Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic...

19
1 Ultracold Quantum Gases Part 3: Artificial gauge potentials Part 3 3.1 Lorentz force for neutral particles 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic field on a lattice 3.5 Engineering and probing topological band structures

Transcript of Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic...

Page 1: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

1

Ultracold Quantum GasesPart 3: Artificial gauge potentials

Part 3 3.1 Lorentz force for neutral particles

3.2 Berry curvature and artificial magnetic field

3.3 Artificial gauge potentials using Raman coupling

3.4 Artificial magnetic field on a lattice

3.5 Engineering and probing topological band structures

Page 2: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

2

Ultracold Quantum Gases3.4 Artificial magnetic field on a lattice

• Magnetic phenomena in the presence of a spatially periodic potential

» Competition between two length scales

Lattice spacing: a

Magnetic length:

» New phenomena when

Fractal structure for the energy spectrum “Hofstadter butterfly”

• Experimental realization with quantum gases

allows reaching strong fields in optical lattices

𝑎2

𝑙mag2 =

𝑒 𝐵𝑎2

ℏ= 2𝜋

Φ

Φ0

𝑙mag =ℏ

𝑒𝐵

𝑙mag ≈ 𝑎

𝑙mag ≈ 𝑎 ⇔ Φ ≈ Φ0

Φ0= h/e

Page 3: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

3

Hubbard Model

• Hubbard model

» 2D square lattice

» Single-band

» Nearest-neighbor hopping J

• Eigenstates and eigenenergies

» Bloch states

» Eigenenergies

Reduction to the 1st Brillouin zone

Band centered around E=0 with a full width of 8J

J

J

J

J

𝐸 𝑞 = −2𝐽 cos 𝑎𝑞𝑥 + cos(𝑎𝑞𝑦)

𝐻Hubbard = −𝐽

𝑗,𝑙

𝑗 + 1, 𝑙 ,𝑗ۦ 𝑙 + | 𝑗, 𝑙 + 1 ,𝑗ۦ 𝑙| + ℎ𝑐

| 𝜓(𝒒) =

𝑗,𝑙

𝑒𝑖𝑎(𝑗𝑞𝑥+𝑙𝑞𝑦)| 𝑗, 𝑙

Page 4: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

4

Gauge potentials on a lattice - Peierls phase

• Peierls substitution

» Presence of a gauge potential

↔ Complex tunneling matrix element

» Peierls phase

» Magnetic flux through a plaquette - Aharonov-Bohm phase

• Gauge potential in momentum space

𝜃𝑖,𝑗 =𝑒

ℏන𝑅𝑖

𝑅𝑗

𝑨 𝒓 ⋅ 𝑑𝒓

𝜃𝑖𝑗 =𝑒

ℏර𝑨 𝒓 ⋅ 𝑑𝒓 =

𝑒

ℏඵ𝑩 𝒓 ⋅ 𝑑𝑺 = 2𝜋

Φ

Φ0

12iJe

23iJe

34iJe

41iJe

q0

ieJ ieJ

a a0-π/a π/a

E(q

)

q

| 𝜓 𝑞0 =

𝑗

𝑒𝑖𝑎𝑗𝑞0| 𝑗 ⇒ 𝑞0𝑎 = 𝜃

Page 5: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

5

Harper Hamiltonian - Hofstadter butterfly

• Particle moving on a square lattice in presence of a magnetic field

» Same flux through each plaquette

» Landau gauge

» Peierls phase

• Harper Hamiltonian

• Energy spectrum: Hofstadter butterfly

» Invariant under

→ study of the spectrum for

» Magnetic field breaks the translational invariance

along y

» Fractal structure

Φ = 𝛼Φ0

𝑨 = −𝐵𝑦 𝒆𝑥

𝜃(| 𝑗, 𝑙 → 𝑗, 𝑙 + 1 = 0𝜃(| 𝑗, 𝑙 → 𝑗 + 1, 𝑙 = −2𝜋𝛼𝑙

𝛼 → 𝛼 + 1

0 ≤ 𝛼 < 1

J

liJe 2

J

)1(2 liJe

𝐻Harper = −𝐽

𝑗,𝑙

𝑒−𝑖2𝜋𝛼𝑙 𝑗 + 1, 𝑙 ,𝑗ۦ 𝑙 + | 𝑗, 𝑙 + 1 ,𝑗ۦ 𝑙| + ℎ𝑐

Page 6: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

6

Harper Hamiltonian - Hofstadter butterfly

• Rational values of the flux

» Translational symmetry restored along y

» Increased spatial period pa: magnetic unit cell

• Case α=1/3

» Magnetic unit cell: length of a along x and 3a along y

» Each unit cell contains 3 sites

→ Splitting of the energy spectrum in 3 sub-bands

• Origin of the fractal structure

» α=1/3 and α=10/31: very close values of α

» But very different results as 3 or 31 sub-bands!

𝛼 = 𝑝′/𝑝

𝜃(| 𝑗, 𝑙 + 𝑝 → 𝑗 + 1, 𝑙 + 𝑝 = −2𝜋𝛼(𝑙 + 𝑝)= 𝜃(| 𝑗, 𝑙 → 𝑗 + 1, 𝑙 modulo 2𝜋

J

liJe 2

J

)1(2 liJe

Page 7: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

7

Harper Hamiltonian - Hofstadter butterfly

• Recovering the Landau levels

» For low magnetic fluxes:

» Analog to a free particle in a static magnetic field

» Landau levels?

• Measurement of the Hofstadter butterfly

» Solid state systems

» Realized using the Moiré pattern in monolayer graphene

» Quantum gases?

𝑙mag ≫ 𝑎

Übungsblatt 9

Φ = Φ0 ⇔ 𝐵 ≈ Φ0/𝑎2

𝑎 ≈ 1 𝐴 ⇒ 𝐵 ≈ 4 105𝑇

Page 8: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

8

• Natural tunneling in an optical lattice

» Well controlled with the lattice depth

» Tunneling = hopping probability

• Getting complex tunneling

» Shift the dispersion relation

» Strong field regime reachable as one simulates directly the Peierls phase

Generating artificial gauge potentials on a lattice

𝐽 ≥ 0

q0

ieJ ieJ

a a0-π/a π/a

E(q

)

q

| 𝜓 𝑞0 =

𝑗

𝑒𝑖𝑎𝑗𝑞0| 𝑗 ⇒ 𝑞0𝑎 = 𝜃

0 ≤ 𝜃 < 2𝜋

Page 9: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

9

Generating artificial gauge potentials on a lattice

• Band engineering via periodic driving: “Floquet engineering”

» Periodic driving of the quantum system

» Analog to the Bloch theorem in time

Eigenstate: Floquet states

» Floquet theorem

• High frequency limit

» Faster than all other timescales in the system

» Effective Hamiltonian is time independent

» New properties can emerge in the effective Hamiltonian, especially gauge fields

𝐻eff = 𝐻 𝑡𝑇

𝐻 𝑡 + 𝑇 = 𝐻(𝑡)

|𝜓𝑛(𝑡) = |𝑢𝑛(𝑡) 𝑒−𝑖𝜖𝑛𝑡/ℏ

|𝑢𝑛(𝑡 + 𝑇) = |𝑢𝑛(𝑡)

|𝑈(𝑡1, 𝑡2) = 𝑃 𝑡2 𝑒𝑖𝐻eff 𝑡1−𝑡2 𝑃+(−𝑡1)

Page 10: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

10

Realization of artificial magnetic fields on a lattice

» Periodic acceleration of the optical lattice

» Periodic modulation of the lattice depth

Band engineering via periodic driving

0

20

40

60

80

100

120

140

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Publications with the word „Floquet“ in the abstract:(Source: arXiv:condensed matter section)

Page 11: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

11

Band engineering via lattice shaking

• Lattice shaking

» Modification of the frequency of one lattice beam

» Acceleration of the lattice in space → inertial force

» Semi-classical equation for the quasi-momentum

» Time-periodic force with zero mean value

• Renormalization of the band structure in 1D

» Sinusoidal shaking

» Effective band-structure

𝑭(𝑡) = −𝑚 ሷ𝒓(𝑡)

𝑭 𝑡 𝑇 = 0

𝐹(𝑡) = 𝐹0sin(𝜔𝑡)

⇒ 𝑞𝑘(𝑡) = 𝑘 +𝐹0ℏ𝜔

cos(𝜔𝑡)

Eeff(𝑘) =1

𝑇න0

𝑇

𝐸 𝑞𝑘 𝜏 𝑑𝜏

ℏ ሶ𝒒𝑘(𝑡) = 𝑭(𝑡)

Page 12: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

12

Band engineering via lattice shaking

• Effective tunneling

» Band structure and tunneling

» Effective tunneling

• Measurement with a condensate

» BEC: occupies the minimal energy

quasi-momentum k

» Quasi-momentum

retrieved after time-of-flight expansion

for different forcing amplitude K

Eeff 𝑘 =1

𝑇න0

𝑇

𝐸 𝑞𝑘 𝜏 𝑑𝜏 = −2𝐽eff cos(𝑘𝑎)

𝐸 𝑞 = −2𝐽barecos(𝑞𝑎)

𝐽eff = 𝐽bare𝐽0(𝐾)

𝐾 =𝐹0𝑎

ℏ𝜔

Page 13: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

13

Band engineering via lattice shaking

• Realization of complex tunneling

» Inertial force asymmetric around q=0

» Shift of the effective band structure

» Realization of complex tunneling elements

Sengstock, Simonet, Phys. Rev. Lett. 108, 225304 (2012)

ieJ ieJ

a a

Page 14: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

14

Band engineering via lattice shaking

• Realization of artificial magnetic fluxes

» Shaking of a triangular lattice → complex tunneling

» Alternating flux pattern

» Modification of the band structure

can be retrieved after time-of-flight

Sengstock, Simonet, Nature Physics 9, 738 (2013) kx

ky

ky

kx

ky

ky

12iJe 23i

Je

34iJe

Page 15: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

15

• Tilted optical lattice

» Along y: standard lattice potential, tunneling J

» Along x: tilted potential using a magnetic field gradient

→ tunneling suppressed by the energy offset Δ

• Raman coupling

» Restore the tunneling along x (photon-assisted tunneling)

» Realization of complex tunneling

Band engineering via amplitude modulation

Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)

𝜔1 − 𝜔2 = Δ/ℏ

𝐾pert =Ω

2𝑑2𝒓 𝑤∗ 𝒓 − 𝑹𝑚,𝑛 𝑒−𝑖 𝛿𝒌⋅𝒓𝑤(𝒓 − 𝑹𝑚,𝑛 − 𝑎𝒆𝑥) = 𝐾 𝑒−𝑖 𝛿𝒌⋅𝑹𝑚,𝑛

𝛿𝒌 = 𝒌1 − 𝒌2

𝑹𝑚,𝑛 = 𝑚𝒅𝑥 + 𝑛𝒅𝑦

Page 16: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

16

• Realization of the Harper Hamiltonian

» Accumulated phase around a closed path

» Raman beams propagating along x and y

» Tuning the flux: alignment of the Raman beams

• Amplitude modulation

» This scheme can be understood in the frame of Floquet theory

» Raman beams create a local optical potential

Induce a time-periodic on-site modulation of the lattice depth

» Spatially dependent phases not necessary in the minimal implementation

Band engineering via amplitude modulation

Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)

𝑉𝐾(𝒓) = 𝑉𝐾0 cos2(

𝛿𝒌 ⋅ 𝒓

2+𝜔𝑡

2)

Φ𝑦 = 𝛿𝑘𝑦𝑎

Φ𝑦 = 𝑘𝐿𝑎 = 𝜋 ⇒ 𝛼 = 1/2

𝐻Harper = −𝐽

𝑗,𝑙

𝑒−𝑖2𝜋𝛼𝑙 𝑗 + 1, 𝑙 ,𝑗ۦ 𝑙 + | 𝑗, 𝑙 + 1 ,𝑗ۦ 𝑙| + ℎ𝑐

Page 17: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

17

• Cyclotron motion of mass currents

» Cyclotron orbit around a square plaquette

» Finite mass current ↔ finite quasi-momentum

Band engineering via amplitude modulation

Bloch / Ketterle, Phys. Rev. Lett. 111 (2013) kx

ky

ky

kx

ky

ky

Page 18: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

18

• Harper Hamiltonian

» Realized

» Realized with quantum gases

Fluxes fully tunable but heating as to be taken care of…

Artificial magnetic fields on lattices - Status

Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)

Page 19: Ultracold Quantum Gases - physik.uni-hamburg.de€¦ · 3.2 Berry curvature and artificial magnetic field 3.3 Artificial gauge potentials using Raman coupling 3.4 Artificial magnetic

19

Generating artificial gauge potentials on a lattice

Momentum spaceFree particle

Particle on a lattice

E(p)

p

Real space

q0

ieJ ieJ

t

trAtrE

trAtrB

),(),(

),(),(

a a

0-π/a π/a

E(q

)

q

Bloch bands