidad eléctrica, al ocurrir esto se convierten en iones.

Un ión es un átomo con carga eléctrica.

Los iones los podemos clasificar en:

Cationes: cuando el átomo a perdido o cedido electrones. Aniones: cuando el átomo a ganado electrones.

30

Page 31: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Los cationes son los elementos que presentan valencia positiva, en la tabla periódica los ubicaremos en los elementos que llamamos metales. Para nombrarlos es muy sencillo, ejemplos: para el Na, ión sodio; para el Mg, ión magnesio; etc.

Los aniones serán los elementos que presentan carga negativa, en la tabla periódica los ubicamos en los elementos que llamamos no metales. Para nombrarlos es muy sencillo, solo al nombre del elemento se le cambia la terminación por –uro, ejemplos: Cloro, cloruro, Fluor, fluoruro, Nitrógeno, nitruro, etc.

Propiedades de los compuestos iónicos.

Este tipo de enlace se efectúa entre un metal y un no metal, por transferencia de electrones del átomo metálico al no metálico (más electronegativo). En esta transferencia se forman iones que se atraen fuertemente por diferencia de cargas eléctricas.

Las propiedades de estos compuestos con este tipo de enlace son:

Su estado físico es sólido y pueden ser duros o frágiles. Sus puntos de fusión y ebullición son altos. Fundidos o en solución acuosa son conductores de la corriente eléctrica. Son solubles en solventes polares. En solución son químicamente activos. La forma del cristal es geométrica. No se forman verdaderas moléculas sino redes cristalinas, es decir existen igual número de

aniones y cationes.

Las sales orgánicas y los óxidos inorgánicos, donde existen un metal y un no metal, como NaCl, BaS, KI, etc. Como se ve se unen los elementos de los grupos IA y IIA, de los grupos IB al VIIIB con elementos de los grupos VIA y VIIA.

3.2. El Modelo de enlace covalente.

En el enlace covalente veremos que se comparten pares de electrones entre los átomos que forman este enlace. Algunos ejemplos de estos son: los gases de la atmósfera, los combustibles comunes, la mayoría de los compuestos del cuerpo humano. Este tipo de enlace permite que permanezcan unidos los átomos de los iones más comunes con el ión carbonato, el sulfato, el nitrato, etc. Estas moléculas e iones están formados exclusivamente de átomos no metálicos.

A continuación mostramos los tipos de enlace covalente:

1. Enlace covalente polar.

Se efectúa entre elementos de alta electronegatividad, se tiene cuando dos átomos de un mismo elemento se unen para formar una molécula verdadera, sin carga eléctrica, simétrica. Las propiedades de estos compuestos con este tipo de enlace son:

2. Enlace covalente NO polar.

31

Page 32: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Cuando dos átomos no metálicos de diferente electronegatividad se unen, comparten electrones pero la nube electrónica se deforma y se desplaza hacia el átomo de mayor electronegatividad, originando polos en la molécula, uno con carga parcialmente positiva y el otro con carga parcialmente negativa.

3. Enlace covalente coordinado.

Un átomo no metálico comparte un par de electrones con otro átomo pero el segundo los acomoda en un orbital vacío. Se dice entonces que el primer átomo da un par de electrones o que ambos átomos se coordina para completar su octeto.

3.2.1. Estructura de Lewis y electronegatividad.

Como ya mencionamos en el punto 3.1.2. la estructura de Lewis nos muestra los electrones de valencia (los más alejados del núcleo), y que al serlo son los más reactivos y recordando que la electronegatividad es una medida relativa del poder de atracción de electrones que tiene un átomo cuando forma parte de un en lace químico, nosotros podemos predecir el tipo de enlace y el número de enlace que presentará una molécula de determinado compuesto.

Es evidente que un enlace se formará cuando las fuerza de atracción sean más poderosas que las de repulsión.

Linus Pauling hace uso del concepto de electronegatividad y en la tabla periódica vemos que el elemento más electronegativo es el Fluor con 4.0 y el menos electronegativo es el Cesio con 0.7, los gases nobles presentan un valor de 0.

Electronegatividades de Pauling

H2.1Li Be B C N O F1.0 1.5 2.0 2.5 3.0 3.5 4.0Na Mg Al Si P S Cl0.9 1.2 1.5 1.8 2.1 2.5 3.0K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br0.8 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.8 1.8 1.9 1.6 1.6 1.8 2.0 2.4 2.8Rb Sr Y Zr Nb Mo Tc Ru Rh PD Ag Cd In Sn Sb Te I0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.2 2.2 2.2 1.9 1.7 1.7 1.8 1.9 2.1 2.5Cs Ba La – Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At0.7 0.9 1.1– 1.2 1.3 1.5 1.7 1.9 2.2 2.2 2.2 2.4 1.9 1.8 1.8 1.8 2.0 2.2

Cuando se combinan dos elementos, la evaluación de la diferencia entre sus electronegatividades permite determinar el tipo de enlace que se presenta entre ellos, de acuerdo a la tabla periódica anterior.

En la siguiente tabla mostramos el tipo de enlace según la diferencia de electronegatividades:

EnlaceDiferencia de

electronegatividadPropiedades y ejemplos

Iónico Mayor que 1.9 Formado generalmente por un metal y un no metal, muetran altos puntos de ebullición y de fusión, son duros, frágiles, malos conductores de la electricidad y del calor, presentan estructuras ordenadas, se funden, se disuelven en solventes polares y conducen la electricidad, ejemplos: LiF, NaCl, etc.

32

Page 33: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Covalente Menor que 1.9 Se da entre elementos no metálicos, presentan gran variedad en puntos de ebullición y fusión, son aislantes eléctricos y térmicos, formado por moléculas geométricamente bien definidas, ejemplos: CH4, NH3, F2, etc.

Metálico Menor que 1.9 Formado por elementos metálicos, son sólidos con puntos de ebullición y fusión muy altos, son densos, maleables, dúctiles, muy buenos conductores de la electricidad y del calor, ejemplos: Fe, Ni, Cu, aleaciones, etc.

3.2.2. Geometría molecular y polaridad.

Una molécula puede ser polar o no según su geometría y no su tipo de enlace.

El hecho de presentar polaridad le hará ser atraída por campos magnéticos o ser soluble en solventes polares, conduciendo la corriente eléctrica.

En las moléculas no polares existe una distribución uniforme de electrones en el exterior de la molécula y esta distribución ocurre a pesar del número de enlaces y su dirección en el espacio.

Ejemplo de estas sustancias son: CH4, CCl4, CO2, CF3.

En las moléculas polares, la distribución de los electrones hacia el átomo más electronegativo, permite distinguir una región más negativa que otra, presentándose un dipolo(dos polos: + y -). Ejemplos: H2O, HCl, NH3, PH3.

La polaridad de un compuesto se mide en un aparato llamado dipolarímetro y se reporta en unidades Debye(D).

3.2.3. Propiedades de los compuestos covalentes.

1. Enlace covalente polar.

Moléculas verdaderas y diatómicas. Actividad química media. Baja solubilidad en agua. No son conductores del calor o la electricidad. Se presentan en los tres estados de agregación de la materia.

Moléculas que presentan este tipo de enlace: H2, O2, F2, Cl2, Br2, I2, N2.

2. Enlace covalente NO polar.

Las propiedades de este tipo de sustancias con este tipo de enlace son:

Existen en los tres estados de agregación de la masa. Presentan gran actividad química. Solubles en solventes polares.

33

Page 34: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

En solución acuosa son conductores de la electricidad. Sus puntos de ebullición son bajos, pero más altos que los de sustancias no polares.

Sustancias con este tipo de enlace son: HF, H2O, HCl, HBr, H2SO4, CH3COOH.

3.3. El Modelo del enlace metálico.

Enlace entre los átomos de los metales, de elementos muy electropositivos, los iones positivos se mantienen unidos por los electrones de valencia que forman enlaces covalentes resonantes entre todos los átomos, se forma una red cristalina de iones metálicos y en ella los electrones de valencia se intercambian rápidamente.

3.3.1. Los electrones libres y la energía de ionización.

La energía de ionización de un átomo se define como la energía necesaria para formar un ión unipositivo mediante la eliminación del electrón que se encuentre menos ligado a la atracción nuclear.

En la siguiente tabla se muestran los datos de energía de ionización (I) en un periodo y una familia de la tabla periódica.

En un periodo En una familiaSímbolo I Símbolo I

Li 0.520 Li 0.520Be 0.899 Na 0.496B 0.801 K 0.419C 1.086 Rb 0.403N 1.402 Cs 0.376O 1.314F 1.681

Ne 2.081

Como a final de cuentas las reacciones entre los átomos de los elementos se reduce a la interacción de los electrones más externos del átomo, este dato es un parámetro para decidir como suceden las reacciones químicas y cual es la naturaleza del enlace químico en cada compuesto.

Las energías de ionización de los átomos metálicos son las más pequeñas entre los elementos. Debido a esto, cuando se forma un metal, los electrones más externos quedan deslocalizados, es decir, dejan de pertenecer únicamente a un átomo metálico, para pasar a ser parte de toda la red cristalina. Con una pequeña aplicación de voltaje los electrones “libres” de los metales se muevan a lo largo del sólido, por eso son buenos conductores de la electricidad y el calor; ejemplos: Cu, Ag, etc.

3.3.2. Propiedades de los metales.

Las propiedades de los metales son:

Baja energía de ionización. Poseen por lo general de 1 a 3 electrones libres en su último nivel de energía.

34

Page 35: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

La mayoría son sólidos a excepción: Hg, Ga, Cs y Fr. Brillosos y de aspecto metálico. Buenos conductores del calor y electricidad. Dúctiles y maleables. Algunos tenaces y otros blandos. Se oxidan por perdida de electrones, formando óxidos y al reaccionar con agua forman hidróxidos. Los elementos alcalinos son los más activos.

3.4. Fuerzas intermoleculares (dipolos inducidos y dipolos instantáneos)

Analizaremos un conjunto de moléculas muy sencillas, similares entre sí, los halógenos. A temperatura ambiente el flúor y el cloro son gases, mientras que el bromo es líquido y el yodo es sólido. En la siguiente tabla se muestran sus pesos moleculares y sus temperaturas de ebullición. Estas temperaturas son una medida de la cantidad de energía que hay que darle a un líquido, para separar sus moléculas y formar un gas. 

Halógeno Peso molecular # de electrones p. de ebullición (°C)F2 38 18 -188.1Cl2 71 34 -34.0Br2 160 70 59.5I2 254 106 185

 De la información de la tabla , podemos concluir que es más difícil separar a las moléculas de yodo que a las de bromo. También podemos decir que la cantidad de energía necesaria para separar a las moléculas de los halógenos, aumenta con el tamaño del halógeno. ¿Cómo se explica que las moléculas de mayor tamaño se encuentren más atraídas entre sí que las más pequeñas? Recordemos que estas moléculas están formadas por dos núcleos que contienen protones, alrededor de los cuales hay electrones formando nubes de carga negativa, como se muestra en la figura 9.  

  Aunque los electrones tienden a distribuirse uniformemente a través de toda la nube, debido a su continuo movimiento, existe la probabilidad de que en un instante cualquiera, los electrones se concentren en un extremo de la molécula, creando momentáneamente una distribución desigual de cargas, como se muestra en la figura. 

A esta situación, en la que hay cargas de la misma magnitud q pero de signo opuesto separadas por una distancia r , se le llama momento dipolar , o momento dipolo. 

35

Page 36: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

En este caso particular, como el de la molécula de yodo, se le llama “dipolo instantáneo”, pues la separación de cargas no es permanente. Sin embargo la probabilidad de que las cargas se distribuyan momentáneamente de manera no homogénea, aumenta con el número de electrones en la nube, así como del volumen total en el que éstos se mueven. Como se generan “polos” de carga, se dice que la molécula se polariza.  La polarizabilidad en las moléculas de los halógenos aumenta con el tamaño, es decir  Menos polarizable F2 < Cl2 < Br2 < I2 Más polarizable  Ahora imaginemos lo que provoca el acercamiento de una molécula de yodo “polarizada”, a una molécula de yodo no polarizada veamos la figura. 

 Se dice que un dipolo instantáneo en una molécula, puede inducir un momento dipolo en una molécula vecina, y el efecto puede propagarse a todo el material. A este tipo de interacciones entre moléculas se le llama “dipolo instantáneo- dipolo inducido” Aunque es una interacción débil, es la responsable de el aumento en el punto de ebullición de los halógenos, pues es mas importante a medida que aumenta el tamaño de la molécula. Este efecto también explica el aumento en el punto de ebullición ( y aun de fusión) de algunos hidrocarburos, como se ve en la tabla: Hidrocarburos lineales, sus masas molares y temperaturas de ebullición y fusión.

 

Dipolos permanentes No en todos los átomos la atracción de los electrones hacia el núcleo es igual.Esto es importante cuando se forma un enlace covalentes entre dos átomos con distinta capacidad de atraer a los electrones.

36

Page 37: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

En ejemplo es el HCl. Como el cloro atrae más a la nube electrónica que el hidrógeno, en esta molécula hay mayor densidad electrónica negativa cerca de él, mientras que cerca del hidrógeno, hay una deficiencia de carga negativa. En esta molécula la nube electrónica se encuentra polarizada; en el HCl hay un dipolo permanente. En la Figura esto se representa mediante la letra griega d seguida del signo correspondiente a la carga en exceso. 

Cuando un enlace covalente presenta un dipolo se forma un enlace covalente polar. Las moléculas que están formadas por átomos diferentes, generalmente forman enlaces covalentes polares.  

Las moléculas que poseen dipolos permanentes, se atraen unas a otras con mucha más fuerza que moléculas de estructura similar y tamaño semejante, sin dipolos permanentes. Esto se refleja en mayores puntos de ebullición para las sustancias polares, pues es necesario aplicar una mayor cantidad de energía para romper las atracciones entre las moléculas.

En la siguiente tabla se muestran algunas sustancias polares y no polares con sus temperaturas de ebullición:

Sustancias no polares Sustancias polares

 

 

 

37

Page 38: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

   

Las flechas indican la dirección del momento dipolar.

OJO: ¡Una molécula puede tener enlaces polares, pero ser una sustancia no polar! Dado que el momento dipolo es un vector definido entre dos átomos unidos por un enlace, en las moléculas poliatómicas con varios enlaces polares, los vectores momento dipolar pueden cancelarse, debido a su arreglo geométrico. Este es el caso de las siguientes moléculas (vea la figura), que a pesar de tener enlaces polares, su momento dipolar global es igual a cero.

3.5. Puente de hidrógeno.

Se trata de la atracción electrostática entre el protón combinado y otro átomo de gran electronegatividad y volumen pequeño. El protón atrae hacia el un par de electrones solitarios de un

átomo como C N O de una molécula próxima o a veces de la misma molécula.

Este “puente de hidrógeno” no es un verdadero enlace y origina un comportamiento especial de las sustancias que lo presentan. Ejemplos: H2O, HF, CH3OH, ADN.

3.5.1. Características del agua.

El agua, la sustancia más importante en nuestro planeta, está compuesta por moléculas polares capaces de formar puentes de hidrógeno de una manera única. Comparemos a la molécula de agua, H2O, con algunas que podríamos considerar parecidas, compuestas sólo por átomos de hidrógeno y algún átomo

38

Page 39: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

muy electronegativo: el NH3, el HF, el H2S, el HCl. Todas estas moléculas pueden formar enlaces tipo puente de hidrógeno, y de hecho los forman, pero los puntos de ebullición (ver en la tabla) estas sustancias nos dicen que las atracciones entre sus moléculas son mucho menores que las que se dan entre las moléculas de agua. ¿Qué característica estructural es la que hace al agua tan diferente?

 

Tabla. Temperaturas de ebullición de algunas sustancias con puentes de hidrógeno

 

Sustancia Temperatura ebullición (°C) Momento dipolar (D)H2O 100.0 1.87NH3 -33.0 1.46HF 19.9 1.92HCl -85.0 1.08H2S -60.0 1.10

 El agua, tiene dos átomos de hidrógeno unidos al átomo de oxígeno, que a su vez tiene dos pares de electrones no compartidos. Esto permite que cada molécula de agua pueda participar simultáneamente en cuatro enlaces de puente de hidrógeno. En el H2S, el número de átomos de hidrógeno y el número de electrones no compartidos en el átomo electronegativo, es el mismo que en el agua, sin embargo, su comportamiento es muy distinto al del agua, pues es un gas a temperatura ambiente. Esto puede explicarse mediante la diferencia en los valores de electronegatividad entre el O(3.5) y el S(2.5). El carácter polar del enlace O-H es mucho más marcado que el del enlace S-H, ya es mayor la diferencia de electronegatividades.

3.5.2. Otros compuestos que presentan puente de hidrógeno.

Un enlace muy importante en los sistemas biológicos es el enlace por puentes de hidrógeno. Estos enlaces se forman entre átomos de hidrógeno y otros átomos más electronegativos como oxígeno y nitrógeno. Los enlaces por puentes de hidrógeno son enlaces débiles. Sin embargo, cuando se forman muchos enlaces de este tipo en y entre macromoléculas la estabilidad general de la molécula aumenta notablemente.

Las moléculas de agua se unen con facilidad mediante puentes de hidrógeno. Como el átomo de oxígeno es relativamente electronegativo respecto al átomo de hidrógeno, el enlace covalente entre el oxígeno y el hidrógeno es tal que los electrones compartidos en la capa externa giran más cerca del núcleo del oxígeno que del hidrógeno. Esto crea una débil separación de carga eléctrica, quedando el oxígeno ligeramente negativo y el hidrógeno ligeramente positivo; esto se indica por el signo δ, como δ+ y δ-, para indicar la separación parcial de carga. El carácter δ+ del átomo de hidrógeno atrae al oxígeno de una segunda molécula de agua creando un "puente" cargado positivamente entre los dos átomos electronegativos de oxígeno de moléculas adyacentes de agua. Los enlaces de hidrógeno más comunes entre macromoléculas implican interacciones Oδ-...Hδ+---Oδ- , Oδ----Hδ+ ...N , y  Nδ-...Hδ+---Nδ-

en proteínas y ácidos nucleicos. Los enlaces por puentes de hidrógeno tienen un papel importante en las propiedades biológicas de las macromoléculas, especialmente en el mantenimiento de las estructuras terciarias y cuaternarias de proteínas y ácidos nucleicos.

39

Page 40: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

3.6. Los nuevos materiales.

Además de los materiales cotidianos que configuran nuestro entorno, existe toda una fauna de materiales invisibles. Son especies y subespecies de materiales que no están a la vista pero que constituyen la esencia de multitud de dispositivos y productos que cada vez nos parecen más indispensables. Sólo tienes que mirar a tu alrededor y pararte un momento a pensar en los materiales que usamos para construir nuestras cosas. Metales, plásticos, cada vez menos madera y algún que otro tejido natural están por todas partes. Incluso aunque te escapes a la playa estos materiales te seguirán discretamente en forma de sombrilla o bañador. En casa y en la oficina tenemos también yeso, cemento, gres, vidrio y otros materiales minerales, y el camino lo haremos sobre ruedas de caucho vulcanizado y asfalto derivado del petróleo. Todos estos son materiales estructurales y se usan en la construcción de todo tipo de objetos, grandes y pequeños, modernos o antiguos. Son materiales cuya utilidad reside en sus propiedades mecánicas, resistencia y bajo precio; se producen en cantidades masivas y están a la vista por todas partes.

Pero hay otros materiales mucho menos conspicuos, casi invisibles a nuestros ojos que pasan prácticamente desapercibidos delante de nuestras narices y que no obstante son imprescindibles en numerosas aplicaciones y en dispositivos que hoy en día ya consideramos cotidianos. La televisión, un tubo fluorescente, una cinta de vídeo o la tarjeta de crédito, por ejemplo. No se trata en esta ocasión de materiales estructurales, sino de materiales funcionales, y su utilidad reside no tanto en sus propiedades mecánicas como en sus propiedades químicas, magnéticas, ópticas o electrónicas. Puede que sólo representen una pequeña parte de los dispositivos en los que actúan, pero cumplen en ellos un papel estelar.

3.6.1. Principales características y usos de los nuevos materiales.

Ahí tenemos por ejemplo los materiales fosforescentes de las pantallas de TV, que se iluminan en colores cuando los alcanzan los electrones del tubo de rayos catódicos. A escala casi microscópica se distinguen en la pantalla de televisión pequeños puntos con pigmentos fosforescentes de color rojo verde y azul que forman la imagen. Estos materiales han ido evolucionando y ganando en sofisticación con el tiempo.

Estructura RGB (Red-Green-Blue) de nuestras pantallas en color

En los televisores en blanco y negro por ejemplo el material fosforescente que cubría el interior de la pantalla era una mezcla de sulfuro de cinc (ZnS) y de sulfuro de cinc y cadmio (ZnxCd1-xS) dopados ambos con plata (Ag). La televisión en color impulsó el desarrollo de nuevos materiales fosforescentes y hoy en día se emplean compuestos exóticos a base de las llamadas "tierras raras", elementos metálicos pesados que deben su nombre a su escasa abundancia, pero que cada vez son menos raras y más fáciles de encontrar en nuestras casas. Por ejemplo, el itrio (Y), el neodimio (Nd), el samario (Sm) el europio (Eu), o el gadolinio (Gd) son tierras raras. El vanadato de itrio (YVO4) y más recientemente

40

Page 41: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

el óxido de itrio (Y2O3) dopados con una pequeña cantidad de europio se usan como pigmentos fosforescentes rojos en nuestros televisores. El color verde corre generalmente a cargo de un silicato de cinc (Zn2SiO4) dopado con manganeso (Mn) y del color azul se suele encargar el sulfuro de cinc (ZnS) dopado con plata. 

Las tierras raras se emplean también en otros tipos de materiales funcionales. Los granates sintéticos a base de itrio-hierro o itrio-aluminio, tienen un buen mercado como piedras preciosas artificiales pero además se usan en la industria de las telecomunicaciones como filtros de microondas. O las aleaciones de neodimio-hierro-boro o cobalto-samario que forman imanes permanentes de lo mejorcito que hay en el mercado. Otra aplicación muy específica y reciente de tierras raras es el uso de un fosfato de bario y europio en películas sensibles a los rayos-X que permiten la obtención de radiografías de buena calidad con sólo la mitad de exposición del paciente a la radiación 

Los avances en el desarrollo de materiales funcionales son continuos y abarcan efectivamente infinidad de aplicaciones, pero son sólo perceptibles de forma indirecta. A menudo sólo son patentes a través de las mejoras que propician en los dispositivos donde residen y a veces pueden pasar incluso desapercibidos. Como en el caso de las películas ultrasensibles a los rayos-X, que pasarán normalmente desapercibidas para los pacientes que se beneficien de ellas.

Sin embargo, en los tiempos que corren no faltan ejemplos de avances tecnológicos evidentes para cualquiera y que están fundamentados en buena parte en el desarrollo de nuevos materiales funcionales. Por ejemplo, el salto de ordenadores de sobremesa a ordenadores portátiles fue posible no sólo gracias a la miniaturización de la electrónica, sino también gracias a la incorporación de pantallas planas que pudieran sustituir al voluminoso tubo de rayos catódicos. Estas pantallas se pudieron desarrollar gracias al descubrimiento de un tipo de materiales con una estructura y unas propiedades ópticas muy peculiares: los cristales líquidos. Materiales con moléculas alargadas que se orientan de forma ordenada como en los sólidos cristalinos pero que pueden desplazarse unas respecto a otras, como en un líquido.

Los cristales líquidos pueden permitir el paso de la luz o pueden bloquearla inducidos por la acción de un campo eléctrico y gracias a ello sirvieron para el desarrollo de pantallas planas, que además de en ordenadores portátiles se usan también en calculadoras, teléfonos móviles, paneles electrónicos y otros dispositivos.  

Representación de una molécula de cristal líquido como las que se emplean en la fabricación de pantallas ultraplanas.

Estructura de una célula solar fotoelectroquímica. El ITO (Indium-Tin Oxide) es un material esencial en el diseño de éste y cualquier otro tipo de dispositivos en los que se precise conducción eléctrica y transparencia óptica (por ejemplo en pantallas planas. El ITO es un material literalmente invisible

Por otra parte, para el desarrollo de pantallas planas fue necesario contar también con materiales conductores transparentes en forma de finas películas depositadas sobre el vidrio para actuar como electrodos sin bloquear el paso de la luz. En este caso se trataba de conseguir un electrodo literalmente

41

Page 42: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

invisible. El óxido de estaño dopado con indio (SnO2:In2O3. ITO, según sus siglas en ingles, indium-tin oxide) vino a cubrir el hueco tecnológico gracias a su peculiar combinación de propiedades semiconductoras y transparencia óptica y dio pie a su vez al desarrollo de toda una nueva línea de aplicaciones impensadas hasta entonces.

La batería es otra fuente de nuevas demandas tecnológicas. El equipo portátil necesita una fuente autónoma de alimentación, pero una batería recargable convencional a base de plomo sería demasiado pesada y con poca carga. ¿Quién compraría un portátil en el que la batería pesara más que el resto del equipo?. Un diseño práctico requería baterías más ligeras. En este caso fue el oxihidróxido de níquel (NiOOH) el que llegó al rescate como material electro activo en los cátodos de baterías de níquel-cadmio (NiOOH/Cd) y de níquel-hidruro metálico. Ambas pueden almacenar mucha más carga por unidad de masa (carga específica) que las de plomo. Cuando en nuestros portátiles, teléfonos móviles o videocámaras coloquemos baterías recargables de litio, todavía con mayor carga específica y menor impacto medioambiental, habremos dado un paso más en nuestro largo camino de evolución tecnológica. Los nuevos materiales que lo hacen posible, óxidos mixtos como el LiCoO2, el LiMn2O4 y otros óxidos, seguirán escondidos a nuestra vista pero el menor peso del equipo y la mayor duración de la carga de la batería nos recordarán que están allí.

El óxido LiMn2O4 es uno de los materiales en estudio para el desarrollo de nuevas baterías

recargables de ion litio. La figura muestra su estructura (tipo espinela) en la que los

iones Li+ (azules)se difunden a través de una red tridimensional.

Baterías más ligeras y con mayor capacidad de carga, o dispositivos de almacenamiento de energía ultraplanos y flexibles son sólo algunos de los productos que nos irán sorprendiendo en un futuro próximo gracias al desarrollo de nuevos materiales funcionales. Pero no serán los únicos. Los materiales semiconductores como el silicio, que ha reinado en los chips de los ordenadores desde su nacimiento permitieron en su momento toda una revolución tecnológica e industrial con su implantación en el "Silicon Valley" californiano. Pero a pesar de numerosas mejoras técnicas logradas con muchos años de investigación y desarrollo, el silicio sigue siendo caro y delicado.   

Modelo idealizado de las cadenas moleculares de un polímero conductor (polianilina). Un plástico con

propiedades de semiconductor.

Ya hace años que investigadores de todo el mundo buscan alternativas que pudieran suplirlo al menos en algunas aplicaciones. Una de estas alternativas, que hoy puede parecer de ciencia-ficción es el desarrollo de semiconductores poliméricos. De momento no se trataría de sustituir al silicio en los ordenadores, sino de inaugurar nuevas aplicaciones basadas en circuitos y dispositivos electrónicos

42

Page 43: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

hechos de materiales plásticos, baratos, flexibles y resistentes. Desde los años 80 se conocen las peculiares propiedades de toda una familia de polímeros orgánicos capaces de conducir la corriente eléctrica en determinadas condiciones e impedir su paso en otras, de forma similar a como lo hace el silicio. Estos primeros materiales orgánicos encontraron pronto diversas aplicaciones como materiales funcionales, pero en el duro terreno de los semiconductores industriales no eran muy eficientes comparados con el silicio. Sin embargo, los esfuerzos continuados de muchos laboratorios han ido dando sus frutos. Recientemente se han desarrollado materiales orgánicos de segunda generación, así como otros materiales inorgánicos e incluso híbridos orgánico-inorgánicos que se van acercando en eficacia al silicio. Ahora ya parece sólo cuestión de tiempo que algunos de ellos lleguen a alcanzar un nivel práctico de aplicación para que empecemos a ver etiquetas plásticas computerizadas o paneles electrónicos flexibles y posiblemente nuevas aplicaciones que superarán nuestras expectativas. Nuevas aplicaciones que serán posibles gracias al desarrollo de materiales que no podremos ver.

3.6.2. Impacto en la sociedad.

Los materiales sobre los que se asentaba la tecnología eran suficientemente cotidianos y limitados en número como para ser socialmente asimilables. Los metales eran los de toda la vida, opacos y buenos conductores, los plásticos eran aislantes y el diamante era el único duro de la película. Pero en un corto espacio de tiempo nos han cambiado mucho las cosas. Los científicos del gremio parecen empeñados en poner apellidos exóticos a los más variados materiales. En el mercado tecnológico tenemos ahora nuevos productos como los óxidos superconductores, el carbono molecular, los polímeros conductores e incluso los metales transparentes. Es natural que la gente se pregunte qué es todo esto. ¿Se trata de una revolución en marcha o de una moda pasajera impulsada por los científicos en sus torres de marfil?. En definitiva, ¿para qué queremos polímeros conductores?, ¿por qué necesitamos metales transparentes?. ¿No nos vale con nuestros polímeros transparentes y nuestros metales conductores?. 

La respuesta es sencilla; si decidimos limitarnos a disfrutar de los dispositivos y tecnologías de hace años, entonces, efectivamente no nos hacen falta nuevos materiales. Pero si pretendemos continuar, aun humildemente, el camino que va de la piedra filosofal a la ciencia y tecnología del mañana, necesitaremos materiales avanzados. Materiales que se adelantan a sus propias aplicaciones y que en algunos casos pueden llegar a constituir el germen de nuevas tecnologías. Como los materiales funcionales antes descritos y muchos otros que darían para escribir mucho más.

Así pues, sin dejar de investigar en la mejora de los materiales convencionales, se diría que no conviene perder el tren de los materiales avanzados y nuestra sociedad reconoce la necesidad de invertir en el futuro.

El área de ciencia de materiales, por su propia naturaleza, puede servir de puente entre la investigación científica básica y la aplicación industrial. En este sentido, junto con un aumento espectacular de productividad científica en ciencia de materiales, el mundo se da cuenta ahora mismo que un recurso de mayor importancia si cabe. Se trata de una nueva generación de físicos, químicos e ingenieros que se han curtido en la investigación, básica y aplicada, en la resolución de dilemas técnicos, en el desarrollo de materiales y prototipos; jóvenes científicos a los que no asusta enfrentarse a problemas del mundo real y que son la fuente de recursos tecnológicos que necesitan las industrias con verdadera voluntad de innovación y visión de futuro.

43

Page 44: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

UNIDAD 4

4.1. Lenguaje de la química.

4.1.1. Lenguaje de la química.

A través del tiempo la química se ha desarrollado de tal manera que ha generado un sinfín de “nuevas palabras”, estas han generado lo podríamos llamar un nuevo lenguaje, un lenguaje químico, para entender esta ciencia es necesario el dominarlo, el traducir de nuestro lenguaje común al lenguaje químico implica el conocer las palabras y reglas necesarios, a lo largo del curso ya bastante hemos aprendido de esto, pero ahora iniciaremos con una de las partes más bellas de este lenguaje, los nombres de las sustancias.

Primero será necesario bien aprender los símbolos de los elementos químicos, para así entender como nombrar (nomenclatura) las sustancias químicas inorgánicas.

Símbolos y fórmulas químicas.

A lo largo de todo el punto 2.5. revisamos y estudiamos todos los elementos de la tabla periódica, así como sus propiedades periódicas.

La necesidad de una nomenclatura general se hizo sentir en cuanto aumento el número de compuestos conocidos y al mismo tiempo aumentaba el número de químicos en los diferentes países del mundo. Entonces para facilitar la comunicación entre ellos surgió la necesidad de elaborar un lenguaje único, sistematizado y uniforme para identificar a las sustancias químicas.

Este lenguaje a sido desarrollado por la IUPAC (UNION INTERNACIONAL DE QUÍMICA PURA Y APLICADA) y está en estudio constante, con el fin de adaptarlo a los compuestos descubiertos cada año. En nuestro curso de QUÍMICA I daremos las bases fijadas por la IUPAC para dar nombre a los compuestos inorgánicos.

Existen algunos compuestos que tienen nombres que no siguen las reglas IUPAC, estos nombres son considerados triviales y se aprenden en la práctica y no con reglas. Esto se considera la nomenclatura trivial.

Número o estado de oxidación.

Para recordar las fórmulas de los compuestos y escribirlas correctamente, resulta útil el empleo de un sistema de números denominados números de oxidación. Estos se basan en una serie de reglas y criterios un tanto arbitrarios, estos son:

El número de oxidación de un elemento no combinado es cero. En un compuesto los elementos más electronegativos poseen número de oxidación negativo,

mientras que los menos electronegativos poseen estados de oxidación positivos. En un compuesto la suma algebraica de los números de oxidación siempre debe ser igual a cero,

porque las moléculas son neutras. El hidrógeno en la mayoría de los compuestos su estado de oxidación es +1(a excepción de los

hidruros donde es –1).

44

Page 45: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

El Oxigeno en la mayoría de los compuestos se estado de oxidación es –2( a excepción de los peróxidos donde es –1).

Se puede predecir el número de oxidación de algunos elementos, en función del grupo al que pertenecen. En la siguiente tabla se muestran algunos.

GRUPOS IA IIA IIIA IVA VA VIA VIIA

Números de

oxidación+1 +2 +3

+4+2-2-4

+5+3+1-3

+6+4+2-2

+7+5+3

+1, -1

En la hoja de Anexo 1 encontrara la mayoría de los elementos e iones con sus respectivos valores de números de oxidación.

Una vez conocido los números de oxidación es fácil deducir y escribir la fórmula de un compuesto correctamente.

El método mecánico consiste en escribir el número de oxidación encima del símbolo de elemento o ión y colocar cada uno de estos números como subíndice del otro símbolo. Nunca se escribe el subíndice 1 en una fórmula; se sobreentiende que es 1 cuando no hay subíndice.

Nombre del compuesto Método FórmulaÓxido de aluminio Al +3 O-2 Al2O3

Nitrato de Bario Ba+2 (NO3)-1 Ba(NO3)2

Óxido cúpricoCu+2 O-2 CuO

En el último ejemplo se observa que al entrecruzar los números obtenemos Cu2O2. la razón es 2:2 pasa a ser entonces 1:1 con lo que las fórmulas más sencilla será CuO.

Los iones con número de oxidación negativo cuando están formados por más de un elementotambién se les conoce como radicales.

Clasificación y nomenclatura de compuestos.

Los compuestos se pueden clasificar por el número de elementos que los forman en:

Binarios: de dos elementos. Ternarios: de tres elementos. Poliatómicos: se componen de más de tres elementos.

Otra clasificación es en base a su función de las propiedades químicas de los mismos en:

Óxidos metálicos Óxidos no metálicos Hidruros Hidróxidos o bases

45

Page 46: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Ácidos hidrácidos. Ácidos oxiácidos. Sales haloideas o binarias. Sales oxisales.

A continuación se verán las reglas de la IUPAC para los compuestos en base a la función química.

Nomenclatura de óxidos metálicos.

Se forman de la unión de un metal más el oxigeno(-2). Para nombrar estos compuestos se antepone la palabra óxido, seguida del nombre del metal correspondiente. Ejemplo:

Dada la fórmula escribir el nombre.

Si el metal solo tiene un número de oxidación se escribe:Óxido de ____________, ejemplos:

Metala) MgO: óxido de magnesiob) CaO: óxido de calcioc) Li2O: óxido de litiod) Al2O3: óxido de aluminio

Si el metal tiene 2 números de oxidación, averiguar con cual esta trabajando en ese compuesto y, se escribe:

1) Nomenclatura tradicional: + óxido de ___________ oso metal número de oxidación menor

+ óxido de ___________ ico metal número de oxidación mayor

2) Nomenclatura moderna: óxido de _____________ ______ metal número de oxidación con número romano.

a) Fe2O3: óxido férrico u óxido de hierro IIIb) PbO2: óxido plúmbico u óxido de plomo IVc) Au2O: óxido auroso u óxido de oro Id) CuO: óxido cúprico u óxido de cobre II

Dado el nombre del óxido escribir la fórmula.

Primero se anota el metal con el número de oxidación dependiendo de la terminación del nombre y enseguida el oxigeno con –2.

a) Óxido de zirconio: ZrO2.b) Óxido ferroso: FeOc) Óxido Plumboso: PbOd) Óxido de mercurio II: HgO

Nomenclatura de óxidos no metálicos.

46

Page 47: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Resultan de la combinación de un no metal(con sus números de oxidación positivos) con el oxigeno –2. Para darle nombre a estos compuestos se utilizan los prefijos numerales griegos, para indicar el número respectivo de átomos del elemento en el compuesto, ejemplos:

Dada la fórmula escribir el nombre del compuesto.

_________ óxido de _______ ___________prefijo prefijo no metal

a) CO: monóxido de monocarbono.b) NO: monóxido de mononitrógeno.c) P2O5: pentóxido de difósforo.d) Cl2O7: Heptóxido de dicloro

Dado el nombre del compuesto escribir la fórmula.

Se anota primero el no metal con el número de oxidación de acuerdo con el prefijo que tiene el óxido y enseguida el oxigeno con –2, se entrecruzan los números de oxidación y se obtiene la fórmula, ejempos:

a) Trióxido de diazufre: S2O3.b) Pentóxido de difósforo: P2O5.c) Dióxido de monocarbono: CO2.

Nomenclatura de hidruros.

Los hidruros resultan de la combinación del hidrógeno con cualquier metal, el hidrógeno funciona con –1.

Para nombrar estos compuestos se antepone la palabra hidruro seguida del metal, si tiene dos números de oxidación se utilizará las terminaciones “oso” para el número de oxidación menor e “ico” para el número de oxidación mayor; o también se puede utilizar los números romanos al final del nombre del metal, según sea su número de oxidación, ejemplos:

a) NaH: hidruro de sodio.b) LiH: hidruro de litio.c) AuH: hidruro de oro I o hidruro aurosod) CuH2: hidruro cúprico o hidruro de cobre II

Para escribir la fórmula dado su nombre, se anota primero el metal con su número de oxidación según la terminación del nombre del compuesto y el hidrógeno con –1, ejemplos:

a) Hidruro de Itrio: YH3.b) Hidruro de Bario: BaH2.c) Hidruro de sodio: NaH.d) Hidruro de Hierro III: FeH3.

47

Page 48: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Nomenclatura de hidróxidos.

Se forma al unirse un metal más el radical OH, que trabaja con valencia –1. Cuando se tiene la fórmula se nombran de la siguiente forma: si tiene una sola valencia el metal se antepone la palabra hidróxido de y el nombre del metal; si el metal tiene dos números de oxidación, se antepone la palabra hidróxido de más el nombre del metal y la terminación “oso” o “ico” dependiendo el número de oxidación o con el número romano según su número de oxidación, ejemplos:

a) NaOH: hidróxido de sodiob) Ba(OH)2: hidróxido de barioc) Fe(OH)3: hidróxido férrico o hidróxido de hierro III.d) ZnOH: hidróxido de zinc

Cuando se tiene el nombre de la fórmula, se anota el metal con su número de oxidación dependiendo del nombre del compuesto y enseguida el OH con –1, ejemplos:

a) Hidróxido de cobre II: Cu(OH)2.b) Hidróxido de aluminio: Al(OH)3.c) Hidróxido ferroso: Fe(OH)2.d) Hidróxido de mercurio I: HgOH

Nomenclatura de ácido hidrácidos.

Los hidrácidos resultan de la combinación de los aniones de la serie de los haluros con el hidrógeno; es decir, de la combinación de un no metal con el hidrógeno. En los hidrácidos el hidrógeno siempre tiene número de oxidación de +1, ejemplos:

a) HF: Ácido fluorhídricob) HCl: ácido clorhídricoc) HBr: ácido bromhídricod) HI: ácido iodhídrico

Para el nombre de estos compuestos se antepone la palabra ácido seguida siempre del nombre del no metal correspondiente con la terminación hídrico. También se puede sombrar utilizando el anexo 1, donde viene el ión junto con su nombre que formará al unirse al hidrógeno, ejemplos:

a) Ácido sulfhídrico: H2S.b) Ácido cianhídrico: HCN

Nomenclatura de ácidos oxiácidos.

Los oxiácidos son aquellos que resultan de la reacción de agua con un óxido no metálico. Se nombran anteponiendo la palabra ácido, seguida del nombre del radical negativo correspondiente(anexo 1). El número de oxidación del H es +1, ejemplos:

a) H2SO4: ácido sulfúrico.b) HNO3: ácido nítrico.c) HClO: ácido hipocloroso

48

Page 49: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

d) H3PO4: ácido fosfórico

Para realizar la fórmula según el nombre es necesario el identificar el radical para escribir la fórmula (anexo 1), ejemplos:

a) Ácido cloroso: HClO2.b) Ácido Nitroso: HNO2.c) Ácido perclorico: HClO7.d) Ácido sulfuroso: H2SO3.

Nomenclatura de las sales binarias.

Las sales binarias están formadas de un no metal más un metal. Para darles nombre se camia la terminación del no metal por “uro”, seguida del nombre del metal, si este presenta dos valencias, para distinguir los compuestos se les coloca el número de la valencia con que esta trabajando el metal en ese compuesto en número romano al final del nombre, ejemplos:

a) NaCl: cloruro de sodio.b) LiI: yoduro de litio.c) CuF2: fluoruro cúprico o fluoruro de cobre II.d) FeBr3: bromuro de hierro III o bromuro férrico.

Para escribir la fórmula de una sal binaria se identifica el halogenuro y se nombra según el anexo 1, y se identifica el número de oxidación del metal según la terminación o su número romano, ejemplos:

a) Cloruro de magnesio: MgCl2.b) Fluoruro de calcio: CaF2.c) Bromuro de potasio: KBr.d) Yoduro de zinc: ZnI

Nomenclatura de sales oxisales.

Son sales que se derivan de los oxiácidos; es decir, contienen un metal unido a un radical negativo que contenga oxigeno.

Se nombran anteponiendo el nombre del radical negativo(anexo 1) y se hace seguir del nombre del metal correspondiente, si el metal tiene dos números de oxidación se pone al final del nombre en número romano, ejemplos:

a) MgSO4: sulfato de magnesio.b) Fe2(CO3)3: carbonato de hierro III o carbonato férrico.c) Na3PO4: fosfato de sodio.d) Sr(NO3)2: nitrato de estroncio.

Par a escribir la fórmula se identifica el radical en el anexo 1 y se identifica el número de oxidación del metal, ejemplos:

a) Carbonato de sodio: Na2CO3.

49

Page 50: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

b) Nitrato de potasio: KNO3.c) Hipoclorito de litio: LiClOd) Fosfito de Oro III: AuPO3.

4.2. Ecuación química.

Una reacción química puede definirse como aquel proceso mediante el cual una o más sustanciasal interaccionar se transforman en otras como consecuencia de la ruptura de algunos enlaces existentes

y la formación de otros nuevos entre las especies participantes.

Una ecuación química es la representación abreviada y simbólica de una reacción química.

Además proporciona un medio de demostrar un cambio químico en los reactivos y los productos, su composición atómica y la relación molecular, en donde intervienen. Las ecuaciones químicas generalmente se emplean para describir los estados inicial y final del proceso.

Convencionalmente se escriben a la izquierda, es decir, en el primer miembro los símbolos o formulas de las sustancias iniciales, reactivos o reactantes. A la derecha de la ecuación o segundo miembro, se escriben los símbolos o fórmulas de las sustancias que se forman o productos de la reacción.

A + B C + D REACTIVOS PRODUCTOS

NaCl + AgNO3 NaNO3 + AgClCloruro de sodio Nitrato de plata Nitrato de sodio Cloruro de plata

Para que una ecuación química represente con mayor fidelidad una reacción, es necesario que los símbolos o fórmulas de las especies participantes involucren todas las propiedades físicas y químicas de las mismas. Convencionalmente se hacen notar algunas de esas propiedades mediante SIGNOS AUXILIARES.

(g) : gas. (hf): Energía de radiación electromagnética.

(l) : líquido. ): Gas que se desprende en el proceso.

(s) : sólido. ( ↓ ): Sólido que se precipita o precipitado.(ac) o (aq) : en solución acuosa. ( →): Reacción irreversible(un sentido)(E) : energía.

(↔): Reacción reversible(doble sentido o ambos sentidos.() : calor.Ejemplo:

2 KClO3(s) + 2 KCl(s) + 3O2(g)

Dos moléculas de clorato de potasio sólido, que al aplicar calor, nos da o produce, dos moléculas de cloruro de potasio sólido, más tres moléculas de oxigeno molecular diatómico gas, que se desprende de la reacción.

4.3. Tipos de reacción.

50

Page 51: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Existen diferentes tipos de reacciones dentro de la química, a continuación los explicaremos:

4.3.1. Síntesis.

En este tipo de reacción, dos o más especies químicas sencillas se unen para determinar un solo producto o especie más compleja. Ejemplo:

A + B AB2H2(g) + O2(g) 2H2O(l)

4.3.2. Descomposición.

Es aquella en la cual una especie química, se descompone en dos o más productos, mediante la aplicación de una fuente de energía externa. Ejemplo:

AB A + B2H2O(l) + electricidad 2H2(g) + O2(g)

4.3.3. Sustitución simple.

Es aquella en la que los átomos de un elemento desplazan en un compuesto a los átomos de otro elemento, un ejemplo de esta reacción, es la realizada entre un ácido y un metal, obteniendo una sal y desprendimiento de hidrógeno:

A + BC AC + BZn(s) + 2 HCl(l) ZnCl2(ac) + H2(g)↑

4.3.4. Sustitución doble.

Este tipo de reacción se realiza generalmente en solución acuosa, donde hay iones presentes y se produce un intercambio entre ellas, ejemplos característicos son: la reacción entre sales en un medio acuoso, otro sería, una reacción de neutralización entre un ácido y una base, obteniendo una sal y agua:

AB + CD AD + CBHCl(aq) + Na(OH)(aq) NaCl(aq) + H2O(l)

4.4. Balanceo de ecuaciones químicas.

En nuestro acontecer diario, si miramos a muestro alrededor y observamos cuidadosamente, sin duda nos percataremos de las innumerables reacciones químicas que tienen lugar, por ejemplo: las plantas producen su alimento por medio de la fotosíntesis, en la reacción interior se absorbe energía radiante a medida que el bióxido de carbono y el agua se combinan para formar glucosa y oxigeno, durante esta reacción ocurren transferencia de electrones.

Por lo anterior es fundamental el conocer y balancear las ecuaciones químicas, como un medio para dar y recibir información científica, ya que las ecuaciones químicas poseen dos características: cualitativa

51

Page 52: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

(nos indica que sustancias reaccionan y que productos se obtienen) y cuantitativa( relaciona la composición de reactivos y productos).

Por lo general, las ecuaciones químicas deben de satisfacer tres condiciones:

1º Presentar hechos experimentales, es decir, la reacción ocurre realmente bajo condiciones dadas.

2º En ambos lados de la ecuación debe existir el mismo número de átomos que intervienen en la misma ( ley de la conservación de la masa).

3º La carga eléctrica de los componentes que intervienen en la reacción debe ser la misma en ambos lados de la ecuación.

2 Ca + O2 2 CaO + calor

En la ecuación anterior existen el mismo número de átomos, tanto para el calcio, como para el oxigeno, en ambos miembros de la ecuación.

Es por ello que para cumplir con la ley de la conservación de la masa, es necesario que entre el primer miembro y el segundo exista siempre una igualdad, es decir, que la ecuación este balanceada.

Balancear o ajustar una ecuación química significa igualar el número de átomos del primer miembro (reactivos) con los del segundo (productos).

Para balancear o ajustar una ecuación química, tenemos los siguientes métodos:

4.4.1. Tanteo.

Este método es muy sencillo y se utiliza para balancear ecuaciones químicas simples, para efectuarlo se sugieren los siguientes pasos:

i. Equilibrar todos los elementos diferentes del oxigeno y del hidrógeno.ii. Equilibrar los hidrógenos, por lo general, al hacer esto se equilibra el agua.iii. Equilibrar los oxígenos, y así toda la ecuación quedara balanceada.

Ejemplo:

4.4.2. Algebraico y óxido – reducción.

Este método nos permite detectar si una reacción química esta mal planteada, por ejemplo, puede suceder que un compuesto no este bien colocado, pues debe estar en el otro miembro, esto se apreciara si alguno de los coeficientes resultara negativo al resolver el sistema de ecuaciones. Consiste en encontrar los coeficientes para cada reactivo y producto por medio de un sistema de ecuaciones indeterminadas. Explicaremos este método con la siguiente ecuación química:

Paso Primero En la ecuación a balancear, a cada uno de los reactivos y productos se le da una literal:

a b c dSr + Fe2(SO4)3 SrSO4 + Fe

52

Page 53: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Paso Second Se anotan los elementos en forma vertical y se plantea una ecuación para cada uno:

1st Sr; a = c2nd Fe 2b = d3rd S 3b = c4th O 12b = 4c

Paso Tercero A la literal que aparece en la mayoría de las ecuaciones se le asigna el valor de 1, en este caso c = 1.

En caso de que existan 2 literales en el mismo caso, se escogerá la que resuelva de manera más sencilla las ecuaciones.

Paso Cuarto Se resuelven las ecuaciones en el orden más conveniente:

Para la ecuación 1º:a = c y como c = 1, entonces

a = 1

Para la ecuación 3º:3b = cy como c = 1, entonces

3b = 1, despejando para b: b = 1/3

Para la ecuación 2º:2b = dy como b = 1/3, entonces

2(1/3) = d, multiplicando: d = 2/3

Paso Quinto Como se observa el valor de algunos de los coeficientes es una fracción, y como sabemos, los átomos o moléculas no se pueden fraccionar, así que, los acomodaremos en forma vertical y los multiplicaremos por el denominador mayor de todas las fracciones.

a = 1 x 3 = 3b = (1/3) x 3 = 1c = 1 x 3 = 3d = (2/3) x 3 = 2

Paso Sexto Estos números son los coeficientes que corresponden a cada uno de las sustancias de la ecuación química y se anotan del lado izquierdo.

3Sr + Fe2(SO4)3 3SrSO4 + 2Fe

Paso Seventh Se comprueba que realmente haya la misma cantidad de átomos del mismo elemento en cada uno de los miembros de la ecuación química.

53

Page 54: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

3Sr + Fe2(SO4)3 3SrSO4 + 2Fe = Sr = = Fe = = S = = O =

Método de óxido – reducción.

En este tipo de reacciones existe un intercambio de electrones entre las especies participantes, que por lo general se les llama reacciones redox. Por ejemplo para la reacción:

Znº + Sº → Zn 2+ + S2–

El cinc cambia de número de oxidación de 0 a 2+, lo cual indica que al reaccionar con el azufre cede o pierde dos electrones; a su vez, el azufre cambia de número de oxidación 0 a 2– , lo que nos indica que ha aceptado o ganado los dos electrones que proporciono el cinc.

La oxidación es la perdida de electrones por parte de una especie química(elemento o compuesto). Esto quiere decir que un átomo se oxida, al ceder electrones, aumenta su número de oxidación, por ejemplo:

Znº – 2e- → Zn2+

La reducción es la ganancia de electrones por parte de una especie química(elemento o compuesto), es decir, un átomo que se reduce, al aceptar electrones, disminuye su número de oxidación, por ejemplo:

Sº + 2e- → S2–

Es importante mencionar que una reacción de óxido – reducción implica ambos procesos simultáneamente.

Con base en el concepto anterior, podemos decir que la especie química que se oxida induce la reducción y la que se reduce induce la oxidación, por lo tanto, se llama agente oxidante a toda especie química que acepta electrones en el transcurso de una reacción provocando así, en otra, una oxidación; se llama agente reductor a toda especie química que cede electrones en el transcurso de una reacción química provocando así, en otra, una reducción.

Cabe señalar que las reacciones redox, se pueden resolver también por el método algebraico.

4.5. Cambios energéticos en las reacciones químicas.

La rapidez con que se lleva a cabo una reacción química depende de varios factores, uno de los cuales es la temperatura, por lo general la mayoría de las reacciones se llevan a cabo más rápido cuando aumenta la temperatura, este efecto se explica en términos de la teoría cinético molecular, ya que al aumentar las temperatura las moléculas de los cuerpos adquieren más energía, aumentando los choques entre ellas lo que aumenta la posibilidad de una reacción química, este aumento de energía también favorece el rompimiento de los enlaces químicos favoreciéndose así las reacciones químicas.

54

Page 55: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Los cambios de energía asociados a las reacciones químicas tienen una relación cuantitativa con las cantidades de las sustancias químicas que se alteran.

Cuando al ocurrir una reacción se desprende calor se dice que es una reacción exotérmica y se anota como producto la energía liberada.

Sea la reacción A y B para formar los productos C y D y la cantidad de calor liberado , siendo = Eq – Ei ; lo que significa que el calor liberado en una reacción exotérmica es la diferencia de calor contenido energético entre reactivos y productos.

EP – ER = - (calor liberado)

Ejemplo:

C(s) + O2(g) CO2(g) – 94.05 Kcal

H2SO4(ac) + Zn(s) ZnSO4(ac) + H2(g) – 37.63 Kcal

H2(g) + ½ O2(g) 2H2O(l) – 68.32 Kcal

Si por el contrario, se absorbe calor para llevar a acabo la reacción, se dice que la reacción es endotérmica y la energía necesaria para llevarla a cabo se anota como reactivo, las ecuaciones que lo representan se observan en los siguientes ejemplos en donde EP – ER = + .

Ejemplos:

BaO + ½ O2 + 18.6 Kcal BaO2(s)

2HCl + ½ O2 + 27.36 Kcal H2O + Cl2(g)

Ahora bien, cuando un sistema absorbe calor, parte de esa energía puede emplearse para producir un trabajo. La otra parte de la energía se almacena dentro del propio sistema como energía de los movimientos internos e interaccionan entre átomos y moléculas. A esta energía se le denomina energía interna.

4.5.1. Entalpía de reacción.

La entalpía (grado de desorden) es una magnitud que se relaciona estrechamente con la energía interna y se define de manera que el incremento de entalpía de cualquier sistema que sufre un cambio a presión y temperatura constante es igual al calor absorbido en el proceso. La entalpía o calor interno se representa con la letra H.

4.6. Velocidad de reacción.

55

Page 56: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Podemos definir la velocidad de reacción como la cantidad de sustancia reaccionante (reactivo) que se transforma o la cantidad de producto obtenido en la unidad de tiempo.

La velocidad de reacción se mide en unidades de concentración sobre tiempo, por ejemplo mol/Ls.

4.6.1. Teoría de colisiones.

Para que ocurra una cualquier reacción la teoría de las colisiones de las velocidades de reacción afirma que es necesario cumplir tres condiciones:

1. Las moléculas de los reactivos deben de chocar unas con otras.2. Las moléculas de los reactivos deben de chocar con suficiente energía.3. Las moléculas deben chocar en una orientación tal que permita un reordenamiento de átomos.

Esto queda explicado con los factores que modifican la velocidad de reacción (concentración y temperatura).

4.6.2. Factores que la modifican.

Experimentalmente se ha demostrado que los factores que afectan la velocidad de una reacción son:

A) Naturaleza de los reactivos. En forma general podemos decir que las reacciones iónicas son muy rápidas o casi instantáneas. En cambio, donde intervienen sustancias moleculares son muy variadas. Las estructuras atómicas y moleculares de las sustancias, así como la fuerza de los enlaces químicos influyen en la velocidad de la reacción.

B) La temperatura. Empíricamente al aumentar la temperatura aumenta la velocidad de cualquier reacción.

C) La concentración de los reactivos. La velocidad de una reacción aumenta con la concentración de los reactivos, ya que la cantidad de reactivo que se transforma dependerá del mayor o menor número de choques. Éste será doble si se duplica la concentración de uno de los reactivos, y se cuadruplica cuando se duplica la concentración de dos reactivos.

El efecto de la concentración de los reactivos sobre la velocidad de una reacción esta indicado por la ley de acción de masas, formulada por Gulberg y Waage en 1867, la cual establece que “la velocidad de reacción es directamente proporcional al producto de las concentraciones de los reactivos”. Cada concentración se eleva a un exponente igual al coeficiente del reactivo en la reacción. Para expresar simbólicamente la concentración de una sustancia en mol/L se emplea un paréntesis rectangular [ ]. Así por ejemplo, y de acuerdo a la ley de acción de masas, la velocidad de reacción (v).

A + B C + D, se indica v = K [A] [B]

Donde K es la constante de la velocidad de reacción de A con B a una temperatura determinada. La velocidad de la siguiente reacción : 2A + 3B A2B3, será v = K [A]2 [B]3.

56

Page 57: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

D) Los catalizadores. La velocidad de una reacción también puede modificarse mediante la presencia de catalizadores. Un catalizador es una sustancia que está presente en la masa reaccionante pero que no sufre modificación alguna, únicamente acelera o retarda la velocidad de la reacción. El proceso donde interviene un catalizador recibe el nombre de catálisis. Existen dos tipos de catalizadores: positivo, el que acelera la reacción; negativo o inhibidor, el que retarda la reacción.

También podemos considerar el estado de división de los reactivos como otro factor que influye en el tiempo de reacción. Si un reactivo es sólido, mientras más dividido se encuentre la reacción será más rápida.

4.7. Consumismo e impacto ambiental.

El desarrollo científico tecnológico es uno de los elementos de cambio más radicales del siglo XX. Los adelantos que tuvieron lugar en el conocimiento científico desde las primeras décadas, desencadenaron a partir de los años cincuenta un proceso simultáneo de cambios en la ciencia, las tecnologías y el sistema productivo, cambios que a su vez hicieron posible la transformación de la vida social a escala planetaria.

Los cambios que han tenido lugar afectan por igual a los seres humanos y su proceso de vida; al conocimiento y sus formas de producción y reproducción, y han colocado a la sociedad mundial ante la alternativa de una nueva conceptualización. Para algunos, estamos entrando cada vez más en la sociedad del conocimiento, mientras que para otros, sería más adecuado referirnos a la sociedad contemporánea como sociedad del riesgo.

Uno de los resultados más impresionantes del avance científico y tecnológico ha sido el cambio sustancial en la vida de millones de personas. La cotidianeidad había sido siempre sumamente conservadora con relación al conocimiento, los modos de vivir y reproducir la vida social.

La vida cotidiana prefirió siempre la estabilidad al cambio. Durante milenios esa fue la lógica del desenvolvimiento de la vida del hombre común.

La vida cotidiana del hombre en épocas anteriores cambió sólo a través de procesos en su mayor parte dilatados en el tiempo. Esto es perfectamente compatible con el designio más profundo de la cotidianeidad: garantizar la producción y reproducción de la vida humana.

Todo lo aprendido por el hombre de nada ha servido en el aspecto de cuidar nuestro planta es mucho más importante la producción de muebles de madera, papel de cualquier tipo, o simplemente leña para la fogata, que el cuidado de los árboles de u n bosque.

Igual pasa con el uso los combustibles fósiles (Petróleo y sus derivados), es de mayor importancia el desplazarnos de un lugar a otro cómodamente un automóvil, que preservar el aire que respiramos.

4.7.1. Desarrollo sustentable.

57

Page 58: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

Los nuevos conocimientos adquiridos por el hombre, el desarrollo de nuevas formas productivas a partir de la ciencia y la tecnología, la ampliación de los flujos informativos; la inclusión de todo esto en la vida cotidiana en forma de objetos e instrumentos, conocimientos y modos de vida transformados, han hecho hoy día el cambio preferible a la estabilidad, y elevado el valor social de la novedad y la creatividad.

Desde la revolución industrial, pero sobre todo a partir de la revolución científico técnica en la década del cincuenta del siglo XX, el saber científico y tecnológico, —los modos de ser, conocer y actuar de la ciencia y la tecnología—, han subvertido la vida cotidiana como proceso material y espiritual de vida.

Como proceso material, la vida cotidiana ha sido dotada de nuevos instrumentos que potencian las capacidades humanas, cambian la vida de las personas, a la vez que la hacen dependiente del conocimiento y los nuevos productos del saber que han de revolucionarla también en el futuro. Formas ancestrales del hacer de la vida humana desaparecen, envueltas en un constante proceso de cambio, homogeneización y creación de dependencias. La vida cotidiana se subvierte mediante la destrucción de las formas de vida y la instrumentación de un modo material único de realización de la vida.

La subversión material de la vida cotidiana por los productos del conocimiento y la tecnología, ha conducido a la mejora de las condiciones de vida de una parte significativa del mundo, pero este no es el único resultado. La estandarización de la vida humana y la pérdida de la socio diversidad son resultados igualmente notables, aunque absolutamente destructivos, e indeseables. Pero en términos de vida y sociedad homogeneización y equilibrio son equivalentes a la muerte.

Como proceso espiritual, la vida cotidiana se subvierte mediante la destrucción de las costumbres y la instrumentación de un modo ideológico único de realización de la vida. Uno de los efectos más importantes de la subversión material y espiritual de la vida cotidiana por la ciencia ha sido la activación del hombre común como sujeto social y epistémico. Como consecuencia del conjunto de cambios introducidos por la ciencia y la tecnología en la vida cotidiana, el hombre común ha cambiado su percepción de los problemas y ha incrementado su nivel de participación no sólo en la presentación de nuevas demandas, sino también en la búsqueda de las soluciones a los problemas. Esto quiere decir, que se está comenzando a producir un nuevo diálogo entre sectores sociales antes separados por el velo del desconocimiento —atribuido a la vida cotidiana y el sentido común—, y el conocimiento verdadero, —atribuido a la ciencia. En lugar de la contraposición entre científicos y no científicos, se está abriendo la época del diálogo humano multilateral en busca de soluciones a los problemas de naturaleza global que el propio desarrollo científico-técnico está planteando ante la humanidad. Por eso no es difícil observar en la actualidad como pueden confluir en un foro ambiental, o contra la guerra, especialistas científicos, activistas políticos y sociales, junto a los miembros de organizaciones comunitarias que de conjunto están replanteando los problemas que tiene ante sí la humanidad.

4.7.2. Riesgos de la ciencia y la tecnología.

La influencia del desarrollo científico-tecnológico sobre la propia ciencia es notable. Han surgido nuevas teorías científicas en cada una de las ciencias, y nuevas ramas del saber en las intersecciones entre las ciencias. Por su parte, la tecnología se ha hecho cada vez más independiente y poderosa, tanto en la generación de conocimientos y el planteamiento de problemas científico tecnológicos, como en la dotación al hombre de medios de transformación de la naturaleza que permiten desarrollar la actividad productiva humana a escala planetaria.

58

Page 59: Unidad 1 Información General

DOCUMENTO BASE QUÍMICA I

El desarrollo científico tecnológico, los avances en las modernas tecnologías de la información, la constitución del conocimiento en un basamento esencial del sistema productivo y la realización de la vida cotidiana del hombre contemporáneo permiten caracterizar a la sociedad mundial emergente de estos procesos como sociedad del conocimiento. Simultáneamente, ese conocimiento nos permite trabajar hoy con niveles básicos de la estructura de la materia y la vida; y convertir a la Naturaleza en objeto de trabajo a escala planetaria. Estos dos factores, que hacen de la sociedad mundial actual una sociedad basada en el conocimiento; permite transformaciones tan profundas del sistema de la naturaleza, que los riesgos de destrucción marchan de la mano con nuestra capacidad incrementada de creación. Esto plantea la disyuntiva de caracterizar a la sociedad actual como sociedad del riesgo.

59