Two DOF vehicle response analysis

6
DCU Faculty of Engineering & Computing. School of Mechanical and Manufacturing Engineering Two DOF vehicle response MM401 Mechanical Engineering System Simulation  Neville Lawless 10212298

Transcript of Two DOF vehicle response analysis

Page 1: Two DOF vehicle response analysis

8/2/2019 Two DOF vehicle response analysis

http://slidepdf.com/reader/full/two-dof-vehicle-response-analysis 1/6

DCU Faculty of Engineering & Computing.

School of Mechanical and Manufacturing Engineering

Two DOF vehicle

responseMM401 Mechanical Engineering System Simulation  

Neville Lawless

10212298

Page 2: Two DOF vehicle response analysis

8/2/2019 Two DOF vehicle response analysis

http://slidepdf.com/reader/full/two-dof-vehicle-response-analysis 2/6

P a g e | 1

Contents1. Problem Constants .......................................................................................................................... 1

2. Free body diagram .......................................................................................................................... 2

3. Global problem equations .............................................................................................................. 4

4. Results ............................................................................................................................................. 5

1.  Problem Constants

  Vehicle mass (m) = 9.2tonnes = 9.2x103kg

  Mass distribution = 37:63 (front: rear)

  Total length of vehicle = 9.2 metres

  Wheelbase = 5.6 metres

  Vehicle velocity (V) = 45k.p.h = 12.5m/s

  Wavelength 1 (λ1) = 4 metres 

  Wavelength 2 (λ2) = 6 metres

  Stiffness of springs (k) = Front (Kf ) = 800 kN/m Rear (KR)=1050 kN/m

Page 3: Two DOF vehicle response analysis

8/2/2019 Two DOF vehicle response analysis

http://slidepdf.com/reader/full/two-dof-vehicle-response-analysis 3/6

P a g e | 2

  Radius of gyration (r) = 1.95m

  Amplitude = 0.04m

2.  Free body diagram

Distance from front of vehicle to centre of gravity (a)

metresa

a

ondistributimassgthVehiclelena

733.5

63.0*1.9

%*

 

Distance from rear of vehicle to centre of gravity (b)

metresa

a

ondistributimassgthVehiclelena

367.3

37.0*1.9

%*

 

Values for lf and lr are then found to be:

lf = 4.233m lr = 1.367m

Moment of inertia (I)

2

2

2

34983

95.1*9200

)(

kgm I 

 I 

mr  I inertiaof moment 

 

Natural frequency (f)

 

 

v f 

 f v

*

Page 4: Two DOF vehicle response analysis

8/2/2019 Two DOF vehicle response analysis

http://slidepdf.com/reader/full/two-dof-vehicle-response-analysis 4/6

P a g e | 3

There will be two different values for the natural frequency because there are two different

wavelengths to consider (f 1 for 4 metres and f 2 for 9 metres wavelengths)

hz f 

hz f 

083.26

5.12

125.34

5.12

2

1

 

Frequency (ω) 

There will also be two different values for the frequency as there are two values to input as

the natural frequency (f 1 and f 2)

 f    2  

sec / 087.13**2

sec / 635.19**2

22

11

rad  f 

rad  f 

  

  

 

External forces

)(2

2

  

 

t kbSinFr 

t kbSinFf  

Where b is the wave road profiles amplitude = 0.04m

and  is the phase lag for the rear wheel.

Phase lag (Φ) 

As with the frequency there will also be two phase lags. This phase lag is how much the

cosine wave lags behind the sine wave and is only applied to the rear of the vehicle

 

  )lrlf (2  

rad 

rad 

86.56

)6.5(*2

79.84

)6.5(*2

2

1

 

 

 

Page 5: Two DOF vehicle response analysis

8/2/2019 Two DOF vehicle response analysis

http://slidepdf.com/reader/full/two-dof-vehicle-response-analysis 5/6

P a g e | 4

3.  Global problem equations

r r t r r r  f  f  f gg

r t r r  f  f 

lF lF ll zk ll zk  I θ 

F F l zk l zk m z

 f 

  

  

..

..

 

Rearranging;

r r t r  f  f r r  f  f r r gg

r t lf r r r  f 

lF lF llk lk lk lk  z I θ 

F F kf lk k k  zm z

 f 

22

..

..

 

 

 

In matrix format;

[ gg I  ] ..

 z..

θ  r  f  k k  lf r r  kf lk 

lf r r  kf lk  22

 f  f r r  lk lk  { } r t  F F 

r r t  lF lF  f   

letting; Z = zSin(wt) &  =  Sin(wt)

 { } = { } {

 } 

{ } { } { } 

Yielding;

[ gg I ] {  } r  f  k k  lf r r  kf lk 

lf r r  kf lk  22 f  f r r  lk lk 

{  } r t  F F 

r r t  lF lF  f   

{  } r  f  F F 

r r t  lF lF  f   

Applying Cramer’s rule: 

  | r t  F F 

r r t  lF lF  f 

|

| |

 

Page 6: Two DOF vehicle response analysis

8/2/2019 Two DOF vehicle response analysis

http://slidepdf.com/reader/full/two-dof-vehicle-response-analysis 6/6

P a g e | 5

  | r t  F F 

r r t  lF lF  f  |

|

4.  Results

On examining the mode shapes graph plot above we can see that the optimal ride position is

placed in front of the centre of gravity at a distance of just less than 0.5m

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2 3 4 5   D   i   s   p    l   a   c   e   m   e   n   t    (   m    )

Amplitude of vibration wrt centre of gravity (m)

Mode Shapes

4m Wavelenght

6m wavelenght

wavelenght @ 4m

x1 top = 2.72806E+11 X1= -0.03182 x2 top = -2.60613E+11 X2= 0.030395

x bottom = -8.5743E+12 x bottom = -8.5743E+12

wavelenght @ 6m

x1 top = -4.47493E+11 X1= 0.05219 x2 top = 1.80481E+11 X2= -0.02105

x bottom = -9.797E+11 x bottom = -9.797E+11