Ubiquitous Computing - The Distributed Systems Group (DSG)

50
Ubiquitous Computing © F. Mattern, Porquerolles, May 2003 1 Porquerolles May 2003 Friedemann Mattern ETH Zurich Institute for Pervasive Computing ETH Eidgenössische Technische Hochschule Zürich Ubiquitous Computing F. Ma. 2 Friedemann Mattern This lecture is not about algorithms or theoretical CS Classical distributed algorithms (consistent state, termination detection, garbage collection,...) from a higher point of view Ubiquitous Computing (pervasive computing, ambient intelligence,...): Almost unnoticed revolution that transforms the whole world into a large distributed system with important consequences to computer science... ...and to almost everyone living on earth

Transcript of Ubiquitous Computing - The Distributed Systems Group (DSG)

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 1

Porquerolles May 2003

Friedemann MatternETH ZurichInstitute forPervasive Computing

EEEETTTTHHHH EidgenössischeTechnische Hochschule

Zürich

Ubiquitous Computing

F. Ma. 2

Friedemann Mattern

This lecture is not about algorithms or theoretical CS

Classical distributed algorithms (consistent state, termination detection, garbage collection,...) from a higher point of view

Ubiquitous Computing (pervasive computing, ambient intelligence,...):

Almost unnoticed revolution that transforms the whole world into a large distributed system with important consequences to computer science...

...and to almost everyone living on earth

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 2

image source: “Die Zeit”

Friedemann Mattern

F. Ma. 4

Friedemann Mattern

Computing: A Clear Trend

One computer(PC) foreveryone

Manycomputersfor everyone

One computer(mainframe)for many people

Size Number

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 3

F. Ma. 5

Friedemann Mattern

The Trend… What‘s Next?

Manycomputersfor everyone Size

Number

smartdust?

F. Ma. 6

Friedemann Mattern

The Qualitative Growth of the Internet

EmailResearchnetwork

MobileInternet

WWW

2003

Internet time line

people topeople

people tomachines

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 4

F. Ma. 7

Friedemann Mattern

The Qualitative Growth of the Internet

EmailResearchnetwork

MobileInternet

WWW

Internet time line

people topeople

people tomachines

Ubiquitous Computing

machines tomachines

Networked embedded systemsmachines talking to machines

Friedemann Mattern

2003

F. Ma. 8

Friedemann Mattern

The Qualitative Growth of the Internet

EmailResearchnetwork

MobileInternet

WWW

Internet time line

people topeople

people tomachines

Ubiquitous Computing

machines tomachines

Networked embedded systemsmachines talking to machines

Friedemann Mattern

2003Networked embedded systems

machines talking to machines

everyday objects

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 5

F. Ma. 9

Friedemann Mattern

image source: “Die Zeit”

Ubiquitous Computing

Everyday objects will become smart

embedded processors

...and they will all be interconnected

wireless communication

Information technology will be everywhere

Friedemann Mattern

F. Ma. 10

Friedemann Mattern

Outline

4 Technology Trends

The Vision

Making Things Smart

Consequences

Friedemann Mattern, ETH Zurich

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 6

F. Ma. 11

Friedemann Mattern

Outline

4 Technology Trends

The Vision

Making Things Smart

Consequences

Friedemann Mattern, ETH Zurich

F. Ma. 12

Friedemann Mattern

1. Moore‘s Law (1965)

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 7

F. Ma. 13

Friedemann Mattern

Moore‘s Law Electronics, April 19, 1965

Friedemann Mattern

F. Ma. 14

Friedemann Mattern

Cramming more...

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 8

F. Ma. 15

Friedemann Mattern

Cramming more...

Friedemann Mattern

F. Ma. 16

Friedemann Mattern

Cramming more...

„...factor of twoper year…“

„...by 1975, the number of components per integrated circuit ... will be 65,000“

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

161514131211109876543210

YEAR

LOG2OF THE

NUMBER OF COMPONENTS

PER INTEGRATED FUNCTION

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

161514131211109876543210

YEAR

LOG2OF THE

NUMBER OF COMPONENTS

PER INTEGRATED FUNCTION

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 9

F. Ma. 18

Friedemann Mattern

Storage Density Trend

F. Ma. 19

Friedemann Mattern

Generalized Moore‘s Law

Most important technology parametersdouble every 1 – 3 years:

computation cyclesmemory, magnetic disksbandwidth

Problems:- increasing cost- energy

Consequence: scaling down

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 10

F. Ma. 20

Friedemann Mattern

2. Progress in Communication Technologies

Fiber optics: from Gbit/s to Tbit/s

Wirelessmobile phone: GSM, UMTS wireless LAN (> 10 Mbit/s)Bluetooth

Body area networks

Nostalgia

F. Ma. 21

Friedemann Mattern

Telecommunication and Information Everywhere – an Old Vision (1882)

Carl Stauber (1882):„Die Zukunft des Telefons“

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 11

F. Ma. 22

Friedemann Mattern

3. Better Sensors

Miniaturized cameras, microphones,...

Fingerprint sensor

Radio sensorswithout power supply

Location sensorse.g., GPS

...POSITION N 047°

23’17’’E 008°

34’26’’

Friedemann Mattern

F. Ma. 23

Friedemann Mattern

Example: Standalone Radio Sensors

No external power supplyenergy from the actuation processpiezoelectric and pyroelectric materials transform changes in pressure or temperature into energy

RF signal is transmitted by an antenna (up to 20 m)

image source: Siemens

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 12

F. Ma. 24

Friedemann Mattern

Piezoelectric Transponders

Transformer: electrical signal ↔acoustic surface wave

in both directions

Surface wave: propagates on the surface of a body

on piezo crystals: ~ 3500 m/s

dipole antenna

piezo-crystal

reflectors

electro acoustictransformer

Reflectors consist of 0.1 µm thinn aluminium stripes

F. Ma. 25

Friedemann Mattern

Piezoelectric Transponders

External energy pulseTransformed into a surface waveEach reflector sends parts of the wave back to the transformerTransformed into RF pulses and sent out

surface wave

reflections aftera few

µs

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 13

F. Ma. 26

Friedemann Mattern

Surface wave is much slower than RF waveRF noise (e.g., reflections by the environment) vanishes after 1 µsRF response takes more than 2 µs

Piezoelectric Transponders

F. Ma. 27

Friedemann Mattern

Remote Identifications

Characteristic pulse sequence by specific alignment of the reflectors

e.g., binary digits up to 32 bitsidentification of remote objects

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 14

F. Ma. 28

Friedemann Mattern

Remote Sensors

Second transformer at the end changes the impedanceCan be controlled by a resistor that depends on some sensor value

e.g., photo resistor, NTC/PTC resistor, hall sensor

RF pulse

RF response

F. Ma. 30

Friedemann Mattern

Whole eras named after materialse.g., „Stone Age“

More recently: semiconductors, fibersinformation and communication technology

4. New Materials

first transistor, 1947

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 15

F. Ma. 31

Friedemann Mattern

Whole eras named after materialse.g., „Stone Age“

More recently: semiconductors, fibersinformation and communication technology

Organic semiconductorschange the external appearance

of computers„Plastic“ laser

opto electronics, flexible displays,…...

4. New Materials

first transistor, 1947

Friedemann Mattern

F. Ma. 32

Friedemann Mattern

Example: Flexible Substrates

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 16

F. Ma. 33

Friedemann Mattern

Smart Paper, Electronic Ink

Positively chargedwhite pigment chips

Clear fluid

Negatively chargedblack pigment chips

Bottom electrode

Light state Dark state

+ -

+-Top transparentelectrode

Micro capsules

F. Ma. 34

Friedemann Mattern

Smart Paper, Electronic Ink

Positively chargedwhite pigment chips

Clear fluid

Negatively chargedblack pigment chips

Bottom electrode

+ -

Top transparentelectrode

Micro capsules

0.2 mm

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 17

F. Ma. 35

Friedemann Mattern

Smart Paper, Electronic Ink

An electronically charged pencil rotates the “pixels”

Friedemann Mattern

F. Ma. 36

Friedemann Mattern

All Trends Together Lead to a New Era

Progress incomputing speedcommunication bandwidthmaterial sciencessensor techniquescomputer science conceptsminiaturizationenergy usagebattery techniquedisplay technologiesprice...

Pervasive ComputingUbiquitous ComputingAmbient IntelligenceDisappearing ComputerInvisible Computing

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 18

F. Ma. 37

Friedemann Mattern

Outline

4 Technology Trends

The Vision

Making Things Smart

Consequences

Friedemann Mattern, ETH Zurich

F. Ma. 39

Friedemann Mattern

The Vision

„In the 21st century the technology revolution will move into the everyday, the small and the invisible…“

Mark Weiser (1952 – 1999), XEROX PARC

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 19

F. Ma. 40

Friedemann Mattern

The Vision

„In the 21st century the technology revolution will move into the everyday, the small and the invisible…“

Mark Weiser (1952 – 1999), XEROX PARC

Small, lightweight, cheap, mobile processors and sensorsin almost all everyday objects („embedded computing“)on your body („wearable computing“)embedded in the environment („sensor networks“)

F. Ma. 41

Friedemann Mattern

The Vision

in almost all everyday objects („embedded computing“)

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 20

F. Ma. 42

Friedemann Mattern

Embedded Computing Enables„Cooperating Smart Things“

Embedded processorsin everyday objectssmallcheaplightweight

Wireless communicationspontaneous networks

Sensors

Real world objects are enriched with information processing capabilities

F. Ma. 43

Friedemann Mattern

Embedded Computing Enables„Cooperating Smart Things“

Embedded processorsin everyday objectssmallcheaplightweight

Wireless communicationspontaneous networks

Sensors

Real world objects are enriched with information processing capabilities

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 21

F. Ma. 44

Friedemann Mattern

Smart Objects

Can remember pertinent eventsthey have a memory

Show context-sensitive behaviorthey may have sensors

location / situation awareness

I‘msmart!

Are responsivecommunicate with their environmentnetworked with other smart objects

hello!

F. Ma. 45

Friedemann Mattern

The Vision

„In the 21st century the technology revolution will move into the everyday, the small and the invisible…“

Mark Weiser (1952 – 1999), XEROX PARC

Small, lightweight, cheap, mobile processors and sensorsin almost all everyday objects („embedded computing“)on your body („wearable computing“)embedded in the environment („ sensor networks“)

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 22

F. Ma. 46

Friedemann Mattern

The Vision

embedded in the environment („ sensor networks“)

F. Ma. 47

Friedemann Mattern

Wireless Sensor Networks

Embed numerous distributed devices to monitor the physical world

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 23

F. Ma. 48

Friedemann Mattern

Wireless Sensor Networks

Embed numerous distributed devices to monitor the physical world

Network these devices so that they can coordinate to perform higher-level tasks

F. Ma. 49

Friedemann Mattern

Wireless Sensor Networks

Embed numerous distributed devices to monitor the physical world

Network these devices so that they can coordinate to perform higher-level tasks

Combine sensing, communication and computation into a complete architecture

possible by advances in low power wireless communication technology MEMS bringing rich array of cheap, tiny sensors

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 24

F. Ma. 56

Friedemann Mattern

Long-range Radio

Long-range Radio

http://birds.cornell.edu/

Sensor Net Applications –Biological Monitoring

image source: Michael Scott,Philippe Bonnet

F. Ma. 57

Friedemann Mattern

Sensor Networks – Vision

Dense instrumentation by massively distributed networks of tiny processing elements

computationally-augmented environments („smart spaces“)environmental, in situ monitoringsurveillance and securitymilitaryemergency analysistraffic monitoringmedical monitoringcondition-based maintenance

SFsmart paint?ingestible device networks?

Monitoring is the generic „killer application“

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 25

F. Ma. 58

Friedemann Mattern

Challenges

Small-form-factor nodes, densely distributed to achieve physical locality to sensed phenomenaDesign constraints

energybandwidthnode size and costrobustness, node and link reliability

Devices must adapt automaticallyto the environment

too many devices for manual configurationenvironmental conditions are unpredictable

Berkeley COTS smart dust motes

F. Ma. 59

Friedemann Mattern

Challenges – Massive Parallelism

Large numbers of unattended deviceindividual devices are not important

Tolerate device failures and irregularityexploiting redundancygraceful system degradation

Self-organizationad-hochealingclustering, configurationteam formationrouting

Information aggregation, in-network processingOS, middleware, infrastructure, services,...

image source: David Culler

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 26

F. Ma. 65

Friedemann Mattern

Outline

4 Technology Trends

The Vision

Making Things Smart

Consequences

Friedemann Mattern, ETH Zurich

F. Ma. 66

Friedemann Mattern

Making Things Smart with Virtual Counterparts

Virtual world(Internet,Cyberspace)

Real world

virtual counterparts

pure virt. object(e.g. email)

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 27

F. Ma. 68

Friedemann Mattern

Sensors generate events

Virtual Counterparts asArtifact Memories

1) Aug. 3rd, 2001: ….2) Aug. 5th, 2001 10:34 …..3) Aug. 5th, 2001 10:37 ...4) ...

Virtual counterpartsact as memories for their real artifacts

Updates triggered by events

Arrived in room 564 Bayview Hotel

10:34, Sue K.opens bag

who? where?when?

Queries from the real world return memory content

F. Ma. 69

Friedemann Mattern

Responsive Objects

An objects tellssomething about itself

e.g., by displaying a dynamically generated homepage

Contentdepends on cirmumstances such as context and privileges

Image source: NokiaCf. Cooltown project (HP)

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 28

F. Ma. 70

Friedemann Mattern

The Power of Directories

WWW server

Internet

Direc-tory

Identity

Location

Context

DirectoryDirectory

Who operates directories?Who controls information and interpretation?Economic / legal / political issue?

Friedemann Mattern

F. Ma. 71

Friedemann Mattern

Bridging the Gap Between the Real World and the Virtual World?

Identify objects here

Implement all thesmart behavior there

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 29

F. Ma. 72

Friedemann Mattern

Virtual Worlds - It All Started with Data Processing

Data

- Data processing- Information processing- Simulation- Virtual Reality

Results

F. Ma. 73

Friedemann Mattern

Narrowing the Gap

Virtual world

Real world

time

bar codelabels

manualdata entry

databases

files

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 30

F. Ma. 74

Friedemann Mattern

Narrowing the Gap

RFID tags

Virtual world

Real world

time

bar codelabels

manualdata entry

virtual counterpartsdatabases

files

Extend the integration depthtie up smart things automatically with information systemsavoid media breaks and input errorstimely information

F. Ma. 75

Friedemann Mattern

Electronic Labels (RFID)

image source: Peter H. Cole

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 31

F. Ma. 76

Friedemann Mattern

Electronic Labels (RFID)

image source: Peter H. Cole

F. Ma. 77

Friedemann Mattern

Electronic Labels (RFID)

image source: Peter H. Cole

Identify objects from distance

small IC with RF-transponder

Wireless energy supply

magnetic field (induction)

Read and writea few 100 bits „over the air“

~ 1 m

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 32

F. Ma. 78

Friedemann Mattern

Small RFID Chips

F. Ma. 79

Friedemann Mattern

The µµµµ-Chip

image source: Hitachi

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 33

F. Ma. 81

Friedemann Mattern

magneticfield

IC

transponderreader

Load Modulation

Transponder absorbes some energy of the magn. fieldTurning on and off a resistor in the oscillating circuit of the transponder yields a small voltage change at the antenna of the reader

typically only ~ 10 mV for a reader antenna with 100 V (i.e., 80 dB signal-“noise“ ratio)

change of the drain-source resistance of a FET by a binary coding signal

band pass

~energy

data

F. Ma. 82

Friedemann Mattern

Influence of Frequencies

antenna size

energy consumptiondata rates

reflection onsurfaces

penetrationof water

lowkHz

mediumMHz

micro waveGHz

frequency

infl

uen

ce

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 34

F. Ma. 84

Friedemann Mattern

Ski Ticket© IDENTEC SOLUTIONS AG

RFID tags in wrist belts

F. Ma. 87

Friedemann Mattern

RFIDs in Logistics

Product trackingRealtime inventoryFast check in and check out process

unload of an entire truckload takes 30 min (instead of 150 minutes)

Optimization of shelf life time

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 35

F. Ma. 91

Friedemann Mattern

RFID Applications?

„We are always very bad at predicting how a given technology will be used and for what reasons“

-- Bran Ferren, Chief Disney Imagineer

F. Ma. 92

Friedemann Mattern

Smart MedicalCabinet

Tagging of medicine packages with RFID labelsAutomatic contentmonitoring and display of related information:

prescriptionexpiry datedrug recalls

Optional: alerts via SMSspoken language to helpblind persons to take the right medicine („talking medicine“)

These are headache tablets. Take at most 4 per day.

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 36

F. Ma. 93

Friedemann Mattern

Smart Playing Cards

Support people playing a card gameby an unobtrusive smart environment

playing cards equipped with RFID labelsRFID antenna is placed under the table

Features:count scoredetermine winnerhints for beginnerscheat alarm

Display: wireless PDAnearby screen

Demo game „Whist“

Friedemann Mattern

F. Ma. 94

Friedemann Mattern

Card Proxies as Virtual Counterparts

:...;;.;...,.:,..;;.;.. :....,.:,..;.. :.. ;;...,.:,..;.. ...,:.. ;;.:,.. :...;;.;...,.:,..

;;.;.. :....,.:,..;.. :.. ;;...,.:,..;.. ...,:.. ;;.:,..

:...;;.;...,.:,..;;.;.. :....,.:,..;.. :.. ;;...,.:,..;.. ...,:.. ;;.:,..

Hi,I‘m new here

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 37

F. Ma. 95

Friedemann Mattern

Cards as Personalities

What do playing cards remember?

all their games?What do they communicate?How do they react to msgs?

Alice in Wonderland

Friedemann Mattern

F. Ma. 96

Friedemann Mattern

Cards as Personalities (2)

When are msgs created?How are msgs relayed?How do playing card proxies interact with a global (distributed?) game controller?

General infrastructureAlice in Wonderland

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 38

F. Ma. 97

Friedemann Mattern

Infrastructure for Smart Things

“A Dancing Toaster” (Rich Gold, XEROX PARC)

Friedemann Mattern

F. Ma. 98

Friedemann Mattern

Consider infrastructures in the real lifeexamples: electricity, roads,…just there or even invisible“open platform”makes life easy (e.g., deployment of new services)

Internet infrastructureDomain Name System (DNS registry)services: cooperating routers, time servers,...IP, TCP,…: common formats / protocolsWeb standards (platform for other applications)

Why Infrastructures at All?

Extend the Internet to everyday objects

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 39

F. Ma. 99

Friedemann Mattern

Why Infrastructure for Smart Objects?

Guaranteesecurity privacy availability reliability

How do we organize billions of mobile smart objects that arehighly dynamic, short living,…?

for applications built with smart objects

Friedemann Mattern

F. Ma. 100

Friedemann Mattern

Why Infrastructure for Smart Objects?

Guaranteesecurity privacy availability reliability

Provide serviceslocation („where am I?“) context („are we in a meeting?“) event delivery („tell me when... happens“)brokering („find something that…“)directoryregistry …

How do we organize billions of mobile smart objects that arehighly dynamic, short living,…?

for applications built with smart objects

for smart objects

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 40

F. Ma. 101

Friedemann Mattern

More Infrastructure Tasks

Enable spontaneous networkingcooperation among smart objectscommunicationmobilityservice creationservice discovery (“is a service available that ...?”)...

for communities of smart objects

Challenge for practical computer science research!

Facilitate linking the real world to the virtual world

F. Ma. 103

Friedemann Mattern

Outline

4 Technology Trends

The Vision

Making Things Smart

Consequences

Friedemann Mattern, ETH Zurich

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 41

F. Ma. 105

Friedemann Mattern

Economic Impact of Ubicomp?

Products that are fully integrated in information systems

e.g., supply chain optimization

New digitally enhanced productse.g., cooperating toys,...

New services („e-utilities“)e.g., management of smart devices at home, management of personal privacy,...

Friedemann Mattern

F. Ma. 106

Friedemann Mattern

Imagine an „Internet of Things“

Detailed and timely knowledge of product location and life cycles, individual and dynamic prices for goods,...

higher taxes if product is transported by planemilk bottle reduces its price with its age

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 42

F. Ma. 107

Friedemann Mattern

Imagine an „Internet of Things“

Detailed and timely knowledge of product location and life cycles, individual and dynamic prices for goods,...

higher taxes if product is transported by planemilk bottle reduces its price with its agecar insurance depends on usage patterns...

F. Ma. 108

Friedemann Mattern

Privacy in a Ubicomp World?

Privacy is already a concern with the WWWwhat do they do with my personal data?are my page visits and mouse clicks analyzed?

Much more dramatic in a ubicomp world!many events of very elementary actions are registeredcould be assembled to perfect profiles

Bought on 20 Aug 2001; last travel: to London Sep 2003; contained shirt no. 1342 and 1349; was in Hotel Atlantic, room 317 on 17 Nov 2002 ...

- information fusion- data mining- search engines

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 43

F. Ma. 109

Friedemann Mattern

Privacy Challenges

Unlimited coverage (sensors everywhere)Loss of awareness („invisible computing“)New types of data (location, health, habits, …)More knowledge through contextAnonymity hard to achieveExplicit notice, consent by user difficult...

And what about trust?trusting smart everyday things?

F. Ma. 110

Friedemann Mattern

1001110100011111001100111000111100000001111100111 00010011101000111110011001110001111000000011111001110100011111001100111000111100000001111100111011100011111001100111000111100000001111100111000000110100011111001100111000111100000001111100111001111000111110011001110001111000000011111001110000000001110100011111001100111000111100000001111100111001000111110011001110001111000000011111001110111101111010001111100110011100011110000000111110011111101000111110011001110001111000000011111001110011000111010001111100110011100011110000000111110011100001001110100011111001100111000111100000001111100

Ron Rivest: The Digital Revolution Reverses Defaults

What was once hard to copy is now trivial to duplicate

What was once forgottenis now stored forever

What was once privateis now public

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 44

F. Ma. 111

Friedemann Mattern

historically: industrialization, electricity, trains and automo-biles, electronic mass media

implies therefore eventually also ethical questions

social adaptation to technical impacts needs some time since this is an evolutionary process(willingness to learn, generational aspects,…)

General Impact:Evolution vs. Revolution

Performance

Time

„revolutio-nary“ new applicationdomains

Technology and science have a major impact on our society and the world we live

Impact

Friedemann Mattern

F. Ma. 112

Friedemann Mattern

Challenges for Computer Science

„Computing without computers“information processing moves to the background

Increasing importance of computer sciencecomputerizing and networking „all“ objectscomputer science has competencein organizational issues of complex,dynamic information spaces

object orientation, knowledge representation, semantics,...

good engineering principles are important

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 45

F. Ma. 113

Friedemann Mattern

Challenges for Computer Science

Computer Science is about architectures for information spaces and virtual worlds

Friedemann Mattern

F. Ma. 115

Friedemann Mattern

Algorithms? Concepts? Models? Distributed Computing Theory?

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 46

F. Ma. 116

Friedemann Mattern

Algorithms? Concepts? Models? Distributed Computing Theory?

In theory, there is no difference between theory and practice. But, in practice, there is.

-- Jan L. A. van de Snepscheut

F. Ma. 117

Friedemann Mattern

Algorithms? Concepts? Models? Distributed Computing Theory?

In theory, there is no difference between theory and practice. But, in practice, there is.

-- Jan L. A. van de Snepscheut

What are adequate models, concepts and abstractions for ubicomp?

that help to understand the relevant issuesand help to solve problems in practice?

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 47

F. Ma. 118

Friedemann Mattern

Routing

Networks typically aredynamically changingwireless & mobile ad hoc (& peer-to-peer)dense, largely populatedheterogeneous, ...

Multi-hop routing much more energy efficient than single hop!

Dynamic routingconsidering failures, geographic position,...

Global fair use of energyoptimization (e.g., minimum power topology), game theory,...

)d3( k

)d3( k

)d3( k

dk

Attenuationexponentk = 2 ... 4

F. Ma. 119

Friedemann Mattern

Communication

Event-based, publish/subscribe (i.e., producer-consumer) vs. client-server and peer-to-peer

decoupled operation in time and space, anonymous, stateless

Context-aware and location-aware protocolse.g., geographic multicast

Power-aware protocolsSpread of broadcast information in geographically dense networks

sparsely connected substructures„tolerant“ to small network changes

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 48

F. Ma. 120

Friedemann Mattern

Adaptability

Adapt to changing contextsavailable resourcesdiscovery services (resources, equipment, capabilities) unpredictable disconnections, spontaneous and unanticipated interactions, rapidly changing topologies

Location, proximityhigh volatility

F. Ma. 121

Friedemann Mattern

Availability, Reliability, QoS

Fault tolerance, robustnessabundance of failure-prone nodesconnectivity guarantees

Dynamic reconfigurationsfast, minimal effort

Real-time performance

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 49

F. Ma. 122

Friedemann Mattern

Security and Privacy

Trust, confidencein an „open“, highly dynamic world?trust models?

Physical proximity as an enabling concept?but what, exactly, is proximity?

Authentication, delegation of rightsfully automatic?accountability?

Power-awarenesse.g., cryptographic protocols

F. Ma. 124

Friedemann Mattern

Conclusions

Ubiquitous computing technologies will have a major impact on our society and the world we live

Whole world as a distributed systemvery large, highly dynamic, openreal and virtual world closely connected

Challengesbasic technologies, technical infrastructureconcepts, models, algorithms

The Internet only connected computers, now we begin to network all things

image: EUDisappearingComputerInitiative

Friedemann Mattern

Ubiquitous Computing

© F. Mattern, Porquerolles, May 2003 50

Porquerolles May 2003

Friedemann MatternETH ZurichInstitute forPervasive Computing

EEEETTTTHHHH EidgenössischeTechnische Hochschule

Zürich

Ubiquitous Computing