Ultrafast processes in molecules

21
Ultrafast processes in molecules Mario Barbatti [email protected] VII – Organic photovoltaics

description

Ultrafast processes in molecules. VII – Organic photovoltaics. Mario Barbatti [email protected]. Organic Photovoltaics (OPV). OPV advantages: Potential low cost Flexible, light, and thin Easy processing. Recent reviews: Mishra and Bäuerle , Angew Chem Int Ed 51 , 2020 (2012) - PowerPoint PPT Presentation

Transcript of Ultrafast processes in molecules

Page 1: Ultrafast processes in molecules

Ultrafast processes in molecules

Mario [email protected]

VII – Organic photovoltaics

Page 2: Ultrafast processes in molecules

Organic Photovoltaics (OPV)

2

OPV advantages:• Potential low cost• Flexible, light, and thin• Easy processing

Recent reviews:• Mishra and Bäuerle, Angew Chem Int Ed 51, 2020 (2012)• Shang, Li, Meng, Wang, Shuai, Theor Chem Acc 129, 291 (2011)• Carsten, Vladimir, Rep Prog Phys 73, 096401 (2010)• Brédas, Norton, Cornil, Coropceanu, Acc Chem Res 42, 1691 (2009)

Page 3: Ultrafast processes in molecules

Efficiency h

3• Green, Emery, Hishikawa, Warta, Dunlop, Prog Photovolt 19, 565 (2011)

Page 4: Ultrafast processes in molecules

Organic Photovoltaics (OPV)

4

OPV advantages:• Potential low cost• Flexible, light, and thin• Easy processing

OPV drawbacks• Low efficiency (recombination, low charge mobility)• Short lifetime (oxidation, photochemical degradation)

Page 5: Ultrafast processes in molecules

OPV architecture

5

Planar heterojunction (PHJ)

Bulk heterojunction (BHJ)D A PHJ (%) BHJ (%)

PA C60 1.1 a 1.6 b

6T C60 0.8 c 2.0 c

• a Mayer, Lloyd, Herman, Kasen, Malliaras, Appl Phys Lett 85, 6272 (2004)• b Sakai, Taima, Yamanari, Yoshida, Fujii, Ozaki, Jpn J Appl Phys 49, 032301 (2010)• c Sakai, Taima, Saito, Org Electron 9, 582 (2008)

Page 6: Ultrafast processes in molecules

OPV operation

6

JSC

VOCVmp

Jmp

J

V

• OPVs are characterized in terms of macro-quantities like h, VOC, and JSC

• We do not expect to compute such quantities• But molecular computations may provide an indication of the adequacy of a D-A

Page 7: Ultrafast processes in molecules

D AD’ A’

7

LE D’

1. Photoexcitation

LE D

2. Exciton diffusion

CT D→A+ -

3. Charge transfer

+ -CT D’→A’

4. Charge separation

5. R

ecom

bina

tion

O

PV p

hoto

phys

ics

Page 8: Ultrafast processes in molecules

Ideal electronic structure

8

GS

CT D→A

LE Dbright

1. D should be photoexcited Large oscillator strength between

500 nm and 700 nm

2. CT D→A should be quickly populated with hot polarons LE D should be above and near CT D→A

D A

• To check these features, we need to classify the electronic states of the D-A complex

3. CT D→A should have a long lifetime

Large energy gap between CT D→A and states below

Page 9: Ultrafast processes in molecules

State classification

9• Crespo-Otero and Barbatti, Theor Chem Acc 131, 1237 (2012)

A B, ,

kA k k k kA A A B

c c S c c S

+

Using a Mulliken partition:

i

jj iA A

j iA A

+

-

Degree of delocalization over A and B

Amount of CT between A and B

II i j i j

i j

C

Considering a multielectronic wavefunction:

2 jI I ii jA A A

i jP C

- 2 jI I i

i jA A Ai j

P C

+

Page 10: Ultrafast processes in molecules

State classification

10

0.0 0.5 1.0 1.5 2.0-1.0

-0.5

0.0

0.5

1.0

CT BA

CT AB

LOC(A)

PA

PA

DELOCLOC(B)

Page 11: Ultrafast processes in molecules

Benchmarking…

11

Systematic investigation of the effects of:• D-A distance• D-A orientation• Oligomer size• Chemical environment• Chemical functionalization• Theoretical level

Page 12: Ultrafast processes in molecules

Computational details

12

• wB97X-D• 6-31G(d)• S0 D-A optimization• TDDFT: 40-70 states• G09• State classification

• Example: P3HT-PCBM• 240 atoms• 2 days (Xeon 3.3 GHz

10 cores)

S

S 3

PC60BM

C6H13

C6H13

3

2.5

3.0

3.5

4.0

4.5

Ener

gy (e

V)

Page 13: Ultrafast processes in molecules

Dependence on functional

13

• Extremely dependent on functional!• CTs are wrong without range-separation• C60 bands are blue shifted with range

separation.

2.0

2.5

3.0

3.5

4.0

4.5

wB97X-D(6-311G(df,2p))

M06-HFB3LYP PBE0 wB97X-D(6-31G(d))

M06-2X CAM-B3LYP

LC-BLYP( = 0.47)

LC-BLYP( = 0.29)

Ener

gy (e

V)

LC-BLYP( = 0.2)

f > 0.2

LOC(A)LOC(D)CT DACT ADDELOC

Page 14: Ultrafast processes in molecules

Double excitations…

14

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.52.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

21Gg

21B

6T C60

TDDF

T En

ergy

(eV)

DFT/MRCI Energy (eV)

30.0037.5045.0052.5060.0067.5075.0082.5090.00

% Singles

21A

• Constant blue shift between TDDFT and DFT/MRCI

• Exceptions: states with large multiple excitation character

Page 15: Ultrafast processes in molecules

Photophysics of D-A junctions

15

2.5

3.0

3.5

4.0

4.5 T1uGgHu

HuGuT2u

Hg

Gg

C60

Ener

gy (e

V)

6T 6T-C60

T1g,T2g

B

A

DOS PA f Singlet Triplet

f > 0.2

LOC(A)LOC(D)CT DACT ADDELOC

GS

CT D→A

LE Dbright

• How much does the electronic structure of the D-A complexes resemble the ”Ideal Electronic Structure”?

Page 16: Ultrafast processes in molecules

Dependence on D-A distance

16

• LOC does not show strong dependence on D-A distance

• CT is stabilized at short distances (Coulomb r -1 is expected)

0.00.22.5

3.0

3.5

4.0

4.5

2.8 3.0 3.2 3.4 3.6 3.8 4.02.5

3.0

3.5

4.0

4.5

f > 0.2

Ener

gy (e

V)

LOC(A)LOC(D)CT DACT ADDELOC

R0

CS

E (e

V)

D-A distance (Å)

Page 17: Ultrafast processes in molecules

Dependence on D-A orientation

17

LOC(A)LOC(D)DELOC

CT A→DCT D→A2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

PA : C60 (perp)

Ener

gy (e

V)

QP : C60

Ener

gy (e

V)

1.9

TBP : C60

Ener

gy (e

V)

0.91.0

5T : C60

Ener

gy (e

V)

1.3

DCV5T : C60

Ener

gy (e

V)2.5

PA : C60 (stack)

Ener

gy (e

V)

BCBP : C60

Ener

gy (e

V)

1.2

4T : C60

Ener

gy (e

V) 1.0

5T : PC60BM

Ener

gy (e

V) 1.0

BTDA : C60

Ener

gy (e

V)

1.2

0.8

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

2.0

2.4

2.8

3.2

3.6

4.0

PA : C60 (perp)

Ener

gy (e

V)

QP : C60

Ener

gy (e

V)

1.9

TBP : C60

Ener

gy (e

V)

0.91.0

5T : C60

Ener

gy (e

V)

1.3

DCV5T : C60

Ener

gy (e

V)

2.5

PA : C60 (stack)

Ener

gy (e

V)

BCBP : C60

Ener

gy (e

V)

1.2

4T : C60

Ener

gy (e

V) 1.0

5T : PC60BM

Ener

gy (e

V) 1.0

BTDA : C60

Ener

gy (e

V)

1.2

0.8

• LOCs are not affected• CTs are strongly affected• CTs are stabilized by stacking

Page 18: Ultrafast processes in molecules

Dependence on D size

18

• LOC(D)s are affected, but not LOC(A)s

• CTs are affected

S

S n/2

C60

2 4 6 8 10 12 142.5

3.0

3.5

4.0

4.5

f > 0.2

Ener

gy (e

V)

Number of monomers

LOC(A)LOC(D)CT DACT ADDELOC

Page 19: Ultrafast processes in molecules

Functionalization

19

2.5

3.0

3.5

4.0

4.5

6T-C60

Ener

gy (e

V)

P3HT-C60 P3HT-PCBMDOS PA f

f > 0.2

LOC(A)LOC(D)CT DACT ADDELOC

Page 20: Ultrafast processes in molecules

Environment

20

1 2 3 4 5 6 7 8 162.5

3.0

3.5

4.0

4.5En

ergy

(eV)

Dielectric Constant

f > 0.2

LOC(A)LOC(D)CT DACT ADDELOC

Page 21: Ultrafast processes in molecules

21

Next lecture

Quantum dynamics methods

[email protected]