Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification:...

106
Uncertainty Quantification: UQTk example problems Bert Debusschere 1 Roger Ghanem 2 1 Sandia National Laboratories Livermore, CA, USA [email protected] 2 University of Southern California Los Angeles, CA, USA SIAM 2012 Conference on Uncertainty Quantification Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 1 / 81

Transcript of Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification:...

Page 1: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Quantification: UQTk example problems

Bert Debusschere1 Roger Ghanem2

1Sandia National LaboratoriesLivermore, CA, [email protected]

2University of Southern CaliforniaLos Angeles, CA, USA

SIAM 2012 Conference on Uncertainty Quantification

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 1 / 81

Page 2: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Acknowledgement

K. Sargsyan, C. Safta, H.N. Najm— Sandia National Laboratories, CA

O.M. Knio — Duke Univ., Durham, NCA. Alexanderian — Johns Hopkins Univ., Baltimore, MD

This work was supported by:

US Department of Energy (DOE), Office of Advanced Scientific Computing Research(ASCR), Scientific Discovery through Advanced Computing (SciDAC)

DOE ASCR Applied Mathematics program.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly ownedsubsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration undercontract DE-AC04-94AL85000.

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 2 / 81

Page 3: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 3 / 81

Page 4: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Introduction

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 4 / 81

Page 5: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Introduction

Uncertainty Quantification Toolkit (UQTk)

A library of C++ and Matlab functions for propagation of uncertaintythrough computational models

Mainly relies on spectral Polynomial Chaos Expansions (PCEs) forrepresenting random variables and stochastic processes

Target usage:

Rapid prototypingAlgorithmic researchTutorials / Educational

Version 1.0 released under the GNU Lesser General Public License

Downloadable from http://www.sandia.gov/UQToolkit/

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 5 / 81

Page 6: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Introduction

UQTk contents and development/release plans

Currently released (http://www.sandia.gov/UQToolkit/)

C++ Tools for intrusive UQ with PCEs

Under production, planned release Fall 2012

C++ Tools for non-intrusive UQMatlab tools for intrusive and non-intrusive UQKarhunen-Loeve decompositionBayesian inference toolsMany more examples and documentation

Under development

Adding support for multiwavelet based stochastic domaindecompositionsSupport for arbitrary basis types

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 6 / 81

Page 7: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Polynomial Chaos

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 7 / 81

Page 8: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Polynomial Chaos

Polynomial Chaos Expansions (PCEs)

Represent random variables with finite variance as polynomials ofstandard random variables

U(θ) ≃P∑

k=0

ukΨk(ξ)

Truncated to finite dimension n and order p

Numer of terms P + 1 = (n+p)!n!p!

ξ = (ξ1, ξ2, · · · , ξn) standard i.i.d. random variablesΨk standard orthogonal polynomialsuk spectral modes or PC coefficients

Most common standard Polynomial-Variable pairs:

(continuous) Gauss-Hermite, Legendre-Uniform(discrete) Poisson-Charlier

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 8 / 81

Page 9: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Polynomial Chaos

PCEs in the UQToolkit

// Initialize PC class

int ord = 5; // Order of PCE

int dim = 1; // Number of uncertain parameters

PCSet myPCSet("ISP",ord,dim,"LU"); // Legendre-Uniform PCEs

// Initialize PC class

int ord = 5; // Order of PCE

int dim = 1; // Number of uncertain parameters

PCSet myPCSet("NISP",ord,dim,"LU"); // Legendre-Uniform PCEs

Currently support Wiener-Hermite, Legendre-Uniform, andGamma-Laguerre (limited), Jacobi-Beta (development version)

PCSet class initializes PC basis type and pre-computes informationneeded for working with PC expansions

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 9 / 81

Page 10: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Polynomial Chaos

Operations on PCEs in the UQToolkit

// PC coefficients in double*

double* a = new double[npc];

double* b = new double[npc];

double* c = new double[npc];

// Initialization

a[0] = 2.0;

a[1] = 0.1;

...

// Perform some arithmetic

myPCSet.Subtract(a,b,c);

myPCSet.Prod(a,b,c);

myPCSet.Exp(a,c);

myPCSet.Log(a,c);

// PC coefficients in Arrays

Array1D<double> aa(npc,0.e0);

Array1D<double> ab(npc,0.e0);

Array1D<double> ac(npc,0.e0);

// Initialization

aa(0) = 2.0;

aa(1) = 0.1;

...

// Perform arithmetic

myPCSet.Subtract(aa,ab,ac);

myPCSet.Prod(aa,ab,ac);

myPCSet.Exp(aa,ac);

myPCSet.Log(aa,ac);

PC coefficients are either stored in double* vectors or in moreadvanced custom Array1D<double> classes

Functions can take either data type as argument

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 10 / 81

Page 11: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 11 / 81

Page 12: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model

3 ODEs for a monomer (u),dimer (v), and inert species(w) adsorbing onto a surfaceout of gas phase.

du

dt= az − cu − 4duv

dv

dt= 2bz2 − 4duv

dw

dt= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 12 / 81

Page 13: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Intrusive Spectral Propagation(ISP) of Uncertainty

Assume PCE for uncertain parameter b and for the output variables,u, v ,w

Substitute PCEs into the governing equations

Project the governing equations onto the PC basis functions

Multiply with Ψk and take the expectation

Apply pseudo-spectral approximations where necessary

UQTk elementary operations

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 13 / 81

Page 14: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Specify PCEs for inputs andoutputs

Represent uncertain inputs with PCEs with known coefficients:

b =P∑

i=0

biΨi (ξ)

Represent all uncertain variables with PCEs with unknown coefficients:

u =P∑

i=0

uiΨi (ξ) v =P∑

i=0

viΨi (ξ) w =P∑

i=0

wiΨi (ξ) z =P∑

i=0

ziΨi (ξ)

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 14 / 81

Page 15: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Substitute PCEs into governingequations and project onto basis functions

du

dt= az − cu − 4duv

d

dt

P∑

i=0

uiΨi = a

P∑

i=0

ziΨi − c

P∑

i=0

uiΨi − 4dP∑

i=0

uiΨi

P∑

j=0

vjΨj

Ψk

d

dt

P∑

i=0

uiΨi

=

aΨk

P∑

i=0

ziΨi

−⟨

cΨk

P∑

i=0

uiΨi

−⟨

4dΨk

P∑

i=0

uiΨi

P∑

j=0

vjΨj

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 15 / 81

Page 16: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Reorganize terms

d

dtuk⟨Ψ2

k

⟩= azk

⟨Ψ2

k

⟩− cuk

⟨Ψ2

k

⟩− 4d

P∑

i=0

P∑

j=0

uivj 〈ΨiΨjΨk〉

d

dtuk = azk − cuk − 4d

P∑

i=0

P∑

j=0

uivj〈ΨiΨjΨk〉⟨Ψ2

k

d

dtuk = azk − cuk − 4d

P∑

i=0

P∑

j=0

uivjCijk

Triple products Cijk =〈ΨiΨjΨk〉〈Ψ2

k〉can be pre-computed and stored for

repeated use

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 16 / 81

Page 17: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Substitute PCEs into governingequations and project onto basis functions

dv

dt= 2bz2 − 4duv

d

dt

P∑

i=0

viΨi = 2P∑

h=0

bhΨh

P∑

i=0

ziΨi

P∑

j=0

zjΨj − 4dP∑

i=0

uiΨi

P∑

j=0

vjΨj

Ψk

d

dt

P∑

i=0

viΨi

=

2Ψk

P∑

h=0

bhΨh

P∑

i=0

ziΨi

P∑

j=0

zjΨj

−⟨

4dΨk

P∑

i=0

uiΨi

P∑

j=0

vjΨj

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 17 / 81

Page 18: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Reorganize terms

d

dtvk⟨Ψ2

k

⟩= 2

P∑

h=0

P∑

i=0

P∑

j=0

bhzizj 〈ΨhΨiΨjΨk〉 − 4d

P∑

i=0

P∑

j=0

uivj 〈ΨiΨjΨk〉

d

dtvk = 2

P∑

h=0

P∑

i=0

P∑

j=0

bhzizj〈ΨhΨiΨjΨk〉

⟨Ψ2

k

⟩ − 4dP∑

i=0

P∑

j=0

uivj〈ΨiΨjΨk〉⟨Ψ2

k

d

dtvk = 2

P∑

h=0

P∑

i=0

P∑

j=0

bhzizjDhijk − 4dP∑

i=0

P∑

j=0

uivjCijk

Pre-computing and storing the quad product Dhijk becomescumbersome

Use pseudo-spectral approach instead

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 18 / 81

Page 19: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Pseudo-Spectral approach forproducts

Introduce auxiliary variable g = z2

g = z2

f = 2bz2 = 2bg

gk =

P∑

i=0

P∑

j=0

zizjCijk

fk = 2

P∑

i=0

P∑

j=0

bigjCijk

Limits the complexity of computing product terms

Higher products can be computed by repeated use of the same binaryproduct rule

Does introduce errors if order of PCE is not large enough

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 19 / 81

Page 20: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: UQTk implementation

// Build du/dt = a*z - c*u - 4.0*d*u*v

aPCSet.Multiply(z,a,dummy1); // dummy1 = a*z

aPCSet.Multiply(u,c,dummy2); // dummy2 = c*u

aPCSet.SubtractInPlace(dummy1,dummy2); // dummy1 = a*z - c*u

aPCSet.Prod(u,v,dummy2); // dummy2 = u*v

aPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*v

aPCSet.Subtract(dummy1,dummy2,dudt); // dudt = a*z - c*u - 4.0*d*u*v

All operations are replaced with their equivalent intrusive UQcounterparts

Results in a set of coupled ODEs for the PC coefficients

u, v ,w , z represent vector of PC coefficients

This set of equations is integrated to get the evolution of the PCcoefficients in time

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 20 / 81

Page 21: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Second equation implementation

// Build dv/dt = 2.0*b*z*z - 4.0*d*u*v

aPCSet.Prod(z,z,dummy1); // dummy1 = z*z

aPCSet.Prod(dummy1,b,dummy2); // dummy2 = b*z*z

aPCSet.Multiply(dummy2,2.e0,dummy1); // dummy1 = 2.0*b*z*z

aPCSet.Prod(u,v,dummy2); // dummy2 = u*v

aPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*v

aPCSet.Subtract(dummy1,dummy2,dvdt); // dvdt = 2.0*b*z*z - 4.0*d*u*v

// Build dw/dt = e*z - f*w

aPCSet.Multiply(z,e,dummy1); // dummy1 = e*z

aPCSet.Multiply(w,f,dummy2); // dummy2 = f*w

aPCSet.Subtract(dummy1,dummy2,dwdt); // dwdt = e*z - f*w

Dummy variables used where needed to build the terms in theequationsData structure is currently being enhanced to provide the operationresult as the function return value

Will allow more elegant inline replacement of operators with theirstochastic counterparts

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 21 / 81

Page 22: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: ISP results

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Assume 0.5% uncertainty in b around nominal value

Legendre-Uniform intrusive PC

Mean and standard deviation for u, v , and w

Uncertainty grows in time

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 22 / 81

Page 23: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: ISP results

0 200 400 600 800 1000Time [-]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5ui

[-]

u0

u1

u2

u3

u4

u5

Modes of u

Modes decay with higher order

Amplitudes of oscillations of higher order modes grow in time

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 23 / 81

Page 24: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: ISP results: PDFs

0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350u

0

50

100

150

200

250

300

350

Prob. Dens. [-]

t = 330.5t = 756.5

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

12

14

16

Prob. Dens. [-]

t = 377.8t = 803.0

Pdfs of u at maximum mean (left) and maximum standard deviation(right)

Distributions get broader and multimodal as time increases

Effect of accumulating phase errors

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 24 / 81

Page 25: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Non-Intrusive Propagation ofUncertainty

Consider two approaches for Non-Intrusive Spectral Projection(NISP):

QuadratureMonte Carlo or random-sampling

Assume PCE for uncertain parameter b and the output variables

Sample input parameters at quadratrure/random sample points

Run deterministic forward model for each of the sampled inputparameters

Perform Galerkin projection uk = 〈uΨk 〉

〈Ψ2k〉

Quadrature: 〈uΨk〉 =∑Nq

i=1 wiu(bi )

Monte Carlo: 〈uΨk〉 = 1Ns

∑Ns

i=1 u(bi )

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 25 / 81

Page 26: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: NISP implementation in UQTk

Quadrature:

// Get the quadrature points

int nQdpts=myPCSet.GetNQuadPoints();

double* qdpts=new double[nQdpts];

myPCSet.GetQuadPoints(qdpts);

...

// Evaluate parameter at quad pts

for(int i=0;i<nQdpts;i++){

bval[i]=myPCSet.EvalPC(b,&qdpts[i]);

}

...

// Run model for all samples

for(int i=0;i<nQdpts;i++){

u_val[i] = ...

}

// Spectral projection

myPCSet.GalerkProjection(u_val,u);

myPCSet.GalerkProjection(v_val,v);

myPCSet.GalerkProjection(w_val,w);

Monte-Carlo Sampling:

// Get the sample points

int nSamples=1000;

Array2D<double> samPts(nSamples,dim);

myPCSet.DrawSampleVar(samPts);

...

// Evaluate parameter at sample pts

for(int i=0;i<nSamples;i++){

... // select samPt from samPts

bval[i]=myPCSet.EvalPC(b,&samPt)

}

...

// Run model for all samples

for(int i=0;i<nSamples;i++){

u_val[i] = ...

}

// Spectral projection

myPCSet.GalerkProjectionMC(samPts,u_val,u);

myPCSet.GalerkProjectionMC(samPts,v_val,v);

myPCSet.GalerkProjectionMC(samPts,w_val,w);

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 26 / 81

Page 27: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: NISP results

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

NISP Quadrature

u v w

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

NISP MC

u v w

Mean and standard deviation for u, v , and w

Quadrature approach agrees well with ISP approach using 6quadrature points

Monte Carlo sampling approach converges slowly

With a 1000 samples, results are quite different from ISP and NISP

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 27 / 81

Page 28: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Comparison ISP and NISP

0 200 400 600 800 1000Time [-]

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004ui

[-]

u4,ISP

u4,NISP

u5,ISP

u5,NISP

Lower order modes agree perfectly

Very small differences in higher order modes

Difference increases with time

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 28 / 81

Page 29: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Comparison ISP and NISP

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

Prob. Dens. [-]

ISP, t = 803.0NISP, t = 803.0

All pdf’s based on 50K samples each and evaluated with KernelDensity Estimation (KDE)

No difference in PDFs of sampled PCEs between NISP and ISP

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 29 / 81

Page 30: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

Surface Reaction Model: Comparison ISP, NISP, and MC

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

Prob. Dens. [-]

ISP, t = 803.0NISP, t = 803.0MC, t = 803.0

All pdf’s based on 50K samples each and evaluated with KernelDensity Estimation (KDE)

Good agreement between intrusive, non-intrusive projection, andMonte Carlo sampling

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 30 / 81

Page 31: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

ISP pros and cons

Pros:

ElegantOne time solution of system of equations for the PC coefficients fullycharacterizes uncertainty in all variables at all timesTailored solvers can (potentially) take advantage of new hardwaredevelopments

Cons:

Often requires re-write of the original codeReformulated system is factor (P+1) larger than the original systemand can be challenging to solveChallenges with increasing time-horizon for ODEs

Many efforts in the community to automate ISP

UQToolkit http://www.sandia.gov/UQToolkit/Sundance http://www.math.ttu.edu/ klong/Sundance/html/Stokhos http://trilinos.sandia.gov/packages/stokhos/...

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 31 / 81

Page 32: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Propagation of Uncertainty

NISP pros and cons

Pros:

Easy to use as wrappers around existing codesEmbarassingly parallel

Cons:

Most methods suffer from curse of dimensionality Nq = nNd

Many develoment efforts for smarter sampling approaches anddimensionality reduction

(Adaptive) Sparse Quadrature approachesCompressive Sensing...

Sampling methods have found very wide spread use in the community

DAKOTA http://dakota.sandia.gov/...

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 32 / 81

Page 33: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 33 / 81

Page 34: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Uncertain Input Characterization

Use standard distribution

Normal distribution: often a good choice based on Central LimitTheoremLognormal: when positivity is required

Infer model parameters from data with inverse problem

Determine RV from available samples of RV

Fit standard distribution to data, e.g. MultiVariate Normal (MVN)approximationInverse Cumulative Distribution Function (CDF) mapping; Rosenblatttransformation

Dimensionality reduction for stochastic processes, Karhunen-LoeveExpansion (KLE)

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 34 / 81

Page 35: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Bayesian Inference

Bayes formulaPosterior

︷ ︸︸ ︷

P(c|D) ∝Likelihood

︷ ︸︸ ︷

P(D|c)Prior

︷︸︸︷

P(c)

Update prior distribution/knowledge about parameter c to posteriordistribution given data D, using likelihood function L(c) ≡ P(D|c).Data D = {di}Ni=1 - measurements of some quantities of interest (QoIs).

Prior distribution P(c) is based on expert opinion/previous literature.

Likelihood function measures goodness-of-fit and is the key component thatconnects the model inputs to measured QoIs, e.g.

L(c) = P(D|c) = 1√2πσ

exp

(

−N∑

i=1

(di − fi (c))2

2σ2

)

Input parameter → output QoI functions fi (·) could be expensive or noteven available.

Usually posterior distribution is not analytically tractable:need to resort to Markov Chain Monte Carlo sampling.

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 35 / 81

Page 36: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Markov Chain Monte Carlo

Single-site MCMC

• Set the current chain state c at an initial chain state c(0),

• Repeat for a predefined number (NMCMC ) of times,

• For k = 1, . . . ,K ,

• generate a single-site proposal c ′k from a Gaussiandistribution centered at the current chain statevalue of site ck with proposal width σk ,

• compute α = min {1,P(c′|D)/P(c|D)},• update the current chain state’s k-th element

ck = c ′k with probability α,

• End

• End

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 36 / 81

Page 37: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Markov Chain Monte Carlo

Adaptive MCMC [Haario,2002]

• Set the current chain state c at an initial chain state c(0),

• Repeat for a predefined number (NMCMC ) of times,

• generate a proposal c′ from a multivariate Gaussiandistribution centered at the current chain state value c withproposal covariance that is learnt from previous chain states,

• compute α = min {1,P(c′|D)/P(c|D)},• update the current chain state c = c

′ with probability α,

• End

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 36 / 81

Page 38: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Surface Reaction Model: parameter inference

500 600 700 800 900 1000

Time

0

0.1

0.2

0.3

0.4

Spec

ies

u

0.26 0.28 0.3 0.32 0.34Species u

0

0.02

0.04

0.06

0.08

0.1

Spec

ies

v

Synthetic data is generated for model outputs u,v at T = 1000.

Inferring two input parameters a and b using 10 samples on u and v

Likelihood function

P(D|a, b) = 1

2πσuσv

exp

(

−N∑

i=1

((d

(i)u − u(T ; a, b))2

2σ2u

+(d

(i)v − v(T ; a, b))2

2σ2v

)

)

Uncorrelated Gaussian noise model is assumed with standard deviationsproportional to the model value σu = 0.1u, σv = 0.1v .

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 37 / 81

Page 39: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Surface Reaction Model: parameter inference

500 600 700 800 900 1000

Time

0

0.01

0.02

0.03

0.04

0.05

Spec

ies

v

0.26 0.28 0.3 0.32 0.34Species u

0

0.02

0.04

0.06

0.08

0.1

Spec

ies

v

Synthetic data is generated for model outputs u,v at T = 1000.

Inferring two input parameters a and b using 10 samples on u and v

Likelihood function

P(D|a, b) = 1

2πσuσv

exp

(

−N∑

i=1

((d

(i)u − u(T ; a, b))2

2σ2u

+(d

(i)v − v(T ; a, b))2

2σ2v

)

)

Uncorrelated Gaussian noise model is assumed with standard deviationsproportional to the model value σu = 0.1u, σv = 0.1v .

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 37 / 81

Page 40: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Surface Reaction Model: parameter inference

10000 12000 14000 16000 18000 20000MCMC sample count

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Para

met

er a

10000 12000 14000 16000 18000 20000MCMC sample count

0

5

10

15

20

25

Para

met

er b

Posterior distribution based on 20000 adaptive MCMC samples.

First 4000 samples discarded

Shown only the second half of the chains

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 38 / 81

Page 41: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Posterior on inferred parameters

0.6 0.8 1 1.2 1.4 1.6Parameter a

5

10

15

20

Para

met

er b

Width of posterior indicates the amount of uncertainty in the inferredparameters

Uncertainty can be reduced by taking more data or by reducing noisein measurements

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 39 / 81

Page 42: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Surface Reaction Model: posterior to PC in 1d

20.73 20.74 20.75 20.76 20.77 20.78Parameter b

0

50

100

PDF

Posterior PDFPosterior PDF (PC)

The posterior describes random variable a with CDF F (·)CDF transformation F (a) = η maps random variable a touniform[0, 1] random variable η.η = Φ(ξ) maps uniform η to normal RV ξThe inverse CDF enables NISP projection

a =P∑

k=0

akΨk(ξ) ak ∝ 〈aΨk(ξ)〉 =∫

F−1(Φ(ξ))︸ ︷︷ ︸

a

Ψk(ξ)dξ

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 40 / 81

Page 43: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Surface Reaction Model: posterior to PC in multi-d

Rosenblatt transformation maps any (not necessarily independent) setof random variables (λ1, . . . , λn) to uniform i.i.d.’s {ηi}ni=1

(Rosenblatt, 1952).

η1 = F1(λ1)

η2 = F2|1(λ2|λ1)

...

ηn = Fn|n−1,...,1(λn|λn−1, . . . , λ1)

Rosenblatt transformation is a multi-D generalization of 1D CDFmapping.

Conditional CDFs are harder to evaluate in high dimensions

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 41 / 81

Page 44: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Projection of Rosenblatt transformed vars onto PCEs

0 0.2 0.4 0.6 0.8 1Parameter η1

0

0.2

0.4

0.6

0.8

1

Para

met

er

η 2

0.6 0.8 1 1.2 1.4 1.6Parameter a

5

10

15

20

Para

met

er b

NISP projection is enabled by inverse Rosenblatt transformation(a, b) = R

−1(ξ1, ξ2) ensures a well-defined quadrature integration

a =

P∑

k=0

akΨk(ξ) ak ∝

R−1a (ξ)

︸ ︷︷ ︸

a

Ψk(ξ)dξ

b =

P∑

k=0

bkΨk(ξ) bk ∝

R−1b (ξ)

︸ ︷︷ ︸

b

Ψk(ξ)dξ

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 42 / 81

Page 45: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Surface Reaction Model: predictive confidence

0 200 400 600 800 1000Time

0

0.1

0.2

0.3

0.4

Spec

ies

u

0 200 400 600 800 1000Time

0

0.2

0.4

0.6

0.8

Spec

ies

v

Uncertainty in inferred input parameters a and b is pushed throughthe forward model

Using 2D Wiener Hermite NISP Quadrature approach

Accounts for parametric uncertainty due to data noise

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 43 / 81

Page 46: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Multivariate Normal Approximation

Many distributions are unimodal and somewhat shaped like Gaussians

MultiVariate Normal (MVN) approximations capture the mean andcorrelation structure of the random variables

Easy to extract from a set of samples

In 1D: just compute mean and standard deviation: u = u0 + u1ξMulti-D: Cholesky factorization of covariance

# Compute mean parameter values

par_mean = numpy.mean(samples,axis=0)

# Compute the covariance

par_cov = numpy.cov(samples,rowvar=0)

# Compute the Cholesky Decomposition

chol_lower = numpy.linalg.cholesky(par_cov)

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 44 / 81

Page 47: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

MVN approximation of Bayesian posterior from MCMCsamples

1.30 1.32 1.34 1.36 1.38 1.40

S15200

5250

5300

5350

5400

CS

0.000

0.075

0.150

0.225

0.300

0.375

0.450

0.525

0.600

1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39

S1

5240

5260

5280

5300

5320

5340

5360

5380

5400

CS

Comparison of Posterior (blue) with MVN (red)

S1 = 1.351 + 0.01367ξ1

CS = 5310− 26.25ξ1 + 20.26ξ2

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 45 / 81

Page 48: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

Karhunen-Loeve (KL) Expansions

Assume stochastic process F (x , θ)

With covariance function Cov(x1, x2)

F can be written as

F (x , θ) = 〈F (x , θ)〉θ +∞∑

k=1

λkFk(x)ξk

Fk(x): eigenfunctions of Cov(x1, x2)

λk : corresponding eigenvalues, all positive

ξk : uncorrelated random variables, unit variance

Samples are obtained by projecting realizations of F onto Fk

Generally not independent

Special case: for Gaussian F , ξk are i.i.d. normal random variables

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 46 / 81

Page 49: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Realizations

δ = 0.02

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f(x)

δ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f(x)

Covariance Cov(x1, x2) = exp(−(x1 − x2)2/δ2)

Sample realizations are noisier as correlation length decreases

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 47 / 81

Page 50: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: KL modes

δ = 0.02

0.0 0.2 0.4 0.6 0.8 1.0x

−3

−2

−1

0

1

2

3

f n

f1

f2

f3

f4

δ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0x

−4

−3

−2

−1

0

1

2

3

4

5

f n

f1

f2

f3

f4

Eigenmodes of the covariance matrix

Data covariance matrix constructed from 512 Gaussian processrealizations

Higher modes are more oscillatory

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 48 / 81

Page 51: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: KL random variables

δ = 0.02

−4 −3 −2 −1 0 1 2 3 4ξ(θ)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

PDF(ξ)

ξ1

ξ2

ξ3

ξ4

δ = 0.1

−4 −3 −2 −1 0 1 2 3 4ξ(θ)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

PDF(ξ)

ξ1

ξ2

ξ3

ξ4

Random variables obtained by projecting realizations onto KL modes

Uncorrelated by construction

Also independent due to nature of Gaussian Process

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 49 / 81

Page 52: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Eigenvalue spectrum

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

Eigenvalue spectrum decays more slowly as correlation lengthdecreases

More oscillatory modes needed to represent fluctuations in x

KL expansion generally is truncated after enough modes are includedto capture a specified fraction of the total variance

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 50 / 81

Page 53: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 54: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

2 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 55: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

4 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 56: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

6 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 57: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

8 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 58: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

10 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 59: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

14 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 60: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

16 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 61: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

18 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 62: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

1 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 63: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

2 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 64: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

3 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 65: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

4 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 66: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

5 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 67: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

6 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 68: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

7 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 69: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

8 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 70: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40Eigenvalue #

10-4

10-2

100

102

Eigenvalue M

agnitude

δ=0.02

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

9 terms

Large scale features can be resolved with small number of modes

Smaller scale features require higher modes

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 51 / 81

Page 71: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

KL of 2D Gaussian Process

δ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

δ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

δ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

2D Gaussian Process with covariance:Cov(x1, x2) = exp(−||x1 − x2||2/δ2)Realizations are smoother as covariance length δ increases

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 52 / 81

Page 72: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

2D KL - Modes for δ = 0.1

√λ1f1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ5f5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ2f2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ6f6

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ3f3

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ7f7

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ4f4

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ8f8

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

yDebusschere (Sandia, USC) UQTk examples SIAM UQ 2012 53 / 81

Page 73: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

2D KL - Modes for δ = 0.2

√λ1f1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ5f5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ2f2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ6f6

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ3f3

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ7f7

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ4f4

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ8f8

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

yDebusschere (Sandia, USC) UQTk examples SIAM UQ 2012 54 / 81

Page 74: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

2D KL - Modes for δ = 0.5

√λ1f1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ5f5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ2f2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ6f6

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ3f3

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ7f7

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ4f4

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ8f8

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

yDebusschere (Sandia, USC) UQTk examples SIAM UQ 2012 55 / 81

Page 75: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

2D KL - eigenvalue spectrum

0 20 40 60Eigenvalue #

10-2

100

102

104

Eigenvalue M

agnitude

δ=0.1

δ=0.2

δ=0.5

δ = 0.14 terms 16 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

32 terms 64 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 56 / 81

Page 76: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

2D KL - eigenvalue spectrum

0 20 40 60Eigenvalue #

10-2

100

102

104

Eigenvalue M

agnitude

δ=0.1

δ=0.2

δ=0.5

δ = 0.24 terms 16 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

32 terms 64 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 57 / 81

Page 77: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Uncertainty Characterization

2D KL - eigenvalue spectrum

0 20 40 60Eigenvalue #

10-2

100

102

104

Eigenvalue M

agnitude

δ=0.1

δ=0.2

δ=0.5

δ = 0.54 terms 16 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

32 terms 64 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 58 / 81

Page 78: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 59 / 81

Page 79: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Uncertainty in Model Inputs

Probabilistic UQ requires specification of uncertain inputs

Require joint PDF on input space

PDF can be found given data

Typically such PDFs are not available from the literature

Summary information, e.g. nominals and bounds, is usually available

Uncertainty in computational predictions can depend strongly ondetailed structure of the missing parametric PDF

Need a procedure to reconstruct a PDF consistent with availableinformation in the absence of the raw data

“Data Free” Inference (DFI) (Berry et al., JCP 2012)

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 60 / 81

Page 80: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

The strong role of detailed input PDF structure

Simple nonlinear algebraic model (u, v) = (x2 − y2, 2xy)

Two input PDFs, p(x , y)

same nominals/boundsdifferent correlation structure

Drastically different output PDFs

different nominals and bounds

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 61 / 81

Page 81: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Generate ignition “data” using a detailed model+noise

Ignition using a detailedchemical model formethane-air chemistry

Ignition time versus InitialTemperature

Multiplicative noise errormodel

11 data points:

di = tGRIig,i (1 + σǫi )

ǫ ∼ N(0, 1)

1000 1100 1200 1300Initial Temperature (K)

0.01

0.1

1

Igni

tion

time

(sec

)

GRI

GRI+noise

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 62 / 81

Page 82: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Fitting with a simple chemical model

Fit a global single-stepirreversible chemical model

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = A exp(−E/RoT )

Infer 3-D parameter vector(lnA, lnE , lnσ)

Good mixing with adaptiveMCMC when start at MLE

28

30

32

34

36

lnA

10.6

10.8

lnE

0 2000 4000 6000 8000 10000Chain Step

-3-2.5

-2-1.5

-1-0.5

lnσ

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 63 / 81

Page 83: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Bayesian Inference Posterior and Nominal Prediction

30 31 32 33 34 35

10.6

10.65

10.7

10.75

10.8

10.85

1000 1100 1200 1300Initial Temperature (K)

0.01

0.1

1

Igni

tion

time

(sec

)

GRIGRI+noiseFit Model

GRI

GRI+noise

Marginal joint posterior on(lnA, lnE ) exhibits strongcorrelation

Nominal fit model is consis-tent with the true model

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 64 / 81

Page 84: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Correlation Slope χ and Chemical Ignition

0 0.5 1Time (sec)

0

0.05

0.1

0.15

0.2

0.25

Mas

s Fr

actio

n

Means

1000

1500

2000

2500

3000

Tem

pera

ture

(K

)CH

4

O2

CO2

H2O

T

0.46 0.462 0.464 0.466 0.468 0.47Time (sec)

0

0.01

0.02

0.03

0.04

0.05

0.06

Mas

s Fr

actio

n

CH4

O2

CO2

H2O

Standard Deviations

0

100

200

300

400

Tem

pera

ture

(K

)

T

4th Order Multiwavelet PC, Multiblock, Adaptive

σT ,max ∼ 400 K during ignition transient, χ ∼ 0.03

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 65 / 81

Page 85: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Time evolution of Temperature PDFs in preheat stage

1300 1400 1500 1600Temperature (K)

0

0.05

0.1

0.15

Prob

abili

ty D

ensi

ty

MC

t=0.455 sec

0.459 sec

0.462 sec

0.464 sec

1300 1400 1500 1600Temperature (K)

0

0.05

0.1

0.15

Prob

abili

ty D

ensi

ty

MW

t=0.455 sec

0.459 sec

0.462 sec

0.464 sec

Similar results from MC (20K samples) and MW PC

Increased uncertainty, and long high–T PDF tails, in time

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 66 / 81

Page 86: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Evolution of Temp. PDF – Fast Ignition Transient

0

0.01

0.02

MC

0

0.01

0.02

0

0.01

0.02

0

0.01

0.02

1000 1500 2000 2500 3000Temperature (K)

0

0.01

0.02

Den

sity

t = 0.4642 sec

0.4660 sec

0.4664 sec

0.4668 sec

0.4671 sec

0

0.01

0.02

MW

0

0.01

0.02

0

0.01

0.02

0

0.01

0.02

1000 1500 2000 2500 3000Temperature (K)

0

0.01

0.02D

ensi

ty

t = 0.4642 sec

0.4660 sec

0.4664 sec

0.4668 sec

0.4671 sec

Transition from unimodal to bimodal PDFs

Leakage of probability mass from pre-heat PDF high–T tail

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 67 / 81

Page 87: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Time evolution of Temperature PDFs for different χ

1500 2000 2500 3000Temperature (K)

0

0.001

0.002

0.003

0.004

0.005

0.006

Prob

abili

ty D

ensi

ty

0.022875

1500 2000 2500 3000Temperature (K)

0

0.002

0.004

0.006

0.008

0.01

Prob

abili

ty D

ensi

ty

0.036675

1500 2000 2500 3000Temperature (K)

0

0.005

0.01

0.015

0.02

0.025

0.03

Prob

abili

ty D

ensi

ty

0.042425

1500 2000 2500 3000Temperature (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

Prob

abili

ty D

ensi

ty

0.04325

1500 2000 2500 3000Temperature (K)

0

0.05

0.1

0.15

0.2

0.25

Prob

abili

ty D

ensi

ty

0.04395

1500 2000 2500 3000Temperature (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Prob

abili

ty D

ensi

ty

0.04475

1500 2000 2500 3000Temperature (K)

0

0.002

0.004

0.006

0.008

0.01

Prob

abili

ty D

ensi

ty

0.052475

1500 2000 2500 3000Temperature (K)

0

0.001

0.002

0.003

0.004

0.005

0.006

Prob

abili

ty D

ensi

ty

0.066275

Bimodal solution PDFs for high uncertainty growth

Unimodal for low uncertainty growth, with χ ≈ 0.044

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 68 / 81

Page 88: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ

Joint PDF structure is crucial

Joint PDF not available for chemical kinetic parameters

At best, have

Nominal parameter valuesBounds, e.g. marginal 5%, 95% quantiles

PDF can be constructed by repeating experimentsor access to original raw data

– Neither is feasible

Is there a way to construct an approximate PDF without access toraw data?

– Yes!

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 69 / 81

Page 89: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 1

Data Free Inference (DFI) (Berry et al., JCP, in review)

Intuition: In the absence of data, the structure of the fit model,combined with the nominals and bounds, implicitly inform thecorrelation between the parameters

Goal: Make this information explicit in the joint PDF

DFI: discover a consensus joint PDF on the parameters consistentwith given information:

– Nominal parameter values– Bounds– The fit model– The data range– ... potentially other/different constraints

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 70 / 81

Page 90: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 71 / 81

Page 91: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Schlogl Model is a prototype bistable model

• ReactionsA+ 2X

a1−→

←−

a2

3X

Ba3−→

←−

a4

X .

• Propensitiesa1 = k1AX (X − 1)/2,a2 = k2X (X − 1)(X − 2)/6,a3 = k3B ,a4 = k4X .

• Nominal parametersk1A 0.03k2 0.0001k3B = λ 200k4 3.5A 105

B 2 · 105X (0) 250

0 5 10 15 200

100

200

300

400

X(t

)

0 5 10 15 200

200

400

600

800

X(t

)0 5 10 15 20

200

300

400

500

600

700

800

X(t

)

λ = 130

λ = 200

λ = 350

Time, t

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 72 / 81

Page 92: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Polynomial Chaos expansion represents any randomvariable as a polynomial of a standard random variable

• Truncated PCE: finite dimension n and order p

X (θ) ≃P∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!n!p! .

• η = (η1, · · · , ηn) standard i.i.d. r.v.Ψk standard orthogonal polynomialsck spectral modes.

• Most common standard Polynomial-Variable pairs:(continuous) Gauss-Hermite, Legendre-Uniform,(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 73 / 81

Page 93: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Polynomial Chaos expansion represents any randomvariable as a polynomial of a standard random variable

• Truncated PCE: finite dimension n and order p

X (θ) ≃P∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!n!p! .

• η = (η1, · · · , ηn) standard i.i.d. r.v.Ψk standard orthogonal polynomialsck spectral modes.

• Most common standard Polynomial-Variable pairs:(continuous) Gauss-Hermite, Legendre-Uniform,(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 73 / 81

Page 94: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Polynomial Chaos expansion represents any randomvariable as a polynomial of a standard random variable

• Truncated PCE: finite dimension n and order p

X (θ) ≃P∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!n!p! .

• η = (η1, · · · , ηn) standard i.i.d. r.v.Ψk standard orthogonal polynomialsck spectral modes.

• Most common standard Polynomial-Variable pairs:(continuous) Gauss-Hermite, Legendre-Uniform,(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 73 / 81

Page 95: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Galerkin Projection is typically needed

PC expansion: X (θ) ≃∑Pk=0 ckΨk(η) = gD(η)

Orthogonal projection: ck =〈X (θ)Ψk (η)〉

〈Ψ2k(η)〉

• Intrusive Spectral Projection (ISP)

⋆ Direct projection of governing equations⋆ Leads to deterministic equations for PC coefficients∗ No explicit governing equation for SRNs

• Non-intrusive Spectral Projection (NISP)

⋆ Sampling based⋆ No explicit evolution equation for X needed∗ Galerkin projection not well-defined for SRNs

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 74 / 81

Page 96: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Galerkin Projection is typically needed

PC expansion: X (θ) ≃∑Pk=0 ckΨk(η) = gD(η)

Orthogonal projection: ck =〈X (θ)Ψk (η)〉

〈Ψ2k(η)〉

• Intrusive Spectral Projection (ISP)

⋆ Direct projection of governing equations⋆ Leads to deterministic equations for PC coefficients∗ No explicit governing equation for SRNs

• Non-intrusive Spectral Projection (NISP)

⋆ Sampling based⋆ No explicit evolution equation for X needed∗ Galerkin projection not well-defined for SRNs

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 74 / 81

Page 97: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Galerkin Projection is typically needed

PC expansion: X (θ) ≃∑Pk=0 ckΨk(η) = gD(η)

Orthogonal projection: ck =〈X (θ)Ψk (η)〉

〈Ψ2k(η)〉

• Intrusive Spectral Projection (ISP)

⋆ Direct projection of governing equations⋆ Leads to deterministic equations for PC coefficients∗ No explicit governing equation for SRNs

• Non-intrusive Spectral Projection (NISP)

⋆ Sampling based⋆ No explicit evolution equation for X needed∗ Galerkin projection not well-defined for SRNs

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 74 / 81

Page 98: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Karhunen-Loeve decomposition reduces stochastic processto a finite number of random variables

• KL decomposition:

X (t, θ) = X (t) +∞∑

n=1

ξn(θ)√

λnfn(t)

• Uncorrelated, zero-mean KL variables:

〈ξn〉 = 0, 〈ξnξm〉 = δnm

• SSA(continuum) ←→ KL(discrete)

X (t)←→ ξ = (ξ1, ξ2, . . . )

0 2 4 6 8 10 12 14 16 18 20

Time, t-300

-200

-100

0

100

KL

mod

es,

λi1/

2 fi(t

)

0 1 2 3 4 5 6 7 8 9n

1000

10000

1e+05

1e+06

Eig

enva

lues

, λ n

-2 -1 0 1 2

ξ1

-4

-2

0

2

ξ 2

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 75 / 81

Page 99: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

K-L decomposition captures each realization

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 76 / 81

Page 100: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

K-L decomposition captures each realization

0 2 4 6 8 10 12 14 16 18 20Time, t

0

100

200

300

400

500

600

700

X(t

) L=10L=30L=60X(t)

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 76 / 81

Page 101: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

PC expansion of a random vector

ξ =P∑

k=0

ckΨk(η)

Galerkin projection

ck =〈ξΨk(η)〉〈Ψ2

k(η)〉

is not well-defined,since ξ and η do not belong to the same stochastic space.

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 77 / 81

Page 102: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

PC expansion of a random vector

ξ =P∑

k=0

ckΨk(η)

Galerkin projection

ck =〈ξΨk(η)〉〈Ψ2

k(η)〉

is not well-defined,since ξ and η do not belong to the same stochastic space.

Need a map ξ ↔ η.

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 77 / 81

Page 103: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

Rosenblatt transformation

• Rosenblatt transformation maps any (not necessarilyindependent) set of random variables (ξ1, . . . , ξn) to uniformi.i.d.’s {ηi}ni=1 (Rosenblatt, 1952).

η1 = F1(ξ1)

η2 = F2|1(ξ2|ξ1)η3 = F3|2,1(ξ3|ξ2, ξ1)...

ηn = Fn|n−1,...,1(ξn|ξn−1, . . . , ξ1)

• Inverse Rosenblatt transformation ξ = R−1(η) ensures awell-defined quadrature integration

〈ξiΨk(η)〉 =∫

R−1(η)iΨk(η)dη

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 78 / 81

Page 104: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Case Study 2

KL+PC+Data Partitioning represent the dynamics of a bimodal process

0 5 10 15 20

Time, t0

100

200

300

400

500

600

700X

KL

PC(t

)

KL-PC representation, 5 KL modes, 3rd PC order

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 79 / 81

Page 105: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Advanced topics

Outline

1 Introduction to the UQ Toolkit (UQTk)

2 Spectral Polynomial Chaos Expansions (PCEs)

3 Propagation of Uncertainty through Computational Models

4 Characterization of Input Uncertainty

5 Case Study 1: Chemical Mechanism and Input Correlations

6 Case Study 2: Representation of Non-Gaussian Process with PCE

7 Advanced Topics

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 80 / 81

Page 106: Uncertainty Quantification: UQTk example problems...2012/04/04  · Uncertainty Quantification: UQTk example problems Bert Debusschere1 Roger Ghanem2 1Sandia National Laboratories

Advanced topics

Advanced Topics

Sensitivity analysis

Domain decomposition methods; multiwavelets

Adaptive Sparse Quadrature

Stochastic preconditioning (time rescaling)

Data Free Inference (DFI)

Bayesian Compressive Sensing (BCS)

PCEs with random coefficients versus Gaussian Processes

Model uncertainty, comparison, selection

... Stay Tuned ...

Debusschere (Sandia, USC) UQTk examples SIAM UQ 2012 81 / 81