UK Fluids Network · Work Areas - Natural Gas / CH4. - Alternative fuels –syngases, biogas,...

40
UK Fluids Network Experimental Combustion/UK SIG Combustion 28 Sep 2017 Simone Hochgreb, University of Cambridge

Transcript of UK Fluids Network · Work Areas - Natural Gas / CH4. - Alternative fuels –syngases, biogas,...

UKFluidsNetworkExperimentalCombustion/UKSIGCombustion28Sep2017

SimoneHochgreb,UniversityofCambridge

ExperimentalcombustionresearchUK

Imperial

EdinburghStrathclydeGlasgow

SheffieldLeeds

Loughborough

Cardiff UCL

Brighton

Oxford

Cambridge

DDaannPPuugghh

ConstantVolumeBombHPOC/SwirlBurner

EPSRC- AGTCounterflowBurner

26th [email protected]

GGTTRRCCEEXXPPEERRIIMMEENNTTAALLCCOOMMBBUUSSTTIIOONN

SSttuuddyyLLaammiinnaarrFFllaammeePPrrooppaaggaattiioonn

- Schlierenopticaltechniqueemployedtomeasurelaminarflamespeed.

- Facilitatesparametricevaluationoftemperature,pressure,reactantmixtureandhumidity.

- CharacteriseflamestretchandinfluenceonpropagationusingMarksteinlength.

- Massflowcontroltoregulategaseousorvaporisedfuelandequivalenceratio.

Constantvolumebomb

WWoorrkkAArreeaass

- NaturalGas/CH4.

- Alternativefuels– syngases,biogas,industrialby-productgases.

- Parametricchangesintemperatureandpressure,derivingpowerlawcorrelations.

- Reactionmechanismoptimisation,anddevelopment.

- Contemporaryworkinvestigatingcatalyticenhancementofheavilycarbonaceousfuelswithwateraddition.

UUppccoommiinnggWWoorrkk

- Influenceofhigherhydrocarbonadditiontonaturalgas(LNG),andchangeinthermo-diffusiveinfluence.

- CorrelatingresultsagainstbehaviourwitnessedingenericGTrepresentativeswirlburner.

D G. Pugh, A P. Crayford, P J. Bowen, M Al-Naama, Parametric investigation of water loading on heavily carbonaceous syngases, Comb. & Flame, Vol 164, 2016, Pages 126-136,

http://dx.doi.org/10.1016/j.combustflame.2015.11.009

Constantvolumebomb

EExxppeerriimmeennttaallFFaacciilliittyyMMooddiiffiiccaattiioonn

- Injectandvaporiseliquidfuel,thenchargeairandover-pressurisethesystem.

- Rapiddecompressionfrominternalpistonformsquasi-homogenousmist,dropletscharacterisedwithlaserdiffractionsystem.

- Quantifytheinfluenceofobstacleinducedturbulence,withmixtureignitedfromtop.

- Opticaltachometersprovidescalablerotationalspeedtoinduceturbulenceintothesystem.

motor

ReflectiveSpot

Shaft

Fan

Tachometer

DDyynnaammiiccVVoolluummeeBBoommbb

SWIRLBURNER

HPOC

Plenum HPOCLance MixChamber AccessWindow

QuartzTubeNozzle

HHPPOOCC–– SSwwiirrllBBuurrnneerr

SSyysstteemmCCaappaabbiilliittyy

- Casingratedto900K,16bar.

- Axialandtangentialopticalaccess.

- Liquidorgaseousfuelsupply,withcombustorsoperatedinpremixedordiffusionconfigurations.

- Fivelinesallowforfuel/oxidantmixtureblending,withprecisemassflowcontrol.

- Convergentquartztubesfacilitateopticalaccess,withrepresentativecombustorgeometry.

- Pressurisedsteamsupplytofacilitatehumidifiedcombustion.

AAnnaallyyttiiccaallDDiiaaggnnoossttiiccTToooollss

- Opticaltechniquesincluding;highspeedfilming,Schlieren,Chemiluminescence,ParticleImageVelocimetry(PIV)andPlanarLaserInducedFluorescence(PLIF).Highfrequencypressuretransducersgiveacousticoutputofthesystem.

- Onlinegasanalysisforrealtimemeasurementofexhaustemissions,including;CO,CO2,NO,NO2,(TotalNOx),O2 andunburnedhydrocarbons.

HHPPOOCC–– SSwwiirrllBBuurrnneerr

CCoonntteemmppoorraarryyWWoorrkk

- FuelFlexibility- Investigatingchangesinnaturalgascomposition,(Gas-to-Power,LNG,H2,CxHy)forchangesinflameshape,burneroperability,emissions,andthermoacousticresponseofthesystem.

- CarbonFree‘Green’combustion- StabilisingblendedH2andNH3 forGTcombustorsandenergystorageapplications.

- ExhaustGasRecirculation- InvestigatechangeinCO2reactantfractionsonflameoperabilityandproducedemissions,andhowthismayinfluencedownstreamCCStechnology.

- Humidifiedcombustion- ReducingflametemperatureswithH2OtoreduceNOx emissions.WorkpresentedatASMETurboexpo2017.

OH*Chemiluminescence AbelDeconvoluted

OHPLIF

NOx Emissions

D.G. Pugh, P.J. Bowen, R. Marsh, A.P. Crayford, J. Runyon, S. Morris, A. Valera-Medina, A. Giles, Dissociative influence of H2O vapour/spray on lean blowoff and NOx reduction for heavily carbonaceous syngas swirling flames, Comb. and Flame, Vol. 177 Pages 37-48

2017http://dx.doi.org/10.1016/j.combustflame.2016.11.010.

HHuummiiddiiffiieeddCCOOWWoorrkk

0 50

75

0 0.006 0.012 0.024 0.046 0.088 0.145

Scaleinmm

10

0

ConverterGas/ Air/ H2O CH4 / Air200ImageAverage

MolarReactantH2OFraction0

Re- 17.8 Re- 17.9 Re- 18.1 Re- 18.3 Re- 18.7 Re- 19.5 Re- 20.8 Re– 18.5

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

LBO

Equ

ival

ence

Rat

io(Ø

)

MolarReactantH2OFraction

T– 423K

CO(D

ry1

5%O

2)–

ppm

V0

10

20

30

40

50

60

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

20

40

60

80

100

120

140

160

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

MolarReactantH2OFraction

NO

x(D

ry1

5%O

2)–

ppm

V

MolarReactantH2OFraction

50-80%molCO

10-18%molCO2

10-15%molN2

1-3%molH2

CCoouunntteerrfflloowwBBuurrnneerr

EExxppeerriimmeennttaallFFaacciilliittyy

- Counterfloworopposedflowburnersstabiliseflamesbetweenconcentricjets.

- Allowingmeasurementoflaminarflamespeed,turbulence,extinctionstrainrate,chemicalspeciationandsootformation.

- Reactantsshroudedwithinertflowtopreventsecondaryflameformation.Setupcanbeconfiguredforpremixedordiffusionflames.

CCoouunntteerrfflloowwBBuurrnneerr

DDeevveellooppmmeennttoofftthheeCCaarrddiiffffFFaacciilliittyy

- Imperialdesignmodifiedtooperateatelevatedtemperature(473K)andpressure(10bar).

- Reactantpreheatwillfacilitatecombustionofprevaporisedliquidfuels,andhumidifiedcombustion.

- Diametricquartzwindowswillallowfortheapplicationofopticaldiagnostictechniques.

- DesignhasallowedfortrialofcomponentsbuiltusingAMor‘3Dprinted’stainlesssteeltechnology,withintegratedcoolingchannels.

- Planstotestappliedequivalenceratiomeasurementtechnique,employingquantifiedchemiluminescenceratios.

Turbulentflows• Scalar / Thermal Dissipation rate conditional on mixture fraction in

swirling flows with and without reaction • Development of scalar dissipation rate measurements for non-reacting and

reacting flows - Experiments in Fluids 55, (2014) • Measurements of Scalar Dissipation rate in unsteady gas jets, simulating

automotive injectors – Physics of Fluids 27, (2015)• Measurements of scalar dissipation rate in non-reacting Swirl burners.

Experimental evaluation of SGS models for LES and quantification of the behaviour in the flows – Physics of Fluids 27, (2015), and Physics of Fluids 28, (2016)

• Development of thermal dissipation rate measurements in swirl-stabilisedburners based on Rayleigh Scattering – publication in preparation

• Measurements of Velocity, Temperature, Thermal dissipation rate in swirl stabilised burner using PIV and Rayleigh – publication in preparation

• Flow-Flame interactions• Simultaneous multiple plane measurements of reaction zone and flow

velocity field [with emphasis on fractal grid flames]. [Fluid Dyn. Res. 45, (2013); Proc. Comb Inst. 35, (2015) & Combustion and Flame 162, (2015); publication in preparation]

• Volumetric measurements in swirl stabilised burner - starting Jan. 2018. This will include flow velocity, reaction zone and fuel concentration

• Laser Ignition of jets of gas and liquid fuel• Experiments in Homogeneous Isotropic Turbulence without mean flow at various levels of

turbulence [Proc. Comb Inst. 36, (2017); ongoing]

• Development and application of Laser Diagnostics• Development of LIBS for Air-Fuel ratio measurements in flames. Sensors for monitoring

fuel variability. Applications in swirl burners and gas turbine combustors [18th Int Sympon Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 4-7 July 2016; ECM 2017; ongoing]

• Flame Chemiluminescence for different fuel blends. Experiments and Detailed chemistry calculations. Sensors for flame monitoring of heat release rate and air-fuel ratio. Application in swirl burners and gas turbine combustors. [AIAA paper 2017-0153; ECM 2017; ongoing]

• CO Laser Induced Fluorescence in Reacting flows – [ongoing]• Development of plenoptic imaging (camera and processing software) [21st ILASS-Japan,

Tokyo, Japan, 17-18 December 2012; 18th Int Symp on Applications of Laser Techniques to Fluid Mechanics”, Lisbon, Portugal, 4-7 July 2016; ongoing]

• Development of novel flow velocimetry and temperature technique that operates without seeding particles [patent pending]

Gasturbinecombustion• Combustion oscillations and control of emissions

• Development of tools for prediction of self-induced combustion oscillations and associated control [ECM 2017; ongoing]

• Non-linear dynamics of time-dependent pressure, flow velocity and heat release rate with and without oscillations [publication in preparation; ongoing]

• Time dependent PIV velocity measurements and OH PLIF measurements conditional on pressure under combustion oscillations [partly complete-preparation of publications; ongoing]

• Effects of Fuel variability and fuel or air dilution by inert gases on combustion [ongoing]

Combustion SIG –Oxford capabilitiesBen Williams, Martin Davy and Richard Stone28th September 2017

Burnerstudies

• Laminarflames(SantoroandGülder,left)• Firewhirl /firetornado(centre)• Turbulentnon-premixedburner– oxy-fuel(right)

Opticaldiagnostics

• Temperature(LITGS,Rayleigh,pyrometry)• Sootvolumefraction(pyrometry,extinction)• Particlesize(staticlightscattering)• Tomography• RadicalspeciesbyLIFandchemiluminescence

• OH,CH,CH2O,CN…• Localisedextinction;heatreleaseimaging• ParticleImageVelocimetry,~10Hzand8kHz

• Newlaserdiagnosticslabsinbuildnow

Othermethods/comments

• Non-opticalmethods:• Thermophoreticsamplingwithelectronmicroscopy• Finegaugethermocouplescan• Hotwireanemometry

• Exhaustsampling:• Cambustion Fast-FID• Cambustion DMS500

• Laminarburnersarequiteportable

Combustionbomb

• Controlledenvironment• Laminarburningvelocity• Schlieren,chemiluminescence

OxfordColdDrivenShockTube

• Transienttestfacilitythatcanreproducee.g.dieselcombustionconditions

• Optically-accessibletestsection• Construction/commissioninginprogress

CLOSEUPOF70X30MMOPTICALACCESSWINDOW(x3)

• CENTRALLYMOUNTEDSINGLEHOLEDIESELINJECTOR–ECN‘SPRAYA’

• HEATEDFUEL,1700BARINJECTIONPRESSURE

CDSTcapabilities/diagnostics

• Opticaldiagnosticsactivity• Highspeedspraycombustionimaging:shadowgraphy,schlieren,

Miescattering.LITGS

• Ignitiondelay• Opticaltechniquesorcapturepressureriseatsidewall

• Pre-mixedchemicalkineticsstudiesalsoplanned,withorwithoutspraycombustion(dualfuelling)

Condition Pressure(bar)

Temperature(K)

Testduration(airdriven,ms)

Testduration(Hedriven,ms)

LowCondition 50 500 5 14

Design– ECN‘SprayA’

60 900 3 10

Highcondition 120 1500 - 8

Shocktubeinstallation

DEDICATEDLASER-SAFEROOMAROUNDOPTICALSECTIONFOROPTICALANDLASERDIAGNOSTICS

Measurement techniques:• Flame studies based on laser-induced fluorescence (LII) and laser-induced incandescence (LIF):

• Polycyclic aromatic hydrocarbons (PAH)• Nanoparticulates / soot• Intermediates: OH, CH• Temperature

• Cavity-ring down and cavity-enhanced absorption spectroscopy:

• Sensitive concentration measurementsIntermediates: OH, 1CH2, HCO, C2H2

University of StrathclydeDr Iain Burns

Diode laser cavity ring-down spectroscopy in flames

• Previous cavity ring-down work in flames had been based on pulsed dye lasers• Near infrared diode lasers are used here for in situ cw-CRDS• Applied to measure acetylene concentration profiles in rich ethylene-air flames

Humphries,G.S.etal.(2016).IEEEPhot.J.,8(1),3900110

LII using a Long-Pulsed Fibre Laser• For reasons of practicality and safety it may be

attractive to use pulsed fibre lasers when performing LII in industrial test environments

• Their optical properties differ from typical Nd:YAG lasers, including much longer pulse length

• LII with long-pulse fibre lasers has been compared to reference measurements by ‘standard LII’ in a stable flat-flame

RobertRoyhasaposter

Mastorakos• EXPERIMENTAL

• Swirlflames:extinction,ignition,flametransferfunctions

• Annularcombustor:flametransferfunctions,light-round

• Diagnostics:10kHzOH-PLIF,10HzOH-PLIF,10HzCH2O-PLIF,LIBS

• COMPUTATIONAL

• LESwithConditionalMomentClosure:ignition,blow-off,emissions

HochgrebTurbulentflames&sprays

HSPIV

OHPLIF

droplet flux - PDA

Spraycombustion

experiments

Chong, C.T., S. Hochgreb, Spray flame structure of rapeseed biodiesel and Jet-A1 fuel, Fuel. 115 (2014) 551–558 doi:10.1016/j.fuel.2013.07.059.

MohdYasin, M. F ., Cant, R.S., Chong, C.T., Hochgreb, S. Discrete multicomponent model for biodiesel spray combustion simulation, Fuel. 126 (2014) 44–54 doi:10.1016/j.fuel.2014.02.020.

diesel

PME

OH*model

droplet flux

ThermographicPIV

Fan,L.,Gao,Y.,Hayakawa,A.,Hochgreb,S.,2017.Exp.Fluids58,34.DOI:10.1007/s00348-017-2313-2

• Extensions:higherT• Heattransfer• LDA(Heyes/Strathclyde)

HighresolutionsootvolumefractionviacavityextinctionandLII

Tian,B.,Gao,Y.,Balusamy,S.,Hochgreb,S.,2015.Appl.Phys.B120,469–487.DOI:10.1007/s00340-015-6156-3

- extension:liquidfuels- carbonnanotubes- nano oxides

Laser-InducedThermalGratingSpectroscopy(LITGS)

Pump

Pump

Thermal Grating

ProbeLITGS signal

𝜏𝜏 =Λ𝑐𝑐𝑠𝑠

[N2]/([N

2]+[O

2])

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Te

mp

era

ture

(K

)

1600

1800

2000

2200

2400

2600

2800

3000

3200

LITGS temperature

Adiabatic flame temperature

OH/5barCH4flame

measurec

Extension:• 1kHzc measurementsentropyspots@355nm

(thermoacoustics)

Hayakawa,A.,etal.,2016.JapaneseSymposiumonCombustion,November23-25,Sendai,Japan.p.P102.

Directnoise

Indirectnoise

DeDomenico/Fan/Williams/Shah/Hochgreb

CERS– CavityenhancedRamanspectroscopy

36

F𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =𝐹𝐹𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

Finesse=1000

C-H

𝐹𝐹� = 99.9935% 𝐹𝐹� = 99.997%

𝜆𝜆�

𝜆𝜆�𝜆𝜆�

𝜆𝜆� = 532mm

Furtherafield

Sheffield(Pourkashanian):- Downwardfiredcoal- CCS- Kineticsofalternativefuels

Leeds(Lawes,Bradley):- Combustionbomb- Turbulentcombustion- Blowoff/liftoff

Edinburgh(Linne,Peterson):- Femtoseconddiagnostics- Sprays- Walleffectsinengines

UCL:- Heatreleaseimaging

Loughborough(Carrotte):- Highpressurecombustion

facility

SummaryCAM CARD IMP OXF STR OTHER

Comb.Bomb

x x

Lamflame

x x x x x

Shocktube

x

Turb.FlameImaging

x x x EDINUCL

Sprays x x x x EDINBRI

Highpressure

x x EDIN

Diag.develop.

x x x

Futureopportunities• Joiningexistingfacilitiesanddiagnosticscapabilitiesfor

addressingdifficultproblems(e.g.shocktube+cw laserdiagnostics;highpressurefacilities+imagingdiagnostics,highfrequencydiagnostics+entropyspots)

• Exchangingexperience:trainingPhD/RAsinawiderrangeoftechniques(e.g.TDLAS,PIV)oringreaterdepth

• Addressingkeyproblemsinmodelling(e.g.subgridassumptions,assumedclosurepdfs),andmotivate/justifynewfacilities/projects(e.g.fs-CARSatEdinburghfordetailedworkinflames)

• … andmuchmuchmore…