UCLA Math REU 2013: Epilepsy and EEG/fMRIbertozzi/WORKFORCE/REU 2013/Epilepsy/final... · Temporal...

44
UCLA Math REU 2013: Epilepsy and EEG/fMRI Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T. August 7, 2013 Heal, K., Navarro, K., Wollner, M., Yan, E., UCLA Math REU 2013: Epilepsy and EEG/fMRI 1 / 42

Transcript of UCLA Math REU 2013: Epilepsy and EEG/fMRIbertozzi/WORKFORCE/REU 2013/Epilepsy/final... · Temporal...

UCLA Math REU 2013: Epilepsy and EEG/fMRI

Heal, K., Navarro, K., Wollner, M., Yan, E.,Douglas, P., Gilles, J., Kerr, W., and Meyer, T.

August 7, 2013

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 1 / 42

Part One

Epilepsy Classification Using Positron Emission Tomography (PET) Data

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 2 / 42

Temporal Lobe Epilepsy (TLE)

Most common of localized epilepsies

Patients with Non-Epileptic Seizures (NES), Left Temporal LobeEpilepsy (LTLE), Right Temporal Lobe Epilepsy (RTLE), andBilateral Temporal Lobe Epilepsy (BTLE)

Early detection and treatment are important

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 3 / 42

Positron Emission Tomography (PET)

3D image of metabolic processes

Manual analysis used to detect abnormalities

Atrophy is associated with hypometabolism

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 4 / 42

Regions of Interest (ROI)

Combine pixels into biologically relevant features

Focus on analyzing these 47 ROIs

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 5 / 42

Project Goal

Can computers be used to detect abnormalities in a different way?

At base we have a classifier for NES vs LTLE vsRTLE

We want to incorporate Bilateral patients

Adding in these patients increases complexity

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 6 / 42

Brief Intro: CL1OCV

Cyclical Leave-One-Out Cross Validation (CL1OCV) was used toevaluate classifier performance

I Leave one instance of data out (leave-one-out)I Train on the restI Try to classify the data left outI Repeat until all data has been left out once (cyclical)

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 7 / 42

Unsupervised Techniques: Why they didn’t work

Spectral clustering & k-means

Data not easily separable by common similarity metrics such asGaussian similarity

Unsupervised clustering techniques failed to beat the naıve classifierI Naive classifier: classify everything as the most frequent class e.g.

NES RTLE LTLE BTLE unspec32 34 39 14 5

I Naive performance: 34.7% ± 8.4%

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 8 / 42

Neural Networks

Input #1

Input #2

Input #3

Input #4

Output

Hiddenlayer

Inputlayer

Outputlayer

1

Feed data to an input layer of nodes, data is processed through nhidden layers with mi , i = 1, 2, ..., n nodes per layer

Number of nodes per layer and number of layers to use is a difficultproblem

Grid Search!

Beat naıve classifier case... barely1http://www.texample.net/tikz/examples/neural-network/

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 9 / 42

Neural Networks Heatmap

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 10 / 42

Neural Network Perf. cont.

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 11 / 42

Support Vector Machines

classification = sign (w0 · xi + b0)https://upload.wikimedia.org/wikipedia/commons/2/2a/Svm max sep hyperplane with margin.png

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 12 / 42

Support Vector Machines cont.

Many datasets, however are not linearly separable

In 1995, Cortes et al. introduced the soft margin hyperplane

described by the objective function 12w

2 + CF

(l∑

i=1ξi

)subject to the

constraints yi (w · xi + b) ≥ 1 − ξi ,

ξi ≥ 0, wherel∑

i=1ξi is the sum of training errors, F is a monotonic

convex function, and C is a constant

Allows classification of non-linearly separable data, but introducesadditional parameters to the problem (C , F )

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 13 / 42

Feature Selection

We wish to avoid the “curse of dimensionality”

Two main classes of feature selection:

“Unsupervised”: Principal Component Analysis (PCA), IndependentComponent Analysis (ICA), Non-negative Matrix Factorization (NMF)

“Supervised”: Sequential Forward Selection (SFS), SequentialBackward Selection (SBS), Sequential Floating ForwardSelection (SFFS), Sequential Floating Backward Selection (SFBS)

“Unsupervised” techniques rely on some objective parameters–whichis problematic e.g. if the axis with the highest variance is not a goodfeature for classification

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 14 / 42

Sequential Feature Selection

Sequential feature selection describe a class of feature selectionalgorithms that sequentially add (bottom-up) or remove (top-down)features based on some objective criteria

We can define this objective function to be the training accuracy(“supervised” case)

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 15 / 42

SFFS Flowchart

StartAre thereunselectedfeatures?

Doesselectinga featureimprovecriteria?

Select mostsignificant

feature

Doesdeselecting

leastsignificant

featureimprovecriteria?

Deselectleast

significantfeature

Can anymore leastsignificantfeatures bedeselected?

Stop

Deselectleast

significantfeature

yes

no

yes

no

yes

no

yes

no

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 16 / 42

Pairwise Classification Results

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 17 / 42

All Classification Results

The intersection of features selected by SFFS and SFBS were all regions ofthe temporal lobe.

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 18 / 42

Part Two

Electroencephalography (EEG) Empirical Wavelet Analysisand

EEG-Functional Magnetic Resonance Imaging (fMRI) Fusion

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 19 / 42

Neuroscience Background

Figure: Current EEG Experimentation and Analysis Processes

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 20 / 42

Neuroscience BackgroundEEG records brain waves.Brain waves travel at different frequencies.Group brain wave types into “spectral bands”.

Figure: Traditional (Fixed) Spectral Bands

However, these classifications are very old; they predate EEG and the fieldof signal processing. Are they still relevant? Can their definitions bemathematically justified?

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 21 / 42

Currently Used Visualization Methods

Time Since Flash (Seconds)

60

10

5

30

Frequency (Hertz)[Logarithmic Scale]

−2 0 2 4 6 8

Figure: CWT With Morlet Wavelets

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 22 / 42

Empirical Wavelets

Goal: Define a new set of spectral bands that is adaptive to an individual’sbrain.How to do this? Define a set of wavelets as a band pass filter bank:

πω1 ω2 ω3 ωn ωn+1oo

2τ1 2τ2 2τ3 2τn 2τn+1 τN

1

oo

Figure: An Empirical Wavelet, Each ωi Is a Boundary

Use an Empirical Wavelet Transform on the signal in the time domain,then decompose the signal into spectral components:

f (t) =∑j

aj(t)cos(φj(t))

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 23 / 42

Wavelet Construction

Figure: Desirable Boundary Choices

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 24 / 42

Wavelet Construction

Figure: Undesirable Boundary Choices

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 25 / 42

Adaptive Boundary Search Methods

Frequency Spectrum of Signal

ǫ2ǫ1 ǫ3

ω1 ω2 ω3 Frequency

Amplitude

Figure: “Epsilon” Boundary Search

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 26 / 42

Adaptive Boundary Search Methods

Frequency Spectrum of Signal

Frequency

Amplitude

Closing Function

ω1 ω2

Figure: “Closure” Boundary Search

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 27 / 42

EEG Signal Processing

Amplitude

Time Since Flash (Seconds)

θ

δ

α

β

γ

0 2 4 6−2 8

0 2 4 6 8−2

2421

15

9

17

Time Since Flash (Seconds)

Frequency (Hertz)

Amplitude

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 28 / 42

Time-Frequency Plane

0 2 4 6 8−2

γ

β

αθδ

60

30

1384

Time Since Flash (Seconds)

Frequency (Hertz)

Amplitude

Figure: Hilbert Transform With Traditional Bands

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 29 / 42

Time-Frequency Plane

0 2 4 6 8−2

γ

β

αθδ

60

30

1384

Time Since Flash (Seconds)

Frequency (Hertz)

Amplitude

Figure: Hilbert Transform With Traditional Bands

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 30 / 42

−2 0 2 4 6 8

Time-Frequency Plane

0 2 4 6 8−2

2421

15

9

17

Time Since Flash (Seconds)

Frequency (Hertz)

Amplitude

Figure: HilbertTransform With “Closure” Bands

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 31 / 42

Time-Frequency Plane

0 2 4 6 8−2

2421

15

9

17

Time Since Flash (Seconds)

Frequency (Hertz)

Amplitude

Figure: Hilbert Transform With “Closure” Bands

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 32 / 42

−2 0 2 4 6 8

fMRI and EEG Colocalization

fMRI: dense spatial information, sparse temporal information

EEG: sparse spatial information, dense temporal information

Goal: dense spatial, dense temporal

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 33 / 42

Standardized Low Resolution Brain ElectromagneticTomography

Solution to the inverse problem for EEG: localizing the exact sourcesof the neural activity measured as scalp electric potentials

Standardized Low Resolution Brain ElectromagneticTomography (sLORETA):

I Fairly good accuracy for deep sources (other methods misplace theseon outer cortex)

I Gives a smoothed result

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 34 / 42

0.28 seconds before stimulus

time of stimulus

0.5 seconds after stimulus

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 35 / 42

Temporal Kernel Canonical Correlation Analysis

Goal: find the maximal correlation between simultaneous EEG-fMRI,both spatially and temporally

Method: Temporal Kernel Canonical Correlation Analysis (tkCCA)

I Canonical Correlation Analysis (CCA): multivariate correlation betweentwo data sets (X and Y )

F finds the maximally correlated features of X and YF CCA uses covariance matrices (covariance of X and Y , variance X ,

variance of Y )

I Kernel Canonical Correlation Analysis (kCCA): reduces the dimensionsof CCA by using linear kernel matrices in place of covariance matrices

I tkCCA: allows non-instantaneous couplingF Use shifted X = multiple stacked copies of X with incremental

time-shifts of size τ

Idea: tkCCA on voxel-space EEG (after transformation fromtime-frequency) and voxel-space fMRI

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 36 / 42

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 37 / 42

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 38 / 42

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 39 / 42

Future Research

Use of In-Scanner data

Use of spectral bounds found by Empirical Wavelets

Spatial shift instead of time shift, allowing for even higher temporalaccuracy

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 40 / 42

References I

Felix Bießmann, Frank C. Meinecke, Arthur Gretton, AlexanderRauch, Gregor Rainer, Nikos K. Logothetis, and Klaus-Robert Muller,Temporal kernel cca and its application in multimodal neuronal dataanalysis, Machine Learning 79 (2010), no. 1-2, 5–27 (English).

Jerome Gilles, Empirical Wavelet Transform, IEEE Transactions onSignal Processing 2013 (2013), 3999–4010.

Aapo Hyvarinen and Erkki Oja, Independent component analysis:algorithms and applications, Neural Networks 13 (2000), 411–430.

Wesley T. Kerr, Stefan T. Nguyen, Andrew Y. Cho, Edward P Lau,Daniel H. Silverman, Pamela K. Douglas, Navya M. Reddy, ArianaAnderson, Jennifer Bramen, and Noriko Salamon, Computer-aideddiagnosis and localization of lateralized temporal lobe epilepsy usinginterictal FDG-PET, Frontiers in Neurology (2013).

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 41 / 42

References II

RD Pascual-Marqui, Standardized low-resolution brain electromagnetictomography (sLORETA): Technical details, Methods and Findings inExperimental and Clinical Pharmacology 24 (2002), no. D, 5–12, 12thMeeting of the International-Pharmaco-EEG-Group, Barcelona, Spain,NOV 21-24, 2002.

Pavel Pudil, Jana Novovicova, and Josef Kittler, Floating searchmethods in feature selection, Pattern recognition letters 15 (1994),no. 11, 1119–1125.

Jonathon Shlens, A tutorial on principal component analysis, SystemsNeurobiology Laboratory, Salk Institute for Biological Studies, 2005.

F Tadel, S Baillet, JC Mosher, D Pantazis, and RM Leahy,Brainstorm: A user-friendly application for meg/eeg analysis,Computational Intelligence and Neuroscience 2011 (2011).

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 42 / 42

References III

Ulrike von Luxburg, A tutorial on spectral clustering, CoRRabs/0711.0189 (2007).

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 43 / 42

Thank you

Any questions?

Heal, K., Navarro, K., Wollner, M., Yan, E., Douglas, P., Gilles, J., Kerr, W., and Meyer, T.UCLA Math REU 2013: Epilepsy and EEG/fMRI 44 / 42