Una teoria consistente dell'induzione...

51
Una teoria consistente dell’induzione elettromagnetica Giovanni Romano Electromagnetics Early discoveries and theory Simplifications Early relativity theory New theory Una teoria consistente dell’induzione elettromagnetica Giovanni Romano Accademia di Scienze Fisiche e Matematiche in Napoli 1 febbraio 2013

Transcript of Una teoria consistente dell'induzione...

Page 1: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Una teoria consistente dell’induzioneelettromagnetica

Giovanni Romano

Accademia di Scienze Fisiche e Matematiche in Napoli

1 febbraio 2013

Page 2: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Page 3: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Page 4: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Johann Carl Friederich Gauss (1777 - 1855)

Page 5: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Hermann Gunther Grassmann (1809 - 1877)

Page 6: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Bernhard Riemann (1826 - 1866)

Page 7: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Marius Sophus Lie (1842 - 1899)

Page 8: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Felix Klein (1849 - 1925)

Page 9: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Gregorio Ricci-Curbastro (1853 - 1925)

Page 10: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Tullio Levi-Civita (1873 - 1941)

Page 11: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Elie Cartan (1869 - 1951)

Page 12: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Henri Cartan (1904 - 2008)

Page 13: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Charles Ehresmann (1905 - 1979)

Page 14: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Hassler Whitney (1907 - 1989)

Page 15: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ED=Electrodynamicsand

DG=Differential Geometry

ED is an important source of inspiration for DG and DG is thenatural tool to develop a mathematical modeling of ED

Founders of DG

Jean-Louis Koszul (1921 - )

Page 16: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Page 17: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Luigi Galvani (1737-1798)

Page 18: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Alessandro Volta (1745-1827)

Page 19: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Gian Domenico Romagnosi (1761-1835)

Page 20: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Hans Christian Ørsted (1777-1851)

Page 21: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Andre-Marie Ampere (1775 - 1836)

Page 22: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Johann Carl Friedrich Gauss (1777 - 1855)

Page 23: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Francesco Zantedeschi (1797-1873)

Page 24: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Joseph Henry (1797 - 1878)

Page 25: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Michael Faraday (1791 - 1867)

Page 26: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

James Clerk-Maxwell (1831 - 1879)

Page 27: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Joseph John Thomson (1856 - 1940)

Page 28: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Electromagnetic StoryStarring

Page 29: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Vector fields in Electromagnetics

Page 30: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Vector fields in Electromagnetics

Josiah Willard Gibbs (1839 - 1903)

Page 31: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Vector fields in Electromagnetics

Oliver Heaviside (1850 - 1925)

Page 32: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Vector fields in Electromagnetics

Heinrich Rudolf Hertz (1857 - 1894)

Page 33: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Zero spatial velocity∮∂Σin

g · E = −∫

Σin

µ · (∂θ=0 B) Henry− Faraday(1831)∮∂Σout

µ · B = 0 Gauss(1831)

∮∂Σout

g ·H =

∫Σout

µ · (∂θ=0 D + J) Ampere(1826)

Maxwell(1861)∮∂Σout

µ ·D =

∫Σout

ρµ Gauss(1835)

with Σout a bounded connected surface and Σout boundedconnected domain in S . Applying Ampere law to closedsurfaces Σout = ∂Ω , we get

∂θ=0 ρ+ div J = 0

the equation of continuity.

Page 34: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

Length contraction and time dilation effects

Woldemar Voigt (1850 - 1919)

Page 35: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

Length contraction and time dilation effects

George Francis FitzGerald (1851 - 1901)

Page 36: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

Length contraction and time dilation effects

Hendrik Antoon Lorentz (1853 - 1928)

Page 37: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

Length contraction and time dilation effects

Albert Einstein (1879 - 1955)

Page 38: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

Space-time metric

Henri Poincare (1854 - 1912)

Page 39: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

Space-time metric

Hermann Minkowski (1864 - 1909)

Page 40: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

General relativity

Christian Felix Klein (1849 - 1925)

Page 41: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Relativity Story

General relativity

David Hilbert (1862 - 1943)

Page 42: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Albert Einstein (1905)

Page 43: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

ON THE ELECTRODYNAMICS

OF MOVING BODIES

By A. EINSTEIN

June 30, 1905

It is known that Maxwell’s electrodynamics—as usually understood at thepresent time—when applied to moving bodies, leads to asymmetries which donot appear to be inherent in the phenomena. Take, for example, the recipro-cal electrodynamic action of a magnet and a conductor. The observable phe-nomenon here depends only on the relative motion of the conductor and themagnet, whereas the customary view draws a sharp distinction between the twocases in which either the one or the other of these bodies is in motion. For if themagnet is in motion and the conductor at rest, there arises in the neighbour-hood of the magnet an electric field with a certain definite energy, producinga current at the places where parts of the conductor are situated. But if themagnet is stationary and the conductor in motion, no electric field arises in theneighbourhood of the magnet. In the conductor, however, we find an electro-motive force, to which in itself there is no corresponding energy, but which givesrise—assuming equality of relative motion in the two cases discussed—to elec-tric currents of the same path and intensity as those produced by the electricforces in the former case.

Examples of this sort, together with the unsuccessful attempts to discoverany motion of the earth relatively to the “light medium,” suggest that thephenomena of electrodynamics as well as of mechanics possess no propertiescorresponding to the idea of absolute rest. They suggest rather that, as hasalready been shown to the first order of small quantities, the same laws ofelectrodynamics and optics will be valid for all frames of reference for which theequations of mechanics hold good.1 We will raise this conjecture (the purportof which will hereafter be called the “Principle of Relativity”) to the statusof a postulate, and also introduce another postulate, which is only apparentlyirreconcilable with the former, namely, that light is always propagated in emptyspace with a definite velocity c which is independent of the state of motion of theemitting body. These two postulates suffice for the attainment of a simple andconsistent theory of the electrodynamics of moving bodies based on Maxwell’stheory for stationary bodies. The introduction of a “luminiferous ether” will

1The preceding memoir by Lorentz was not at this time known to the author.

1

AlbertEinstein (1905)

Page 44: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Maxwell-Hertz equations - (Einstein 1905)

1c∂X∂t = ∂N

∂y −∂M∂z

1c∂L∂t = ∂Y

∂z −∂Z∂y

1c∂Y∂t = ∂L

∂z −∂N∂x

1c∂M∂t = ∂Z

∂x −∂X∂z

1c∂Z∂t = ∂M

∂x −∂L∂y

1c∂N∂t = ∂X

∂y −∂Y∂x

Page 45: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Differential forms vs. vector fields

ω1E = g · E electric field

ω2B = ω3

µ · B magnetic vortex

ω1H = g ·H magnetic field

ω2D = ω3

µ ·D electric flux

ω1B = g · A magnetic potential

ω2J = ω3

µ · J electric current

ω3ρ = ρω3

µ electric charge

ω0E = VE electric potential

Page 46: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Space-time split

Z field of time-arrowsR = dt ⊗ Z projector on time-arrowsP = I− R projector on space slices

Page 47: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Space-time theory of electromagnetics

ω2B = i↓Ω2

B ∈ Λ2(VS ;R) magnetic vortex

ω1E = i↓Ω1

E ∈ Λ1(VS ;R) electric field

with i spatial immersion.

Ω2B := P↓Ω2

F

−Ω1E := P↓(Ω2

F · V)

P projector on the spatial slicesV = Z + PV space-time velocityv = i↓(PV) spatial velocity.Representation formula

Ω2F = Ω2

B − dt ∧ (Ω1E + Ω2

B · V) .

Page 48: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Faraday law in space-time

Closedness of Faraday two-form in the trajectory manifold isequivalent to the spatial Gauss law for the magnetic vortex andto the spatial Henry-Faraday induction law, i.e.

d Ω2F = 0 ⇐⇒

dS ω2B = 0

LSV ω2B + dS ω

1E = 0

with the integral formulation

∂θ=0

∫ϕSθ (Σin)

ω2B = −

∮∂Σin

ω1E

for any inner-oriented surface Σin in a spatial slice.

Page 49: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Faraday law

−ω1E = LSV ω1

B + dS ω0E

= LSZ ω1B + Lv ω

1B + dS ω

0E

= LSZ ω1B + (dS ω

1B) · v + dS (ω1

B · v) + dS ω0E

= LSZ ω1B + ω2

B · v + dS (ω1B · v) + dS ω

0E

Usual formulation with dS (ω1B · v) dropped

−ω1E = LSZ ω1

B + ω2B · v + dS ω

0E

Page 50: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Synoptic table ( v = 0 )

new old

(E‖ ,E⊥) → (γ E‖ ,E⊥) (E‖ , γ (E⊥ + w × B))

(B‖ ,B⊥) → (B‖ , γ (B⊥ − (w/c2)× E)) idem

(H‖ ,H⊥) → (γH‖ ,H⊥) (H‖ , γ (H⊥ −w ×D))

(D‖ ,D⊥) → (D‖ , γ (D⊥ + (w/c2)×H)) idem

(J‖ , J⊥) → (J‖ , γ J⊥) (γ (J‖ − ρw) , J⊥)

ρ → γ (ρ− g(w/c2 , J)) idem

VE → VE γ (VE − g(w,A))

(A‖ ,A⊥) → (γ (A‖ − (w/c2)VE) ,A⊥) idem

Page 51: Una teoria consistente dell'induzione elettromagneticawpage.unina.it/romano/lecture-slides/ac_beamer2013.pdf · connected domain in S. Applying Amp ere law to closed surfaces out

Una teoria consistentedell’induzione

elettromagnetica

Giovanni Romano

Electromagnetics

Early discoveries andtheory

Simplifications

Early relativity theory

New theory

Denoting by ∇ the Euclid connection in spatial slices andassuming that the observer measures1) a magnetic potential independent of time,

LSZ ω1B = 0

2) a spatially constant scalar electric potential,

dS ω0E = 0

3) a spatially constant magnetic vortex field,

∇ω2B = 0

the formula for the electric field may be evaluated to get

−ω1E = (dS ω

1B) · v + dS (ω1

B · v) = ω2B · v−

1

2ω2

B · v =1

2ω2

B · v ,

or in terms of vector fields E = 12 v × B which is just one-half of

what is improperly called the Lorentz force.