Uncertainty of Measurements JMSeynhaeve

download Uncertainty of Measurements JMSeynhaeve

of 21

Transcript of Uncertainty of Measurements JMSeynhaeve

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    1/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 1

    Measurement and uncertainty of measurement 1

    Measurements and uncertainty ofmeasurements

    Jean-Marie SEYNHAEVE

    Unité TERM – UCL

    [email protected]

     How to be sure of the uncertainty ?

    • Measurement and uncertainty of measurements – Principles and standards

    • Applied Regression analysis – Generalised ordinary linear fitting• Measurement device – calibration and use

    • Traceability in measurement – Dissipation of the information

    • Redundancy in the information – Lagrange multipliers

    • References and acknowledgment

    Measurement and uncertainty of measurement 2

    Measurement and uncertainties of measurement - Princip les

    Reference : GUM - Guide to the expression of th e uncertainty in measurement

    Approved by :

    BIPM Bureau international des poids et mesures

    CEI Commission électrotechnique internationale

    FICC Fédération internationale de chimie clinique

    ISO International standard organization

    OIML Organisation internationale de métrologie légale

    UICPA Union internationale de chimie pure et appliquée

    UIPPA Union internationale de physique pure et appliquée

    Uncertainty of measurement = doubt on the validity of the measuring value

    Uncertainty Error

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    2/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 2

    Measurement and uncertainty of measurement 3

    • Let us consider a known random variable x defined by :

    Recall : Normal distribution, Student distribution

    • Normal distribution if :

    1

    limn

    n i

    i

     x x n→∞=

    ⎛ ⎞⎜ ⎟⎝ ⎠∑

    ( )( )

    ( )2

    0.5 2

    1exp

    22

     x x f x

    σ σ π 

    ⎛ ⎞−=   ⎜ ⎟

    ⎜ ⎟−⎝ ⎠

    ( ) 2 21

    limn

    n i

    i

    V x nσ ε →∞=

    ⎛ ⎞⎜ ⎟⎝ ⎠∑

     Mean value

    Variance

    Mathematical interest !

    Measurement and uncertainty of measurement 4

    • Student distribution

    • Gamma function :   ( )1

    0

     x qq e x dx

    ∞− −Γ = ∫

    ⇒ Gamma function properties :

    • Recurrence :   ( ) ( )1q q qΓ = Γ − For all q

    • Particular case : if q integer then Γ (q) → 

    • particular values :   ( )1 2   π Γ =   ( )1 1Γ =

    ( )

    12 2

    1

    21

    2

    t  f t 

    ν 

    ν 

    ν 

    ν    ν πν 

    +−

    +⎛ ⎞Γ ⎜ ⎟ ⎛ ⎞⎝ ⎠= +⎜ ⎟⎛ ⎞   ⎝ ⎠Γ ⎜ ⎟⎝ ⎠

    ν : number of degrees of freedom

     If → ∝ : Student distribution →  Normal distribution

    Factoriel function

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    3/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 3

    Measurement and uncertainty of measurement 5

    Some examples of distribution Height human body…

    LDV measurements

    Droplets distribution of spray…

    Development of QI test…

    frequency

    0

    100

    200

    300

    400

    500

    600

    700

    800

    -0.60% -0.50% -0.40% -0.30% -0.20% -0.10% 0.00%

    frequency

    0

    100

    200

    300

    400

    500

    600

    700

    800

      -     0 .     4

         5     %

      -     0 .     4

         0     %

      -     0 .     3

         5     %

      -     0 .     3

         0     %

      -     0 .     2

         5     %

      -     0 .     2

         0     %

      -     0 .     1

         5     %

      -     0 .     1

         0     %

      -     0 .     0

         5     %

         0 .     0

         0     %

     Example 1

     Example 2

    Measurement and uncertainty of measurement 6

    • Suppose a q quantity which varies at random : q is a random variable

    • Suppose n independent observation q k obtained in same conditions of measurement

      Best-estimate of q :

    1

    1 n

    q qn   =

    =   ∑

      Estimate of the standard deviation :   ( ) ( )2

    1

    1

    1

    n

    k k 

    s q q qn   =

    = −−

      ∑

      Estimate of standard deviation on the “mean value” : ( )  ( )k s q

    s qn

    =

      Extended uncertainty of type A:   ( ) ( )U q k s q= ⋅ 2k  =

    Uncertainty at confidence level of about 95 %

    with

    1. Measurement uncertainty of type A

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    4/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 4

    Measurement and uncertainty of measurement 7

    Comments

    Valeur vraie

    σ

    Confidence level of 68 %

      Number of degrees of freedom :

    1nν  = −

      Student coefficient at 95 % :

    ( )95k t f   ν =

      If→ ∝ :

    Coefficient de Student correspondant à un niveau de confiance de 95 %

    0

    2

    4

    6

    8

    10

    12

    14

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 1 4 15 1 6 1 7 18 1 9 2 0

    Nombre de degrés de liberté

       C  o  e   f   f   i  c   i  e  n   t   d  e   S   t  u   d  e  n   t

    Limite acceptable

    ( ) ( )

    ( )

    95

    0

    1.956

    q True value

    s q and U q

    s q

    σ 

    →  Conclusions :

    Si σ ⇒  n If σ ⇒ ν 

    GUM recommended value : ν > 10

    Measurement and uncertainty of measurement 8

    2. Measurement uncertainty of type B

      Evaluation based on all available information :

    - Results on previous measurements

    - Scientific background

    - Technical specification of the manufacturer

    - Data from the calibration certificate

    - Uncertainties assigned to reference values ...

      Example of distributions … :

    ( )3

    as A   =

    ( )  ( )

    2

    12

     A As A

      + −−=

     A+ A-

    a

     A+ A- A+ A-

    a

    ( )6

    as A   =

    No repeated and independent observations available uncertainty of type B

     Justification : « Limit central theorem » ...

     Rectangular  Triangular Rectangular  

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    5/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 5

    Measurement and uncertainty of measurement 9

    3. Evaluation of combined expended uncertainty

      Suppose a output quantity F depending on n independent input quantities xi ( s(xi ) known)

    ( )iF F x=

      Sensitivity coefficients :( )( )i

    i

    i

    F xc

     x

      Combined standard deviation :   ( ) ( )22

    1

    n

    i i

    i

    s F c s x=

    =   ∑

      Combined expended uncertainty of F:   ( ) ( ) ( )95iF F x t s F  ν = ±

     NB : Theory based on the Taylor series of the first order of F

    ⇒  Non-linearity of F ?

    Measurement and uncertainty of measurement 10

    4. Example of presentation of results : manometric weighing device

    Gas under pressure

     Masses

    Piston

    Cylinder 

    ( )( ) ( )

    0, 0,

    0,

    20

    (1 )

    1 20 1

    a a a

    c

    m m

     p c

     M g C 

    PS t LP

     ρ ρ ρ σ 

     ρ ρ 

    α α 

    −− + +

    =⎡ ⎤+ + − +⎣ ⎦

    Quantity Units Value Standard Sensitivity Contribution toUncertainty Coefficient Standard Uncertainty

     M  kg 69.5349771 3.81E-05 2.00E+05 7.6

    g m/s2 9.81139778 0.00000002 1.42E+06 0.0

     ρ 0a kg/m3 1.2 - - -

     ρ 0m kg/m3 8000 - - -

     ρ a kg/m3 1.16178 2.71E-03 -1.76E+03 -4.8

     ρ m kg/m3 7920 39.5 -8.48E-03 -0.3

    σ   N/m 3.10E-02 3.10E-03 5.06E+02 1.6

    C  m 0.024821354 5.926E-08 6.32E+02 0.0

    S  m2 4.902765E-05 7.354E-10 -2.84E+11 -208.7

    α  p+ α c 1/°C 9.00E-06 4.50E-07 -1.39E+07 -6.3

    t  °C 21 0.1 -1.25E+02 -12.5

     L 1/Pa 1.01E-13 - - -

     P Pa 13913168 - - 209

     Pressure (bar) 139.1317

     Expanded uncertainty 2k (bar) 0.0042

     Relative expanded uncertainty 2k 3.01E-05

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    6/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 6

    Measurement and uncertainty of measurement 11

    Simple illustration

     P

    5 kg ± 5 g

      Result of measurement :

     P = 5 kg ± 5 g

     P

    1 kg ± 1 g

      Result of measurement :

    1 2 3 4 5P P P P P P= + + + +

    ( ) ( )

    52

    2

    1( ) 5 0.5 1.12i

    is P s P g

    == = ⋅ =∑

    1...5 1ic =   =

     P = 5 kg ± 2.24 gConsequences :

    - Multiply your sources of information

    - Estimate the likelihood of the information

    - Verify the independence of your sources

    Measurement and uncertainty of measurement 12

    Case study : natural gas metering

    ValvesT  p p T 

     Adjusting

    valve

    q1

    q 2

    q 3

    q 4

     Flowmeter

    Turbines

     Flowmeter

    Turbines

    Main :

    Reference

    Back-up :

    Verification

    q 5

    q

    C C 

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    7/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 7

    Measurement and uncertainty of measurement 13

    • Global flowrate : 1 2 3 4 5q q q q q q= + + + +

    • Uncertainty on the flowrate :

    We have : where n is the number of operating lines

    1 2 3 4 5q q q q q≅ ≅ ≅ ≅   ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5iU q U q U q U q U q U q≅ ≅ ≅ ≅

    ( ) ( )iU q n U q= ⋅

    • If Main = Back-up : 2 n independent measurements

    - Uncertainty on qi : and 

    - Uncertainty on q : ⇒ decreasing of the uncertainty of +/- 30 %

    - More information :

    ( )  ( )'

    2

    i

    i

    U qU q   ≅

    ( )   ( )2i

    n U qU q

    ⋅=

    , ,'

    2

    i main i back up

    i

    q qq

      −+=

    , ,i main i back upq q −=

     If 

    ⇒  Estimation under constraints with Lagrange multiplier method 

    Measurement and uncertainty of measurement 14

    Case study : calibration installation of gas counters

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    8/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 8

    Measurement and uncertainty of measurement 15

    • Determination of the flowrate through one nozzle

    *

    , 20, ,1000,(1 0.169 ) 1 ( 100000)293.15

    iv i v i i dry i

    T Q x c P QÈ ˘= + + -Î ˚

     Nozzle

    Number

    Diameter of Nozzle

    (mm)

    Q 20,dry,1000,i (m

    3 /h)

    Correction coefficient

     ci* (Pa

    -1)

    1 2.0021 2.1909 2.3 10-7

    2 2.7249 4.0884 1.4 10-7

    3 3.8504 8.1860 1.3 10-7

    4 5.3881 16.0543 1.0 10-7

    5 7.6216 32.218 1.7 10-7

    6 10.7107 63.780 1.4 10-7

    7 15.1357 127.474 9.1 10-8

    • Determination of the uncertainty on the flowrate through one nozzle

    ( )( ) ( ) ( )

    ( )   ( )

    12 2 2 2

    2 2 2, , ,2 *

    *

    , 22

    22, ,20 , ,1 00 0,

    20 , ,100 0,

    v i v i v i

    v i i

    v i i

    v i

    v i v ii dry i

    i dry i

    Q Q QU x U T U c

     x T cU Q

    Q QU P U QP Q

    ∂ ∂ ∂ 

    ∂ ∂ ∂ 

    ∂ ∂ 

    ∂ ∂ 

    È ˘Ê ˆ Ê ˆ Ê ˆ  Í ˙+ +Á ˜ Á ˜ Á ˜  Ë ¯ Ë ¯ Ë ¯  Í ˙

    = Í ˙

    Ê ˆ Í Ê ˆ ˙+ +Í ˙Á ˜ Á ˜ Ë ¯    Ë ¯ Í ˙Î ˚

    • Total flowrate and global expanded uncertainty

    ,

    1

    n

    v v i

    i

    Q Q=

    = Â   (   )   ( )2,1

    n

    v v i

    i

    U Q U Q=

    =   Â

    Measurement and uncertainty of measurement 16

    Relative uncertainty

    for a 95 % confidence level

    0.08

    0.09

    0.1

    0.11

    0.12

    0.13

    0.14

    0 20 40 60 80 100 120 140 160 180 200 220 240 260

    Volume flowrate ( m3/h )

       R  e   l  a   t   i  v  e  u  n  c  e  r   t  a   i  n   t  y   (   %    )

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    9/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 9

    Measurement and uncertainty of measurement 17

    Generalized linear ordinary fitt ing

    General methodology

    • Suppose n independent observations of a set of variables (physical quantities)

    ⇒ k predictive variables : independent and known (true value)

    ⇒ 1 (or more) dependent variable :

    - function of xi (only…)

    - having a random component for each set of xi

    1 2, ,..., k  x x x

     y

    ⇒ Observation i (1 à n) :1 2, ,..., k i i i i x x x et y

    Examples :

    ⇒ QI = f(weight) :

    2 observations of QI for the same person or 1 observation of QI for two person ?

    ⇒  Heat transfer correlation :  Nu (y) →  Re (x1) et Pr (x2)

    Measurement and uncertainty of measurement 18

    • « fitting » model

    ⇒ Good choice of a function :   ( )1 1ˆ ,..., , ,...,k  m y f x x C C =

    With m constants C i to be dertermined Example :   ( )( )Re ,Pr, i Nu f C λ =⇒ Good choice of the uncertainty model on y :   ( )   ( )1 ˆ,..., k U y k f x x ky ou Cte= ⋅ = =

     Difficult choice ! - Importance to know very well the phenomenon ...

    • Least squares method

    ( )

    2

    1

    ˆni i

    i i

     y yF 

    U y=

    ⎛ ⎞−=   ⎜ ⎟⎜ ⎟

    ⎝ ⎠∑ Function to minimize : U(yi) are the weighting coefficients

    ⇒  How to determine the m constants C i : m equations 0i

    ∂=

    ⇒  Number de degrees of freedom: n mν  = −   ⇒ Statistical validity : 0 10ν ν > → ≥

    ⇒  Residuals : standard deviation

    ⇒ Uncertainties on the m constants

    :( ) ( ) ( )95i i is C et U C t s C  

     Bias of the model ?

     Examine the residues

    2

    95r i r r  s U t sε ν    =∑

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    10/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 10

    Measurement and uncertainty of measurement 19

    Polynomial regression – Linear regression for multiple variables

    • Model of «fitting»

    2

    0 1 2ˆ ... mm y A A x A x A x= + + + +Choice of the function :

    ⇒  Model for residuals :   ( )U y k =

    • Least squares method

    ⇒  Function to minimize :   ( )2

    1

    ˆn

    i i

    i

    F y y=

    = −∑

    ⇒ Calculation of the m+1 constants Ai :

    2

    02 3

    1

    2 3 4 22

    ...

    ...

    ...

    ...... ... ... ... ...

    i i i

    i i i i i

    i i i i i

     An x x y A x x x x y

     A x x x x y

    Ê ˆ Ê ˆ  Ê ˆ Á ˜ Á ˜  Á ˜ Á ˜ Á ˜  Á ˜  =Á ˜ Á ˜  Á ˜ Á ˜ Á ˜  Á ˜ Ë ¯ Ë ¯ Ë ¯  

    Â Â ÂÂ Â Â ÂÂ Â Â Â

      ⇒

    0 00 01 02

    1 10 11 12

    22 20 21 22

    ...

    ...

    ...

    ... ... ... ... ... ...

    i

    i i

    i i

     A C C C   y A C C C   x y

     A C C C   x y

    Ê ˆ Ê ˆ Ê ˆ  Á ˜ Á ˜ Á ˜  Á ˜ Á ˜ Á ˜  =Á ˜ Á ˜ Á ˜  Á ˜ Á ˜ Á ˜  Ë ¯ Ë ¯   Ë ¯ 

    ÂÂÂ

    [C ij] is the inverse matrix

    Measurement and uncertainty of measurement 20

    ⇒  Number of degrees of freedom :   ( )1n mν  = − +

    ⇒  Residuals - standard deviation :   (   )2

    1

    ˆn

    r i i

    i

    s y y   n =

    = -Â   ( )95r r U t sn =

    ⇒  Incertainty on the coefficients Ai :

    ( )

    ( )

    ( )

    2

    0 00

    2

    1 11

    2

    2 22

    ...

    s A s C  

    s A s C  

    s A s C  

    =

    =

    =

    ⇒ Test of statistical significance of the coefficient Ai :(   ) 95

    m

    m

     At 

    s A≥

    (   )0 0 00 0

    ˆm m

     j k 

    r jk 

     j k 

    s y s C x x= =

    =   ÂÂ

    ⇒ Uncertainty on a predicted value : 20 0 0 0

    ˆ ( , ,..., )m y f x x x=

    ⇒ Coefficient R 2 :( )

    (   )

    2

    2 1

    2

    1

    ˆn

    i

    i

    n

    i

    i

     y y

     R

     y y

    =

    =

    -=

    -

    Â

    Â

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    11/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 11

    Measurement and uncertainty of measurement 21

    Example : Pressure transducer calibration

     No X (I) U(X) Y(Pref) U(Y) Y est. U(Yest.) U global Y est. U(Yest.) U global 

     mA mA bar bar bar bar bar bar bar bar

    1 7.996617   8.00E-05 20.0004 0.0007 19.9980 0.0025 0.0026 19.9995 0.0032 0.0033

    2 8.996359 9.00E-05 24.9986  0.0009 24.9966 0.0022 0.0024 24.9974 0.0024 0.0026

    3 9.997176   1.00E-04 30.0006  0.0011 30.0006 0.0020 0.0023 30.0007 0.0018 0.0022

    4 10.99765 1.10E-04 35.0007  0.0012 35.0028 0.0018 0.0022 35.0025 0.0017 0.0022

    5 11.99811 1.20E-04 40.0008  0.0014 40.0050 0.0016 0.0022 40.0043 0.0017 0.0023

    6 12.99706   1.30E-04 44.9988  0.0016 44.9996 0.0015 0.0022 44.9987 0.0018 0.0025

    7 13.99723 1.40E-04 49.9989 0.0017 50.0003 0.0014 0.0024 49.9994 0.0019 0.0027

    8 14.99632 1.50E-04 54.9990 0.0019 54.9957 0.0015 0.0025 54.9948 0.0018 0.0028

    9 15.99681 1.60E-04 59.9971 0.0021 59.9980 0.0016 0.0027 59.9973 0.0017 0.0028

    10 16.99686   1.70E-04 64.9992 0.0023 64.9981 0.0018 0.0030 64.9978 0.0017 0.0030

    11 17.99729 1.80E-04 69.9993 0.0024 70.0001 0.0020 0.0033 70.0003 0.0018 0.0032

    12 18.99682 1.90E-04 74.9992 0.0026 74.9977 0.0022 0.0036 74.9984 0.0024 0.0037

    13 19.99715 2.00E-04 79.9993 0.0028 79.9992 0.0025 0.0039 80.0007 0.0032 0.0044

    Pol ynome du 1er de gré Polynome du 2ième de gr é

    ⇒  Diagnostic :

    1.00E-05

    3.50E-05

     Degree Ai s(Ai) Test Test result

    0 -19.9841 0.00228969 8728 +

    1 4.99988 0.00015804 31638 +

    11

    Standard deviation on linear fitting (bar) 0.0021

    t coeff ic ient for 95 % confidence level 2 .202

    0.999999989

    Relative expanded uncertainty on X

    Relative expanded uncertainty on Y

    Linear regression  P (bar) = A0+A1*I 

    R2 coefficient of regression

    Degree of freedom

    1.00E-05

    3.50E-05

     P (bar) = A0+A1*I+A2*I^2

     Degree Ai s(Ai) Test test result

    0 -1.99718E+01 8.5099E-03 2346.90 +

    1 4.99800E+00 1.2750E-03 3920.09 +

    2 6.71703E-05 4.5228E-05 1.49 -

    Degree of freedom 10

    Standard deviation on cur ve fit ting (bar) 0.0020

    Student coefficient for 95 % confidence level 2.229

    Fitting degree 2

    Relative expanded uncertainty on X

    Relative expanded uncertainty on Y

    Measurement and uncertainty of measurement 22

    Example of Global Uncertainty on the fitting model

    0.000

    0.001

    0.002

    0.003

    0.004

    0.005

    6 8 10 12 14 16 18 20 22

    Current (mA)

       U  g   l  o   b  a   l   (   b  a  r   )

    Linear fitting

    Degree 2 fitting

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    12/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 12

    Measurement and uncertainty of measurement 23

    Comments on the linear regression with multiple variables

    ⇒  Model on the uncertainty ? :   ( )U y k =

     x

     y

    U(y)

    ( )ˆU y

    U(y) is not a function of x (constant)

    ( ) ˆ

    U y decreases if increases : level of confidence on the model 

    ⇒ Verification of the model of uncertainty :   ( ) ( ). ?U y k f x=

    Various possible tests (Durbin-Watson…) – Determination of the « bias » of the model 

    Measurement and uncertainty of measurement 24

    Particular case : linear regression passing through the origin

    ⇒ Test of statistical significance on the coefficients Ai :

    (   )  ( )1 95

    1

     At 

    s An ≥

    ( )  ( )1 95

    1

    i

    i

     At 

    s An 

    π

    π

    £

    • Model 1 :   ( )U y k =

    11

    2

    1

    n

    i i

    i

    n

    i

    i

     x y

     A

     x

    =

    =

    Â

    ( )2

    1

    2

    1

    n

    i

    i

    ss A

     x=

    =

    Â

    ( ) ( )   (   )2

    00 0 1

    2

    1

    ˆr  n

    i

    i

     xs y s abs x s A

     x=

    = =

    Â

    ( )2

    1

    ˆ

    1

    n

    i i

    ir 

     y y

    sn

    =

    -=

    -

    Â

    • Model 2 :   ( )U y k x= ⋅

    11

    ni

    i i

     y

     x A

    n

    ==Â

    (   )1

    i

    i

     ys

     xs A

    n

    Ê ˆ Á ˜ Ë ¯ 

    =

    (   )   (   )   ( )0 0 1ˆs y abs x s A=

     x

     y

     x

     y

    • Generalisation :   ( ) ( )U y k f x= ⋅

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    13/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 13

    Measurement and uncertainty of measurement 25

    Example Model 2 – Chromatograph calibration

    Standard deviation on Area for n-C4

    0

    0.4

    0.8

    1.2

    1.6

    0 50 100 150 200 250

    Area

       S   t  a  n   d  a  r   d   d  e  v   i  a   t   i  o  n

    Expanded Uncertainty on X (%)

    C1 3.15E-04 C2 6.11E-05

     Degree Ai s(Ai) Test Test result

    1 643.730 3.65 176.29 +

    14

    2.145

    0.999315R2 coefficient of regression

    U(X)=C1*X+C2

    Linear regression  Area = A1*[n-C4](%)

    Degree of freedom

    t coefficient for 95 % confidence level

    FID : Uncertainty of n-C4 calibration

    Chromatograph HP12000

    0.00

    0.01

    0.01

    0.02

    0.02

    0.03

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    Mole fraction (%)

       E  x  p  a  n   d  e   d   U  n  c  e  r   t  a   i  n   t  y   (   %   )

    Measurement and uncertainty of measurement 26

    The measurement apparatus – Calibration and use

    TransmitterReferenceOutput

    MeasuringDevice

    ref Q

    out Q

    ref Q

    out Q

     Reference physical quantity

    Signal of the transducer 

    • Calibration

    ⇒ Choice of the model of fitting :

    • Qref  = f(Qout ) or Qout  = f(Qref ) ? ⇒  Compare U(Q ref  ) and U(Q mes )

     Examples : Calibration of thermometric sensors, calibration of weighing device

    • Which model ? ⇒ 

    Choice of the function : linear or other – Statistical relevance

    Choice of the model of uncertainty U(y) =k f(x) ? : test Durbin-Watson

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    14/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 14

    Measurement and uncertainty of measurement 27

    ⇒ Choice of the calibration range : Range of use of the transducer

    ⇒ Choice of the calibration points : Experimental plans with multiple levels

    The choice depends on what you need …

    ⇒  Interpretation of the results

     Analysis of the residuals… Statistical Relevance…

     Is U(y) model well known – Are the results in concordance of the initial model 

     Random property of the procedure ?

    Measurement and uncertainty of measurement 28

    • The use

    ⇒  Inverse or direct regression ? :

    ˆ ( )ref out  Q f Q= ˆ ( )out ref  Q f Q= direct inverse

    ⇒ Suppose q independent observations of Q out for an inverse regression

    ( )ˆ

    out s Q

    Qout 

    Qref 

    ( )out s QQout 

    Uncertainty on the fitting

    Uncertainty on the observation

    Uncertainty on the output device

    Uncertainty on Q ref 

    Combined uncertainty

    ( )   ( )   ( )95ˆ ˆout out  U Q t s Qν =

    (   )   (   )95out out  U Q t s Q q=

    (   )mesU Q

    ( )ref U Q

    ( )   ( )   (   )   (   )   ( )2 22 22 ˆ

    out out mes ref  U Q c U Q U Q U Q U QÈ ˘= + + +Í ˙Î ˚

    ˆ1 out 

    ref 

    dQc

    dQ

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    15/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 15

    Measurement and uncertainty of measurement 29

    Traceability – Continuous ramified chain

    Example : Determination of PCi o u s of a natural gas

    Toutes mesures doivent être traçables vis-à-vis de références primaires

     Preparation of the

     gravimetric mixtures

    ISO 6142

    Calibration of the

     chromatograph

    ISO 6975

     Determination of the

     calorific value

    ISO 6976

    Measurement and uncertainty of measurement 30

     Preparation of

     gravimetric mixtures

    ISO 6142

    «Parent» gas

    Component Mole fraction St. deviation

    x 10-6

    x 10-6

    H2 0.05 0.03

    CH4

    H2O 0.5 0.29

    CO 0.25 0.14

    N2 999998.75 0.36

    C2H4

    C2H6

    O2 0.25 0.14

    Ar 

    CO2 0.1 0.06

    C3H6

    C3H8

    C4H10 n

    CnHm 0.1 0.06

    C4H10 i

    Autre 2

    Autre 3

    Parent gas : Nitrogen N2 - N57

     Reference masses

     Primary references

     Molar masses

    Reference Mass Mass (g) U(mass)

    10 10 0.000060

    20A 20 0.000080

    20B 20 0.000080

    10 + 20A 30 0.000100

    20A + 20B 40 0.000113

    50 50 0.000100

    50 + 10 60 0.000117  

    50 + 20A 70 0.000128  

    50 + 10 + 20A 80 0.000141

    50 + 20A + 20B 90 0.000131

    100 100 0.000150

     Reference masses and uncertainties

     Atomic weight Standard Uncertainty

     Atome kg/kmole kg/kmole

    H 1.00794 0.00007  

    C 12.011 0.001

     N 14.00674 0.00007  

    O 15.9994 0.0003

    Ar  39.948 0.001

    IUPAC Commission on Atomic Weights (1993)

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    16/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 16

    Measurement and uncertainty of measurement 31

     Masses of “parent” gas

    Weighing

    Calibration of the weighing device

     Reference masses

    Preparation of the “parent” gas

     Ramified chain

     Determination of molar

     fractions of the mixture

     Molar mass

     Preparation of

     gravimetric mixtures

    ISO 6142

    Pure gas

    Measurement and uncertainty of measurement 32

    Component Mole fraction Expanded Uncertainty St. Dev. Mol. St. Dev. Mass St. Dev. Compo.

    x 10-6

    x 10-6

    x 10-6

    x 10-6

    x 10-6

    H2 0.05 0.06 0.00 0.00 0.03

    CH4 970340.95 5.23 1.87 1.65 0.78

    H2O 0.99 1.12 0.00 0.00 0.56

    CO 0.01 0.01 0.00 0.00 0.00

     N2 29657.63 5.13 1.87 1.65 0.59

    C2H4 0.00 0.00 0.00 0.00 0.00

    C2H6 0.05 0.06 0.00 0.00 0.03

    O2 0.25 0.28 0.00 0.00 0.14

    Ar 0.00 0.00 0.00 0.00 0.00

    CO2 0.05 0.06 0.00 0.00 0.03

    C3H6 0.00 0.00 0.00 0.00 0.00

    C3H8 0.00 0.00 0.00 0.00 0.00

    n-C4H10 0.00 0.00 0.00 0.00 0.00

    CnHm 0.03 0.03 0.00 0.00 0.01

    i-C4H10 0.00 0.00 0.00 0.00 0.00

    Autre 2 0.00 0.00 0.00 0.00 0.00

    Autre 3 0.00 0.00 0.00 0.00 0.00

     Results

     Preparation of

     gravimetric mixtures

    ISO 6142

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    17/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 17

    Measurement and uncertainty of measurement 33

    Calibration of the

     chromatograph

    ISO 6975

    Gravimetric

    mixtures

    Chromatograph

    calibration

    Calibration results

    - Fitting model and U  fitting- U ( Area)- U (gravimetric mixtures)

     Normalisation at Patm

     No Gases X (Ref) U(X) Patm Aera Y(Aera st.)

    Cylinder Mixture % % bar - -

     N4@dz68 nC4+C2+C1 1.82225 0.000635 1.0181 1205.5518  1199.81

     N4@dz68 nC4+C2+C1 1.82225 0.000635 1.01805 1210.9127  1205.20

     N4@dz68 nC4+C2+C1 1.82225 0.000635 1.01795 1210.9059 1205.31

    n4@dz62 nC4+C2+C1 1. 58759 0. 0005 61 1.01817 1044.6101 1039.56

    n4@dz62 nC4+C2+C1 1. 58759 0. 0005 61 1.01814 1052.6324 1047.58

    n4@dz62 nC4+C2+C1 1.58759 0.000561 1.0181 1053.1123 1048.10

    n4@dz57 nC4+C2+C1 0. 75182 0. 0002 98 1.01775 473. 28247   471.19

    n4@dz57 nC4+C2+C1 0. 75182 0. 0002 98 1.01768 477. 08435 475.01

    n4@dz57 nC4+C2+C1 0. 75182 0. 0002 98 1.01762 480. 84372 478.78

    n4@dz46 nC4+C2+C1 0.19478 0.000122 1.01731 122.8237   122.33

    n4@dz46 nC4+C2+C1 0. 19478 0. 0001 22 1.01743 125. 28597   124.77

    n4@dz46 nC4+C2+C1 0. 19478 0. 0001 22 1.01755 126. 14828   125.62

    n4@dz55 nC4+C2+C1 0. 47936 0. 0002 12 1.01712 302. 20477   301.05

    n4@dz55 nC4+C2+C1 0. 47936 0. 0002 12 1.01707 302. 22177   301.09

    n4@dz55 nC4+C2+C1 0. 47936 0. 0002 12 1.01699 305. 42725 304.30

    Expanded Uncertainty on X (%)

    C1 3.15E-04 C2 6.11E-05

     Degree Ai s(Ai) Test Test result

    1 643.730 3.65 176.29 +

    14

    2.145

    U(X)=C1*X+C2

    Linear regression  Area = A1*[n-C4](%)

    Degree of freedom

    t coefficient for 95 % confidence level

     Ramified Chain Results

    Measurement and uncertainty of measurement 34

     Determination of

    Calorific Value

    ISO 6975

    Calibration results

    - Fitting model and U  fitting- U ( Area)- U (gravimetric mixtures)  Natural Gas

    Chromatographmeasurement 

     Normalisation at 100 %

    Constants- Calorific value of the components- Compressibility factor Z n- Universal constant : 8314.51 J/kmole/K 

     Results

     Ramified chain

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    18/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 18

    Measurement and uncertainty of measurement 35

    Units Value Uncertainty (2k)

    kJ/Nm3 36454 29

    kJ/Nm3 32914 29

    - 0.9029 0.0005

    kg/kmol 18.71 0.02

     Nm3/kmol 22.36 0.01

    - 0.9976 0.0005

    - 0.6473 0.0006

    kg/Nm3 0.8369 0.0008

    kJ/Nm3 45311 32

     Nm3/Nm3

    kg/Nm3

     Nm3/Nm3

     Physical propertiesGross calorific value -Volumetric basis GCV 

     Low calorific value -Volumetric basis LCV 

     LCV/GVC 

     Molar Mass

     Molar Volume

    Compression factor 

     Relative density

     REMARKS : Combustion at 25 °C - Metering at 0 °C and 101325 Pa

    CO2 Total combustion

     Density

    Wobbe index

    Stoichiometric air-to-gas requirement 

     H2O combustion

     Determination of the

    Calorific ValueISO 6975

     Results

    Measurement and uncertainty of measurement 36

    Redundancy in the informationLagrange Multipliers

    General methodology

    • Suppose n independent observations of a set of quantities

    * *

    1 ,..., n x x

    ( ) ( )

    * *

    1

    ,...,n

    U x U x

    ⇒  Independent quantities

    ⇒ Uncertainties on the quantities

    • Suppose q constraints (relations) which link these quantities

    ⇒  Estimated quantities1 ,..., n x x

    ⇒ Form of constraints ( ) ( )1 0,..., 0i q iC x C x= =

    ⇒  Number of degrees of freedom n qν  = −

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    19/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 19

    Measurement and uncertainty of measurement 37

    • Least squares methodology

    ⇒  Function to minimize :

    ⇒  Equations :

    1,..., qλ λ q Lagrange multipliers :

    ⇒  Number of unknowns : n xi et q  k

    0i

     x

    ∂=

    ( )   ( )(   )

    2* *

    ( )

    1 1 1

    ,

    q qnk i k j i j

    k k i jk j k C 

    C x C x xF C x

    wl 

    π

    = = =

    È ˘Ê ˆ -Í ˙= +Á ˜ Í ˙Á ˜ Ë ¯ Í ˙Î ˚  Â

    n q+

    n equations q constraints 0k 

    λ 

    ∂=

    ⇒ Weighing coefficients ? :   ( )*

    *

     j j

     j k C j

     j  x x

    C w U x

     x=

    ∂=

     Determination of the best-estimate of quantities x j et U(x j )

     Principle of the maximum likelihood 

    Measurement and uncertainty of measurement 38

    Simple example : Flowrate measurement – Metering station

    Main :

    Reference

    Back-up :

    Verification

    q

    ⇒ Observed quantities * *1 2,q q

    ( ) ( )* *1 2,U q U q⇒ Uncertainties on the observed quantities⇒  Best-estimate

    1 2,q q

    ⇒ Constraints1 2 0q q− =

    ⇒ Function to minimize( ) ( )

      ( )

    2 2* *

    1 1 2 21 2* *

    1 2

    q q q qF q q

    U q U qλ 

    ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= + + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ⇒  Results :( ) ( )

    ( ) ( )

    2 2* * * *

    1 2 2 1

    1 2 2 2* *

    1 2

    U q q U q qq q q

    U q U q

    += = =

    +( )

      ( ) ( ) ( ) ( )

    ( ) ( )

    4 2 4 2* * * *

    1 2 2 1

    2 2* *

    1 2

    U q U q U q U qU q

    U q U q

    +=

    +

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    20/21

    TERM 12/4/2007

    Les écoulement de fluide dans l'industrie 20

    Measurement and uncertainty of measurement 39

    Illustration of results : Metering station

    Best-estimate of the flowrate and uncertainty

    49

    49.2

    49.4

    49.6

    49.8

    50

    50.2

    50.4

    50.6

    50.8

    51

    0 2 4 6 8 10 12 14 16 18 20

    Incertitude relative sur Q1 (%)

       V  a   l  e  u  r  e  s   t   i  m   é  e   d  u   d   é   b   i   t   (   k  g   /  s   )

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

       I  n  c  e

      r   t   i   t  u   d  e  r  e   l  a   t   i  v  e  s  u  r   l  e   d   é   b   i   t  e  s   t   i  m   é   (   %   )

    Q1 observed = 49 kg/s

    Q2 observed = 51 kg/s

    Relative uncertainty on Q2 = 5 %

    Constraint : Q1 = Q2 =Q

    Measurement and uncertainty of measurement 40

    Case study : Normalisation at 100 % of the molar fractions

    *

    i x⇒ Observed quantities

    ( )*iU x⇒ Uncertainty on the observed quantities⇒  Best-estimate

    i x

    ⇒ Constraint  1 0i x − =∑

     Functions « least squares » to minimize

    ( )2

    *

    1 1

    1n n

    i i i

    i i

    F x x xl = =

    Ê ˆ = - + -Á ˜ Ë ¯ Â Â

    *

    * 1

    1n

    i

    ii i

     x

     x xn

    =

    -= +

    Â

    ( )2

    *

    *1 1

    11

    n n

    i i i

    i ii

    F x x x x

    l = =

    Ê ˆ = - + -Á ˜ Ë ¯ Â Â

    *

    *

    1

    ii n

    i

    i

     x x

     x=

    =

    Â

    ( )

    2*

    *1 1

    1n n

    i ii

    i ii

     x xF x

    U xl 

    = =

    Ê ˆ  Ê ˆ -= + -Á ˜    Á ˜ Ë ¯ Ë ¯ 

    Â Â

    ( )

    ( )

    2* *

    1*

    2*

    1

    1n

    i i

    i

    i i n

    i

    i

    U x x

     x x

    U x

    =

    =

    Ê ˆ -Á ˜ Ë ¯ 

    = +Â

    Â

     Results

  • 8/17/2019 Uncertainty of Measurements JMSeynhaeve

    21/21

    TERM 12/4/2007

    Measurement and uncertainty of measurement 41

    Relative uncertainty on CH4 estimated mole fraction Relative uncerta inties on others co mponents equal to 1 %

    0

    0.1

    0.2

    0.3

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Rel. uncertainty on CH4 measured mole fraction (%)

       R  e   l .   U  n

      c  e  r   t  a   i  n   t  y  o  n   C   H   4  e  s   t   i  m  a   t  e   d  m  o   l  e   f  r  a  c   t   i  o  n   (   %   )

    CH4 mole fraction deduced from other components (Pure gas model)

    Case 1 : unweighted coefficients

    Case 2 : weighted coefficients based on mole fractions (ISO-6976)

    Case 3 : weighted coefficients based on mole fractions uncertainties

     Estimated mole fraction of CH4

    Pure gas model : 85.5 %

    Case 1 : 85.10 %

    Case 2 : 85.43 %Case 3 : ...85.49... %

    Case study : Normalisation at 100 % of the molar fractions

    Measurement and uncertainty of measurement 42

    References and acknowledgment

    “Guide pour l’expression de l’incertitude de mesure “ First edition 1993, corrected and reprinted

    1995, ISO 14216

    “Assessment of uncertainty in calibration and use of flow measurement devices. Part 1: Linear

    calibration relationships - Part 2: Non-linear calibration relationships” ISO 7066, 1988.

     N.C. BARFORD “Experimental measurements : precision, error and truth” Second edition, 1987

     N. DRAPER, H. SMITH “Applied regression analysis” Third edition, 1998

    “Gas analysis – Preparation of calibration gas mixture – Gravimetric method” ISO 6142, 1999.

    “Expression of the Uncertainty of Measurement in calibration” EAL – R2 and EAL – R2 –S1,

    April 1997.

     R. WALPOLE, R. MYERS “Probability and statistics for engineers and scientists” 2d edition, 1989

    “Engineering Analysis of Experimental Data” ASHRAE Guideline 2-1986 (RA 96),1996

    “Méthode statistiques” Recueil de Normes, ISO 3, 1989

    “Natural gas – Extended analysis – Gas-chromatograph method” ISO 6975, 1997

    “Natural gas – Calculation of calorific values from composition” ISO 6976, 1995.

    “IUPAC Commission on Atomic Weights”.

     J.V. NICHOLAS and D.R. WHITE “Traceable temperatures – An introduction to temperature

    measurement and calibration” Second Edition, 2001 ISBN 0 471 49291 4