Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter”...

59
F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 1 Ultra Low Power Analog Integrated Circuits for Implantable Medical Devices Fernando Silveira Universidad de la República, Uruguay CCC Medical Devices nanoWattICs

Transcript of Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter”...

Page 1: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 1

Ultra Low Power Analog Integrated Circuits

for Implantable Medical Devices

Fernando Silveira

Universidad de la República, Uruguay

CCC Medical Devices

nanoWattICs

Page 2: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 2 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 2

Objectives of this talk

• Introduce the needs and characteristics of Active Implantable Medical Devices (AIMDs) from the circuit designer point of view.

• Present the techniques and circuits applied in Analog ULP

• Device Modeling

• Design Methodology

• Circuit techniques

• Show the current research and development topics and prospects of the area

Page 3: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 3 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 3

Engineering School Universidad de la Republica

• Founded 1888, approx. 1k new students / year, 670 teaching staff

Page 4: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 4 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 4

• Since 1991

• Under Graduate & Graduate Teaching (MSc, PhD)

• Research

• Design of Analog / RF and Mixed-Signal Integrated Circuits, particularly Ultra-Low Power (ULP)

• Also works on ULP Digital / DC-DC and Embedded

• Industrial Experience

• Implantable Medical Devices

• 2007: spin-off: NanoWattICs

Microelectronics Group

Page 5: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 5 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 5

Implantable Devices in Uruguay

Feb. 3, 1960: Drs. O. Fiandra and R. Rubio

performed the first effective pacemaker implant to a human being in the world.

1969: Dr. O. Fiandra founded CCC to develop and manufacture pacemakers

1999: CCC develops a pacemaker line based on an ASIC designed by the Microelectronics Group of Universidad de la Republica

Today: CCC designs and manufactures active implantable devices and complete medical systems for third parties.

Page 6: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 6 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 6

Outline

I. System: Active Implantable Medical Devices Today

II. Transistors and Circuits: Analog Design for ULP.

Transistor Modeling.

Design Methodology.

III. Circuit Techniques: Implementation of AIMDs blocks

IV. Conclusions and Prospects

Page 7: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 7 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 7

Active Implantable Medical Devices (AIMD)

Implantable: Introduced inside the body by a medical procedure and intended to remain there after the procedure.

Active: Including a Power Source

Not considered here:

Passive implants (e.g. bone prostheses, valves, stents)

Page 8: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 8 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 8

Portable, Wearable, Swallowable Medical Devices …

http://mobilewellbeing.wordpress.com/

www.givenimaging.com

Page 9: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 9 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 9

Cardiac Pacemaker: first implantable device, 1960

AIMDs: Main Historical Milestones (I)

Cochlear Implants (1960s -)

Page 10: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 10 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 10

Cardiac Defibrillators (1980)

AIMDs: Main Historical Milestones (II)

Deep Brain Stimulator for

Parkinson (1995)

Page 11: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 11 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 11

• Heart Failure

• Obesity

• Diabetes

• Neurostimulators:

• Pain control

• Blood pressure control

• Foot drop correction

• Urinary incontinence

• Sleep Apnea

• …

• Patient monitoring

• Brain – computer interface

AIMDs: Some of the new developments

Page 12: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 12 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 12

• Pacemaker:

• Goal: Treat Bradycardia (slow heart rythm) and conduction disorders between atria and ventricles

• How: Stimulating to contract the heart when it does not contract spontaneously (“watchdog”)

• Sensing of:

• cardiac muscle signals that indicate ventricles / atria contraction

• other indicators of physical activity, additionally in some cases

Some system examples

Page 13: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 13 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 13

• Stimulation (Open Loop)

• Early Pacemakers

• Cochlear Implants

• Deep Brain Stimulators for Parkinson

• Neurostimulators (sometimes “Man/Woman in the loop”)

• Stimulation and Sensing (Closed Loop)

• Cardiac area (Pacemakers, Defibrillators, Heart Failure)

• Obesity

• Some Neurostimulators

• Only Sensing

• Implanted “long term Holter” (“insertable loop recorder”)

• Sensing + external actuation: Brain-computer interface

Basic Functions

Page 14: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 14 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 14

Stimulation: Voltage mode

• E.g.: Pacemakers

• 0.1V … 7.5V

• 50ms … 1.5ms

• Requires battery voltage multiplier.

• RL: 500 Ohms typ.

Page 15: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 15 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 15

• Neurostimulators and others

• 0.1mA … 10mA

• 30ms … 300ms

• Load voltages up to 15V => Requires battery voltage multiplier

Stimulation: Current mode

t

Page 16: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 16 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 16

Sensing: Medical signals in general

• Low frequency: from < 1 Hz to a few kHz (neural signals)

• Low amplitude: mV to mV

• Variability:

" Most measured quantities vary with time, even when all controllable factors are fixed. Many medical measurements vary widely among normal patients, even when conditions are similar “ (Source:J. Webster, Medical Instrumentation. Application and Design).

Objective of most analog signal processing: qualitative detection for closed loop control.

Traditionally advantage to analog implementation in terms of consumption, process scaling is changing this

Page 17: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 17 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 17

• Biopotentials:

• mioelectric signals (mVs, 100s Hz - 1kHz)

• cardiac signals (mVs, 10s Hz – 300Hz)

• neural signals (mVs, up to 8kHz)

• Impedance (tens of mOhms => mVs, few Hz)

• Movement (Physical activity, position) => accelerometer (mVs (sensor dependent), up to 10Hz)

Sensing

Page 18: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 18 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 18

• Telemetry

• Inductive (up to 10cms)

• 403 MHz MedRadio Band (a couple of meters)

• Battery Supervision (Voltage / Impedance / Consumed Charge Measurement)

• Lead Impedance Measurement

• Magnet Sensor (Reed Relay / Hall Sensor)

• Battery Recharge (if applicable)

• Control: Microcontroller & Firmware

Auxiliary Functions

Page 19: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 19 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 19

Non-implantable System Components

Medical System Components

IPG Leads

Programmer

System

PSA

Patient

wand

Battery

charger

Logger

Page 20: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 20

Example: Implantable Pacemakers

Stimulus

Sense Channel

Micro controller

Battery Supervision

Activity Sensing Lead

Selection (polarity)

Telemetry

Amplification, Filtering and Detection

Programmable Voltage Multiplier

0.1VDD a 2-3 VDD

35% / 6mA

30% / 5mA

18% / 3mA

17% / 2.8mA

Approx. Consumption Distribution

Page 21: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 21

Example: Closed Loop Stimulator for Drop Foot Correction (I)

• Neurostep System (Simon Fraser Univ, Canada, Neurostream Technologies)

• Closed loop operation based on neural signal sensing and neural stimulation

• On clinical trials

Page 22: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 22

Example: Closed Loop Stimulator for Drop Foot Correction (II)

http://www.youtube.com/watch?v=xH2vNu2BbnU

Page 23: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 23 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 23

General Requirements: Size (and Battery)

Currently approximately 12 cc (5cm x 4cm x 0.6cm)

Approx. 30 to 40% occupied by the battery

Less consumption = Smaller size @ Equal Service Life

Biotronik

1968- 1998 (Source: M. Wilkinson, course: MST for Medical Devices)

Consumption internal to the circuit: 50% to 75% of total consumption

There is room and need for improvement

Page 24: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 24

General Requirements: Power Supply (II)

For higher average consumption devices:

• Rechargeable lithium batteries (since approx. year 2000, capacity in the order of 0.3Ah)

• Direct powering from RF energy transmitted transcutaneously

Page 25: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 25 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 25

General Requirements: Safety and Reliability

This is not acceptable !!!

Source: Quino

Page 26: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 26 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 26

General Requirements: Safety and Reliability

Reliability => Frequency and probability of faults

Safety: Involves many aspects, particularly:

=> A single fault must not provoke a catastrophic event

High Reliability => Probability of single fault is low and double fault is virtually impossible

+ Safety

=> Probability of malfunctioning is low

=> Catastrophic Failure: virtually impossible

Page 27: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 27 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 27

General Requirements: Safety and Reliability

Involves all the stages:

System and Circuit Design

System and Circuit Verification, Qualification and Medical Validation

Medical Device Application, Configuration and Use

Strongly conditions design: E.g. Limiting DC leakage towards the heart under single fault conditions => external capacitors

Importance of paying attention from the very beginning to applicable standards on AIMD safety, risk analysis and applicable regulations.

Page 28: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 28 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 28

Outline

I. System: Active Implantable Medical Devices Today

II. Transistors and Circuits: Analog Design for ULP.

Transistor Modeling.

Design Methodology.

III. Circuit Techniques: Implementation of AIMDs blocks

IV. Conclusions and Prospects

Page 29: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 29

-0.5 0 0.5 1 1.5 2 2.510

-14

10-12

10-10

10-8

10-6

10-4

10-2

VG(V)

ID(A

)

Subthreshold

Current

Leakage Current

VT0

-1 0 1 2 30

2

4

6

ID(m

A)

VG(V)

VT0

MOST Inversion Regimes (1)

Strong Inversion (S.I.)

ID(VG-VT)2

Weak inversion:

IDeVG/(n.UT)

Moderate inversion

Page 30: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 30

All regions, continuous MOST models

• EKV (Enz, Krummenacher, Vittoz, EPFL, AICSP 1995): originally mathematic interpolation between strong and weak inversion equations, now physical

• ACM (Advanced Compact Model, A. Cunha, C. Galup-Montoro, M. Schneider, UFSC, IEEE JSSC 1998): Physical model.

• … or experimental / simulation curves

0 0.5 1 1.5 210

-15

10-10

10-5

VG(V)

ID(A

) Strong Inversion

Approximate Limit

Weak Inversion

Approximate Limit

VT0

Weak Inversion

ModelStrong Inversion

Model

General Model

Leakage

Current

Page 31: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 31

“Intrinsic” MOS Amplifier

A0=gm/gd A (dB)

f(Hz)

fT=gm/(2..CL)

V

vi

vo

CL

ID

DDV

vi

vo

CL

ID

DD

vi

vo

CL

ID

DD

D

d

D

mA

D

m

d

mom

I

g

I

gV

I

g

g

grgA ..0

T

0

0

L

mT

f2

s.A1

AA ,

C2

gf

• Consumption: ID

• Speed gm/CL

• CL: total: external + parasitics

• Speed - Consumption trade-off : gm/ID

OTA: Operational Transconductance Amplifier

Page 32: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 32

gm/ID vs. VG

G

DGD

DD

m

V

)Ilog(VI

I

1

I

g

• gm/ID is the slope of ID vs. VG in log scale

Maximum in WI

Equal to 1/(n.UT)

n typ: 1.3 a 1.5 -0.5 0 0.5 1 1.5 2 2.5

10-14

10-12

10-10

10-8

10-6

10-4

10-2

VG(V)

ID(A

)

Subthreshold

Current

Leakage Current

VT0

Page 33: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 33

gm/ID vs. ID

10-15

10-10

10-5

100

0

5

10

15

20

25

30

35

40

ID(A)

gm

/ID

(1/V

)

gm/Ic, transistor bipolar

• As the current increases, the “gm generation efficiency decreases”

• To reach the maximum frequency allowed by the technology:

=> high gm => high current => strong inversion => low efficiency

W/L =100 and 0.8mm technology.

Bipolar Transistor:

gm/IC

independent of current in a wide range

Page 34: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 34

gm/ID and transistor size

ID=mCox(W/L).f(VG, VS, VD)

S

Dfnorm

ox

Dnorm

Dnormnorm

D

m

I

IiI

LWC

II

LW

IIf

I

g

)/(

)/( I

m

When short channel effects are significant: L,If

I

gnorm

D

m

When short channel effects are not significant:

10-10

10-8

10-6

10-4

10-2

0

5

10

15

20

25

30

ID/(W/L)(A)

gm

/ID

(1/V

)

Page 35: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 35

Design Methodology: gm/ID key variable

0

10

20

30

40

1.E-12 1.E-10 1.E-08 1.E-06 1.E-04

ID(A)

gm

/ID

(1

/V)

10-12

10-10

10-8

10-6

weak inv.

mod. inv.

strong inv.

1/nUT 2/GVO

Circuit Performance Transistor Operating Mode

Transistor Sizing

gm / ID

ID=mCox(W/L).f(VG, VS, VD)

g

If I

I

W L

II

C W L

m

Dnorm norm

D

normD

ox

I

( / )

( / )m

[Silveira, Flandre, Jespers, IEEE JSSC 1996, P.Jespers, Springer, 2010]

gm.vi gdVi

VO

CL

ID

VDD

CL

Vi VO

Ag

IV

g

C C

g

IIm

D

A

m

L L

m

D

D0

1

2

1

2 fT

Page 36: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 36

W/L C gm

Optimum of Power Consumption

10-10

10-8

10-6

10-4

10-2

0

5

10

15

20

25

30

ID/(W/L)(A)

gm/ID

(1/V

)g

m/I

D (

1/V

)

ID/(W/L) (A)

Weak inversion: IDeVG/(n.UT)

Moderate inversion

Strong inversion (ID(VG-VT)2)

gm/ID ID

Usually an optimum exists in moderate inversion

• Working towards WI

Page 37: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 37

Example Intrinsic Amplifier: Power Optimum

0 5 10 15 20 2510

-5

10-4

gm/ID (1/V)

ID (

A) 0 5 10 15 20 25

100

101

102

103

104

gm/ID (1/V)

W1 (

um

)

fT=10MHz, CL=3pF, L=2mm, tech: 0.8mm

V

vi

vo

CL

ID

DDV

vi

vo

CL

ID

DD

vi

vo

CL

ID

DD

0 5 10 15 20 252

4

6

8

10

12

gm/ID (1/V)

CLto

t (p

F)

Page 38: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 38

Example Intrinsic amplifier 0.8um, CL 3pF

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 5 10 15 20 25 30

gm/ID(1/V)

ID(A

)

100kHz

1MHz

10MHz

100MHz

1GHz

M.I. optimum

W.I. optimum

S.I. optimum

10-10

10-8

10-6

10-4

10-2

0

5

10

15

20

25

30

ID/(W/L)(A)

gm

/ID

(1/V

)g

m/I

D (

1/V

)

ID/(W/L) (A)

Page 39: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 39 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 39

gm/ID in the nanometer era

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

0

5

10

15

20

25

30

35

ID/(W/L) (A)

gm

/ID

(1

/V) L

=0.10,0.11,0.12,0.13,0.14

L=0.5L=1.0

L=4.0

W=10um,L(um)VDS=0.6V

Derived based on data from P. Jespers, The gm/ID Methodology a sizing tool for low-voltage analog CMOS circuits, Springer, 2010, extras.springer.com

Experimental data, 90nm CMOS process

Page 40: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 40 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 40

gm/ID in the post CMOS era

B. Sensale-Rodriguez et al, IEEE SubVt 2012, joint work with U. Notre Dame, Indiana. Seabaugh and Zhang: Low Voltage Tunnel

Transistors for Beyond CMOS Logic

Page 41: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 41 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 41

Outline

I. System: Active Implantable Medical Devices Today

II. Transistors and Circuits: Analog Design for ULP.

Transistor Modeling.

Design Methodology.

III. Circuit Techniques: Implementation of AIMDs blocks

IV. Conclusions and Prospects

Page 42: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 42 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 42

Example of modules: Pacemaker Activity Sense

Objective:

E.g. Activity indicator: 3s Average of the absolute

value of acceleration in the 0.5 - 7 Hz band.

Sensor 3s Averaging

Amplifier / filter

Ideal Rectifier

Amplitude: tens to hundreds of mV

Page 43: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 43 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 43

Accelerometer Signal Conditioning (1): Amplifier / Bandpass filter

High pass

characteristic

Vs

Vf

Input signal

Feedback signal

Double input symmetrical OTA (DDA)

Vo

Vo=A1Vs+A2Vf

ISCAS 1998

Gain (V/V) 2900

Equivalent input noise (mVrms)

18

Consumption (mA)

2.4

Page 44: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 44

Accelerometer Signal Conditioning (2): Results

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

dig

itiz

ed

ou

tpu

t o

f cir

cu

it

ca

rd

iac freq

.(p

pm

)

time(s)

actual cardiac frequency of healthy patient

simulated pacemaker frequency

circuit output

Page 45: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 45

Accelerometer Signal Conditioning (3) : Gm-C implementation

A. Arnaud (UR), C. Galup (UFSC), ISCAS 2004

FiltroFiltro--Amplificador 0.5Amplificador 0.5--7Hz7Hz

CC11=550p=550p

VVBiasBias==

700mV700mV CC22=50p=50p

VVOutOut11

++

GGm1m1

GGm2m2

GGm3m3

VVININ

SensorSensor

VVlinlin==5mV5mV

CC33=50p=50p

VVOut2Out2

++

GGm4m4

GGm5m5

GGm6m6

VVlinlin==500mV500mV

CC44=250p=250p

G=385G=385

Gm4=21nS

Gm5=2.5nS

Gm6=89pS

Ganancia 2a:

G2=8.3

Gm4=21nS

Gm5=2.5nS

Gm6=89pS

Ganancia Preamplificador:

G1=46.4

IDD= 290nA

Equivalent

Input noise:

2.1mVrms

Gain: 390

Fully

integrated

Page 46: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 46

Example of modules: Neural Recording Amplifier

• Objective: Signal detection from e.g: cuff electrodes or cortical electrodes arrays

• Requirements:

• 0.5mVrms - 2mVrms noise

• BW: 300Hz – 8kHz

• High CMRR (particularly in Cuff)

• Block high DC offsets (100mV or more) due to electrode/tissue contact

• Negligible DC input current

• A lot of research in this area ….

Page 47: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 47 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 47

Neural Amplifier Front End (1): Capacitive Feedback

• Inversion region for noise / power optimization: e.g. input pair weak inversion, current mirror active load: strong inversion

• CMRR limited by capacitor matching.

Harrison et al, IEEE JSSC, June 2003

Gain 40 dB

BW 0.13 Hz / 7.5 kHz

Itotal 16 mA

NEF 3.8

vnoise rms 2.1 mV

CMRR > 42 dB

MOS –Bipolar Pseudoresistor (100s Mohms equivalent)

Page 48: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 48

Neural Amplifier Front End (2): DDA Based

J. Sacristán, T. Oses, IFESS 2002,

Another DDA Based Scheme: M. Baru, U.S. Patent 6.996.435, 2006

• High CMRR

(Given by Input Differential Pair)

• Both Differential

Pairs contribute equally to Input Noise (hence to area and consumption)

Page 49: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 49

Neural Amplifier Front End (3): “Asymmetrical” DDA Based (I)

P. Castro, F. Silveira, ISCAS 2011

• Effect of noise (and

hence consumption and area) of Gm2 greatly reduced while keeping high CMRR (given by input differential pair)

• Gm2 less effective in compensating input offset and DC components => Output DC and high pass characteristic fixed by local feedback at the output

Page 50: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 50

Neural Amplifier Front End (4): “Asymmetrical” DDA Based (II)

Spec Castro,

ISCAS 2011

Harrison,

JSSC 2003

Wattapanitch,

TR. BIOCAS

2007

Sacristan,

IFESS 2002

Architecture Asym. DDA Capacitive Capacitive DDA

A (dB) 48 40 41 80

NEF 4.2 3.8 2.7 53.4

Itotal(mA) 16.5 16.0 2.7 180

vi noise

(mVrms)

2.4 2.1 3.1 7.6

CMRR > 107 > 42 > 66 90

Page 51: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 51 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 51

Outline

I. System: Active Implantable Medical Devices Today

II. Transistors and Circuits: Analog Design for ULP.

Transistor Modeling.

Design Methodology.

III. Circuit Techniques: Implementation of AIMDs blocks

IV. Conclusions and Prospects

Page 52: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 52 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 52

Prospects: Digital vs. Analog

• Theoretical limits of power consumption for Analog and Digital Signal Processing

• Analog better for low S/N, but the border is moving ...

• “Digital” pacemaker already present in marketing

Scaling

Source: E. Vittoz

Page 53: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 53

Prospects: Analog ULP and AIMD

• Intense growth of applications / therapies on development and reaching the market

• Broad Analog / Circuit research area:

• Sensing

• Stimulation, Power Management / Battery Recharge, Communication, …

• Once very specific area, now wider (wireless sensor networks, body area networks, portable devices, energy scavenging devices, RFID, ...).

Page 54: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 54 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 54

Prospects: AIMDs Brain Computer Interface

Set. 2000, Nicolelis, Duke University

Page 55: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 55 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 55

Prospects AIMDs: Brain Computer Interface

July 2004: Pilot FDA trial started by spin/off company of Brown Univ., several tetraplegic patients implanted.

Page 56: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 56

Some Conclusions

•ULP ICs for AIMDs: Each nA counts => Methodology and Optimization

•AIMDs: Very broad field in strong expansion Many R & D opportunities Microtechnology is often the enabling factor.

•AIMDs: Price is not the main concern, but application and performance Suitable for developments with lower volume

productions than in other areas High investment associated with long

development cycles, qualification, clinical testing and regulatory aspects.

Page 57: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 57

Microelectronics Group – IIE Universidad de la República

More Information

iie.fing.edu.uy/vlsi

[email protected]

Acknowledgements

• CCC Medical Devices, NanoWattICs

• Members (present and past) of Microelectronics Group, UR

Page 58: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 58 F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 58

Deadline: 1st Nov, 2013 10th Nov, 2013

Upcoming Regional Events

Deadline: 15th Oct, 2013

LASCAS / Iberchip 2015: Uruguay

Page 59: Ultra Low Power Analog Integrated Circuits for … · • Implanted “long term Holter” (“insertable loop recorder”) •Sensing + external actuation: Brain-computer interface

F. Silveira, Univ. de la República, Montevideo, Uruguay 5to. Seminario. Nanoelectrónica y Diseño, INAOE, Puebla 59

Thank you !