Uncertainty,sensitivityandrejectionin ! …cees.stanford.edu/docs/Caers-slides.pdf ·...

37
Jef Caers Stanford University, USA Uncertainty, sensitivity and rejection in predictive reservoir modeling

Transcript of Uncertainty,sensitivityandrejectionin ! …cees.stanford.edu/docs/Caers-slides.pdf ·...

 Jef  Caers  

Stanford  University,  USA  

Uncertainty,  sensitivity  and  rejection  in    predictive  reservoir  modeling  

Quantitative  modeling  of  geological  heterogeneity  Modeling  uncertainty  in  the  context  of  decision  making  Building  3D/4D  models  accounting  for  scale  and  accuracy  of  geological,  geophysical  and  reservoir  engineering  data  

Stanford  Center  for    Reservoir  Forecasting  

SCRF  overview  Reservoir  geology  Multiple-­‐point  /  pattern-­‐based  geostatistics  Surface-­‐based  geostatistics  Structural  modeling  Basin  modeling  

 Reservoir  geophysics  Seismic  reservoir  characterization  Rock  physics  4D  seismic    

Reservoir  Engineering  Sensitivity  analysis  /  History  matching  Upscaling  Uncertainty,  decision  analysis  and  value  of  information  Proxy  models  /  model  complexity    

 Jef  Caers  

Stanford  University,  USA  

Uncertainty,  sensitivity  and  rejection  in    predictive  reservoir  modeling  

Current  practice    

Industry  practice  of    

The  reservoir  

Life-­‐tim

e  

2D  seismic  

3D  seismic  

3D  seismic+production  

4D  seismic+production  

 sensitivity/rejection  

Life-­‐tim

e  

The  reservoir  

Why?  

History  matched  permeability    in  a  real  field  currently  in  production  

The  sensitivity  argument  

Any  modeling  of  uncertainty  is  irrelevant/impossible  without  a  decision  or  prediction  goal    Need  for  an  understanding  and  discovery  of  what  impacts  flow  processes  and  decision  variables  More  than  just  a  computational  issue  !  

 Challenge:  Flow:  very  non-­‐linear  process  Most  important  and  impacting  variables  are  discrete  

   

The  rejection  argument  

Karl  Popper  (1959):  physical  processes  are  laws  that  are  only  abstract  in  nature  and  can  never  be  proven  correct,  they  can  only  be  disproven/falsified  with  facts  or  data    Popper-­‐Bayes    

    (data|m(model|d odel)  ata del)) (moPPP

Application  to  reservoir  case  study  

New  well  planned  

P1  

P2  

P3  

P4  

West-­‐Coast  Africa  (WCA)  slope-­‐valley  system  

Data  courtesy  of  Chevron  

Sensitivity    

Depositional  model  (Training  Image)  Spatial  uncertainty  (for  given  depositional  model)  Kv/Kh  ratio      

 Residual  oil  saturation  Maximum  water  relative  permeability  value  Water  Corey  exponent  

 What  matters  for  prediction  ?  

Generalized  Sensitivity  Analysis  (GSA)  underlying  principle  

input  parameters  

A  big  modeling  box    

Geology/geophysics  Stochastic  

Flow  

output  response  

A  measure  of  sensitivity  is  the  difference    between  the  frequency  distributions  of  input  parameters  per  each  class  

Dim.  Reduction  classification  

C1  C2  C3  

Distance-­‐based  GSA  

Structure  Rock  Fluid  

stochastic  

Proxy  flow  model  complexity  

Response  r  

Time  

p  

m  

Dim.  Reduction  classification  

2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

watExp

cdf

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

KvKh

cdf

pi   pj  

CDF  

CDF  

Kv/Kh   Corey  Water  Exp  

Generalized  sensitivity  any  parameter,  any  response  

A  measure  of  sensitivity  is  the  L1  norm  difference  between  a  class-­‐conditional  and  marginal  cdfs                A  measure  of  interaction  sensitivity  is  the  L1  norm  difference  between  a  conditional  class-­‐conditional  and  conditional  cdfs  

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x

cdf

( | )i kF p c

( )iF p

pi  =  corey  exponent  

TI1 TI3 TI8 TI9 TI10 TI130

0.2

0.4

0.6

0.8

1

TIcd

f

TI|krwMax - class # 1pj  =  TI  ;  pi  =  corey  exponent    

cdf  

( | , )i j kF p p c

( | )i kF p c

Application    to  WCA  

         28  wells,  Response  =  oil  production  in  20  producers  Two  classes,  kernel  k-­‐medoid  clustering  Proxy  simulator  :  streamlines,  gave  same  classification  as  Eclipse,  150.000  cells  110  reservoir  models,  5  parameters  (rock  +  fluid),  total  CPU  =  700  min.  

 

0 0.5 1 1.5 2 2.5

SOWCR

KvKh

TI

krwMax

watExp

SensitiveNotSensitive

Water  Corey  exponent  

Max  Water  rel  perm  

Res.  Oil  Sat.  

Training  Image  

Kv/Kh  

Conditional  Interaction  

0 0.2 0.4 0.6 0.8 1

watExp|KvKhSOWCR|krwMaxkrwMax|SOWCR

krwMax|TITI|watExp

KvKh|watExpTI|KvKh

krwMax|KvKhKvKh|krwMax

watExp|TIKvKh|TI

SOWCR|KvKhwatExp|krwMax

TI|krwMaxSOWCR|watExpwatExp|SOWCR

SOWCR|TITI|SOWCR

krwMax|watExpKvKh|SOWCR

SensitiveNotSensitive

0 0.5 1 1.5 2 2.5

SOWCR

KvKh

TI

krwMax

watExp

SensitiveNotSensitive

TI  

Wat  exp  

Krw  Max  

KvKh  

SOW  CR  

Interaction  is  asymmetric    one-­‐way  sensitivity  often  not  fully  informative    

/r

Kv Kh

/ |r

Kv Kh Sowcr

Rejection  

P odel, | ata  

:  to  reject  scenarios  without

P( | , )

 any  HM:    HM  per  ac

P |

               

 

                               

ceptabl          P( e  scenario      P |

| , )  

  kk

k

k

k

ScenariScenar o

Scenar

io

Sc

Sc

e

e

nar

na

k

io

o

rio

i

M D

MD

M D D

D

Geosciences  are  interpretative  sciences     Depositional  model     Type  of  fracture  hierarchies     Rock  Physics  model     Fault  Hierarchy  

Data:  geology  and  production  

TI1:  50%   TI2:  25%   TI3:  25%  

geological  scenario    

uncertainty:    3  training  images  

Production  Data:  

Water  rate/well  

Two  modeling  questions  

               P odel, | ata  

:  reject  data-­‐inconsistent  training  images

:  sampling  with  the  remaining  ones  

P |

P

P( | , )  

P( | , )

|

  k

k

k

k

k

TI

TI

I

I TIT

T

M DM

D

D D

D

M

Generate  initial  ensemble    of  180  scoping  models  

TI1:  50%   TI2:  25%   TI3:  25%  

Production  data  &  180  Scoping  runs  Water  ra

te  

Time/Days  

Well  1   Well  2  

Well  3   Well  4  

Trying  to  falsify  TIs  with  data  represent  data  in  lower  dimensions  using    

multi-­‐dimensional  scaling  

MDS:  distance  =  difference  in  water  rate  response  for  all  wells  9  dimensions  =  99%  of  variance  

Production  data  

TI1  responses  TI2  responses  TI3  responses  

Eigencom

pone

nt  2  

Eigencomponent  1  

f  (Data  |  TIk  )  Kernel  density  estimation  in  9D  

| PP |        

  | Pk k

k

k kk

f TI TITI

f TI TI

dataData

data

1P | 0.8%        TI Data 2P | 38.5%        TI Data 2P | 60.7%        TI Data

for  TI1   for  TI2   for  TI3  

Water  rate  data  

History  match  for  each  TI  Regional  probability  perturbation  

Why  regional  PPM?        Geological  realism        Works  for  facies  models        Easy  optimization  with  region  parameters  

Streamline  geometry    at  final  time  step  

Example  of  region  geometry  

History  match  results  for  all  TIs  CPU:  Average  of  24  flow  simulations/model    

A  few  history  matches  

Notice  the  absence  of  any  region  artifacts  

From  TI2   From  TI3  

Rejection  sampler  on  TI  and  facies  

1. Draw  randomly  a  TI  from  the  prior    

2. Generate  a  single  geo-­‐model  m  with  that  TI    

3. Run  the  flow  model  simulator  to  obtain  a  response  d=g(m)    

4. Accept  the  model  using  the  following  probability    

2

RMSE( , ( ))exp

2obs gp

d m

Rejection  sampler  results  

Prediction  in  newly  planned  well  for  next  1  year    

2000 2100 2200 23000

200

400

600

800

1000

Time, days

Wat

er R

ate,

stb

/day

RejectionPPM

P10  

P50  

P90  

Comparison  

P(TI1|D)   P(TI2|D)   P(TI3|D)  Runs/  model  

Method   1%   38%   61%   24  

Rejection  Sampler   3%   33%   64%   250  

Further  speed-­‐up  by  realizing  that  HM  per  scenario  had  little  impact  on  reduction  of  uncertainty  use  of  proxy  flow  models  because  only  relative  likelihood  accuracy  is  needed    

Some  observations  

There  is  no  need  for  a  history  match  to  get  a  good  prediction  (this  is  case  dependent)  

 No  need  to  run  full-­‐physics  on  all  models  Sensitivity:  proxies  may  provide  accurate  classification  Rejection:  only  relative  likelihood  is  needed    

Increased  importance  on  providing  geological  uncertainty  through  multiple  scenarios    

The  importance  of    quantitative  geological  modeling  variogram  

MPS  

Boolean  

Process  based  

Surface  based  

The  missing  link  Geological  interpretation:  attempting  to  understand  the  genesis  and  process  of  past  deposition    Geostatistics:  attempting  to  model  the  geometries  currently  present  with  a  practical  application  in  mind  

Two  challenges  1. What  methodology  bridges  this  gap?  2. If  so,  how  to  bridge  this  gap?  

?  

Limitation  of  covariances  

0.4  

0.8  

1.2  

10   20   30   40  0  

0.4  

0.8  

1.2  

10   20   30   40  0  

3  

1  2  

data   model  

Variograms  EW   Variograms  NS  

1   2   3  

Training  images  From  Boolean   From  high  resolution  seismic  

From  process-­‐based  models  

Conditioning  data  Training  image  

Geostatistical  model  

High  performance  Training  image  

Geostatistical  model  

4.5  million  cells,  7  seconds   1  million  cells,  1  second  

Honarkhah,  M.  and  Caers,  J.  (2012)  Math.  Geosc.,  44:651 672.  Direct  pattern-­‐based  simulation  of  non-­‐stationary  geostatistical  models    Pejman  Tahmasebi  et  al.  (2012)  Comp.  Geosc.,  16:779 797.  Multiple-­‐point  geostatistical  modeling  based  on  the  cross-­‐correlation  functions    Fenwick,  D.,  Scheidt,  C.,  and  Caers,  J.  (2012)  submitted  A  distance-­‐based  generalized  sensitivity  analysis  for  reservoir  modeling    Park,  H.,  Scheidt,  C.  Fenwick,  D.  Boucher,  A  and  Caers,  J.  (2012)  submitted  History  matching  and  uncertainty  quantification  of  facies  models  with  multiple  geological  interpretation    Scheidt,  C.,  Renard,  P  and  Caers,  J.  (2012)  submitted  Uncertainty  Quantification  in  Inverse  Problems:  Model-­‐based  versus    Prediction-­‐Focused      Aydin,  O.  and  Caers,  J.  (2012)  submitted  Image  transforms  for  determining  fit-­‐for-­‐purpose  complexity  of    geostatistical  models  in  flow  modeling      PDFs  available