Twelve fundamental life histories evolving through...

15
Ecology and Evolution. 2018;1–15. | 1 www.ecolevol.org Received: 15 May 2017 | Revised: 11 October 2017 | Accepted: 15 October 2017 DOI: 10.1002/ece3.3730 ORIGINAL RESEARCH Twelve fundamental life histories evolving through allocation-dependent fecundity and survival Jacob Johansson 1,2 | Åke Brnnstrm 1,3 | Johan A. J. Metz 1,4,5 | Ulf Dieckmann 1 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 1 Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria 2 Department of Biology, Theoretical Population Ecology and Evolution Group, Lund University, Lund, Sweden 3 Department of Mathematics and Mathematical Statistics, Ume University, Ume, Sweden 4 Section of Theoretical Biology, Institute of Biology and Mathematical Institute, Leiden University, Leiden, The Netherlands 5 Naturalis Biodiversity Center, Leiden, The Netherlands Correspondence Jacob Johansson, Department of Biology, Theoretical Population Ecology and Evolution Group, Lund University, Lund, Sweden. Email: [email protected] Funding information Svenska Forskningsrdet Formas, Grant/ Award Number: 2015-839; Vetenskapsrdet, Grant/Award Number: 2015-00302 Abstract An organism’s life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simul- taneous investment into growth and reproduction (indeterminate growth) over strate- gies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By ana- lyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity. KEYWORDS determinate growth, dynamic programming, indeterminate growth, marginal value theorem, reproductive allocation 1 | INTRODUCTION Simple life-history models often predict that it is optimal to allocate all surplus energy to growth early in life, before switching to allocate all energy to reproduction. This allocation pattern is often referred to as a “bang-bang control” and leads to determinate growth. Yet, simultane- ous investment into growth and reproduction, leading to indeterminate growth, is common in nature. Much theoretical research on reproduc- tive allocation has therefore investigated mechanisms and conditions, which can promote evolution of indeterminate growth, for example, stochastic environments (King & Roughgarden, 1982), diminishing returns of reproductive investments (Sibly, Calow, & Nichols, 1985; Taylor, Gourley, Lawrence, & Kaplan, 1974), or structural constraints (Kozłowski & Ziólko, 1988). This research (reviewed in Heino & Kaitala, 1999; Kozłowski, 1991; Perrin & Sibly, 1993) has established that si- multaneous investment into growth and reproduction can be optimal, at least during some period of an organism’s life. Less research has focused on investigating the shape and nature of the resulting mixed allocation patterns. Whereas bang-bang control strategies can simply be characterized by the ages or sizes at which the switch from growth to reproduction occurs, it is less clear how to characterize and un- derstand allocation schedules that cause reproductive investment to

Transcript of Twelve fundamental life histories evolving through...

  • Ecology and Evolution. 2018;1–15.  | 1www.ecolevol.org

    Received:15May2017  |  Revised:11October2017  |  Accepted:15October2017DOI:10.1002/ece3.3730

    O R I G I N A L R E S E A R C H

    Twelve fundamental life histories evolving through allocation- dependent fecundity and survival

    Jacob Johansson1,2  | Åke Brännström1,3 | Johan A. J. Metz1,4,5 | Ulf Dieckmann1

    ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2018TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.

    1EvolutionandEcologyProgram,InternationalInstituteforAppliedSystemsAnalysis,Laxenburg,Austria2DepartmentofBiology,TheoreticalPopulationEcologyandEvolutionGroup,LundUniversity,Lund,Sweden3DepartmentofMathematicsandMathematicalStatistics,UmeåUniversity,Umeå,Sweden4SectionofTheoreticalBiology,InstituteofBiologyandMathematicalInstitute,LeidenUniversity,Leiden,TheNetherlands5NaturalisBiodiversityCenter,Leiden, TheNetherlands

    CorrespondenceJacobJohansson,DepartmentofBiology,TheoreticalPopulationEcologyandEvolutionGroup,LundUniversity,Lund,Sweden.Email:[email protected]

    Funding informationSvenskaForskningsrådetFormas,Grant/AwardNumber:2015-839;Vetenskapsrådet,Grant/AwardNumber:2015-00302

    AbstractAnorganism’slifehistoryiscloselyinterlinkedwithitsallocationofenergybetweengrowthandreproductionatdifferentlifestages.Theoreticalmodelshaveestablishedthatdiminishingreturnsfromreproductiveinvestmentpromotestrategieswithsimul-taneousinvestmentintogrowthandreproduction(indeterminategrowth)overstrate-gieswithdistinctphasesofgrowthandreproduction(determinategrowth).Weextendthistraditional,binaryclassificationbyshowingthatallocation-dependentfecundityandmortalityratesallowforalargediversityofoptimalallocationschedules.Byana-lyzingamodeloforganismsthatallocateenergybetweengrowthandreproduction,we find twelve typesofoptimal allocation schedules, differingqualitatively inhowreproductive allocation increaseswith bodymass. These twelve optimal allocationschedulesincludetypeswithdifferentcombinationsofcontinuousanddiscontinuousincrease in reproduction allocation, inwhichphasesof continuous increase canbedeceleratingoraccelerating.Wefurthermoreinvestigatehowthisvariationinfluencesgrowthcurvesand theexpectedmaximum lifespanandbodysize.Ourstudy thusrevealsnewlinksbetweeneco-physiologicalconstraintsandlife-historyevolutionandunderscores how allocation-dependent fitness componentsmay underlie biologicaldiversity.

    K E Y W O R D S

    determinategrowth,dynamicprogramming,indeterminategrowth,marginalvaluetheorem,reproductiveallocation

    1  | INTRODUCTION

    Simplelife-historymodelsoftenpredictthatitisoptimaltoallocateallsurplusenergytogrowthearlyinlife,beforeswitchingtoallocateallenergytoreproduction.Thisallocationpatternisoftenreferredtoasa“bang-bangcontrol”andleadstodeterminategrowth.Yet,simultane-ousinvestmentintogrowthandreproduction,leadingtoindeterminategrowth,iscommoninnature.Muchtheoreticalresearchonreproduc-tiveallocationhasthereforeinvestigatedmechanismsandconditions,whichcanpromoteevolutionof indeterminategrowth, forexample,stochastic environments (King & Roughgarden, 1982), diminishing

    returns of reproductive investments (Sibly,Calow,&Nichols, 1985;Taylor,Gourley,Lawrence,&Kaplan,1974),orstructuralconstraints(Kozłowski&Ziólko,1988).Thisresearch(reviewedinHeino&Kaitala,1999;Kozłowski,1991;Perrin&Sibly,1993)hasestablishedthatsi-multaneousinvestmentintogrowthandreproductioncanbeoptimal,at least during someperiodof anorganism’s life. Less researchhasfocusedoninvestigatingtheshapeandnatureoftheresultingmixedallocationpatterns.Whereasbang-bangcontrolstrategiescansimplybecharacterizedbytheagesorsizesatwhichtheswitchfromgrowthto reproduction occurs, it is less clear how to characterize and un-derstandallocationschedulesthatcausereproductiveinvestmentto

    www.ecolevol.orghttp://orcid.org/0000-0002-0018-7018http://creativecommons.org/licenses/by/4.0/mailto:[email protected]

  • 2  |     JOHANSSON et Al.

    changegraduallyoveralifetime.Whichshapescanweexpect?Whatconditionsfavordifferentfeaturesintheseshapes?Howdoparticularoptimal allocation schedules affect key life-history features, suchasgrowthcurves,averagelifespans,orasymptoticbodysizes?

    Here,we pursue these questions for life-history strategies thatevolve under allocation-dependent fecundity andmortality.Wewillspecifically consider cases where fecundity and mortality rates in-creasewith reproductive allocation, but at rates thatmaybeeitherfaster (henceforth referred toasaccelerating)or slower (henceforthreferredtoasdecelerating) thanproportional. It is theoreticallywellestablishedthatsimultaneousinvestmentintogrowthandreproduc-tionisfavoredwhentherearediminishingreturnsofreproductivein-vestments.Thisoccurswhenfecundityincreasesatadeceleratingratewiththefractionofsurplusenergyinvestedintoreproductionorwhenmortality increases at an accelerating rate with the reproductive-investmentfraction(León,1976;Siblyetal.,1985;Tayloretal.,1974).

    There are many biological reasons why fecundity may dependnonlinearlyonreproductiveallocation.Competitionbetweentheoff-springorbetweenthegametesproducedbyanindividualmaycausediminishingreturnsfromenergyinvestedintoreproduction.Eggsfromasinglemothermaycompete for resources,andspermcompetitionis common for both animals and plants (Andersson& Iwasa, 1996;Scharer,2009).Structuralconstraintswithinanorganism,forexample,limitedsizeofbroodchambersincladocerans(Perrin,Ruedi,&Saiah,1987),canalsoleadtodiminishingreturnsbyimpedingefficientuseofsurplusenergy(cf.Kozłowski&Ziólko,1988).

    Acceleratingreturnsfrominvestmentintoreproductionmayoccuramongplantsinwhichincreasinginvestmentsattractmoreseed-dis-persingorpollinatinganimals.Forexample,Sallabanks (1992)foundthattheproportionofseedsdispersedperplantincreasedwithfruitabundance in hawthorn, Crataegus monogyna. By a similar token,SchafferandSchaffer(1979)foundacceleratingreturnsproducedbypollinatorspreferringthelargerflowersinAgavaceae.Significantpartsofthetotalenergyinvestedintoreproductionmaynotbechanneleddirectly to offspringbodymass but rather intoorgansor capacitieswhich facilitate reproduction, for example, ovaries, inflorescences,or shells.Accelerating returnsmay thenoccurdue toeconomiesofscale,as theefficiencyofsuchsupportivefeatures, in termsofcostperoffspring,mayincreasewiththesizeoftheoperation,forexam-ple,viareducedvolume-surfaceratiosorbecausethesamefacilitiescanbeusedmanytimes.ThefindingbyGreeneandJohnson(1994)thattreeswithlargerseedsinvestasmallerproportionofenergyintostructuresforprotectionanddispersalsupportsthisidea(butseeLord&Westoby,2012).Anotherexampleislearninginseabirds,wherebytheprobabilitythatabreedingattemptissuccessfulincreaseswiththenumberofattempts,thatis,withexperience(Goodman,1974).

    Mortality is generallyexpected to increasewith investment intoreproduction (Calow, 1979; Calow &Woollhead, 1977; Sletvold &Ågren,2015).Animalsmay,forexample,bemorevulnerabletopre-dationwhentheyarebreedingorsearchingforpartners,orbemoresusceptibletodiseaseduringthereproductivephase(Orton,1929).Aswithfecundity,thereareseveralreasonswhyalsomortalitymaybeanonlinearfunctionofreproductiveallocation.

    Mortality will increase at an accelerating rate with reproduc-tive allocation if survival costs increase sharplywhen reproductive-investment levels pass a threshold. For example, many systems ofdefencetodiseasesinplantsrequireaminimalproductionofsecond-arytissue(Feeny,1976;Fraenkel,1959).Ifinvestmentintogrowthisreducedasaresultofsurplusenergybeingchanneledintoreproduc-tion,productionofthosetissueswilldecreaseand leadtoasharplyincreasedmortalityrate.Further,asdiscussedbyBell(1980),growthofgonads in fishmayhave littleeffectonmortalityas longas theyarerelativelysmall,butexertastrongnegativeeffectiftheyexceedacriticalproportionofthetotalbodysizeandstartcompromisingthefunctionalityoforgansnecessary for survival.Bycontrast,mortalitymayincreaseatadeceleratingratewithreproductiveallocationwheninitialinvestmentstoreproductionareriskierforadultsthanadditionalinvestments.Asanexample,themortalityrateofzooplanktonoftenincreasesduringreproduction,ascarryingeggsincreasesthechancetobedetectedbyvisualpredators(e.g.,Svensson,1997).Becausetheriskofbeingdetected is related to surfacearea rather thanvolume(e.g.,Aksnes&Giske,1993),onemayexpectthatpredationriskwillincreaseatalessthanproportionalratewiththetotalnumberofeggscarriedbyafemale.Otherorganismsthatinitiallysufferhighmortal-ityrisksarethosethatundertakelongmigratoryjourneysbeforere-producing,suchasanadromousfish(cf.Bell,1980;Gadgil&Bossert,1970).Forthem,producingthefirstfeweggsconfersahighmortalityrisk,whereascontinuedeggproductionlikelyconfersonlylittleaddedrisk.

    Important qualitative insights into how the shape of optimalreproductive-allocationschedulesdependsonfecundityandmortalityrateshavebeenobtainedthroughmathematicalinvestigations(León,1976;Siblyetal.,1985;Tayloretal.,1974).However,althoughthesestudiesareofageneralnature,theydonotgiveanoverviewofex-pected shapes of nonbang–bang reproductive-allocation schedules.Numerical investigations in early pioneering studies (e.g., Gadgil &Bossert,1970)areinstructiveinsuggestingdifferentpossibleshapes,buttheseinvestigationsarelimitedtoscenarioswithasmallnumberofageclasses.Here,weattemptasystematicoverviewofthediversityof life-historytypesthatcanarisefromvariation intheshapeoffe-cundityandmortalityfunctions,andoftheconsequencesthatdiffer-entoptimalreproductivescheduleshaveforthegrowth,expectedlifespan,andultimatesizeoforganisms.Weshallfocusongraduallyin-creasing,accelerating,anddeceleratingfecundityandmortalityfunc-tions,bothbecausewebelievethesecasesarebiologicallyrelevant,asdescribedabove,andforcontinuitywithprevioustheory(e.g.,Bell,1980;Gadgil&Bossert,1970;Siblyetal.,1985).

    The remainder of this article is structured as follows. First, weintroduceanddescribeageneral life-historymodelofontogenyandprocreation. Using dynamic programming, we determine optimalreproductive-allocationschedulesforeachcombinationofgenericfe-cundityandmortalityregime.Wesystematicallyclassifytheemergingallocationschedulesintotwelvedifferentclassesdependingontheircharacteristicshapes.Wethenstudygrowthpatternsand lifespansassociatedwiththetwelvedifferenttypesofoptimalallocationsched-ules.Weproceedbyshowinghowourresultscanbeunderstoodat

  •      |  3JOHANSSON et Al.

    leastinpartbystudyingthemarginalvalueofreproductiveinvestmentatdifferentlifestages.Finally,wesynthesizeourfindingsintoagen-eral,conceptualframeworkanddiscusshowtheyconnecttoempiricalpatterns.

    2  | MODEL

    Ourmodelbuildsonanestablishedtraditioninearlierstudiesofop-timal allocation to reproduction (Cohen, 1971;Kozłowski&Ziólko,1988;Perrin,Sibly,&Nichols,1993;Siblyetal.,1985).Anindividualisassumedtoproduceenergyatamass-dependentrateE.Afractionuofthisenergyisallocatedtoreproductionandtheremainingfrac-tion,1−u,isallocatedtosomaticgrowth.Themassmofanindividualincreasesas

    TheprobabilityPofanindividualsurvivinguntilagetdecreasesas

    Intheaboveequation,q(u)denotestheinstantaneousmortalityrate,whichweassume tobe an increasing functionof the fractionu ofavailableenergyallocatedtoreproduction.ThisassumptionisinlinewithCalow(1979)whoarguedthatamongseveraltraditionalalterna-tives,energyinvestedintoreproductionasaproportionofthetotalenergy income is themostsuitablepredictorof reproductivecosts,such asmortality, and best reflects that these costs typically arisebecause reproduction competes for energy with other importantphysiologicalprocessesoractivities.Italsoformsthebasisforprevi-oustheoryby,forexample,MyersandDoyle(1983)andSiblyetal.(1985). The energy devoted to reproduction, uE, is converted intooffspringbiomassatarateb(uE).Unlikethemortalityrateq,whichdepends on the fraction invested into reproduction, the fecundity

    ratebisassumedtodependonthetotalamountofenergyinvestedintoreproduction.

    Inadherencetotheexistingtradition,wedescribethedependenceof vital rates on reproductive allocation using power functions(Figure1).Specifically,weassumethatthemortalityrateisgivenby

    andthepotentialfecundityrateby

    Asdescribedbelow,wedeterminefromthepotentialfecundityratea realized fecundity rate b that determines the expected numberof offspring of an individual. The two exponents kq and kb controlwhetherthemortalityrateandfecundityrateincreaseatanacceler-ating(ki>1),proportional (ki=1),ordecelerating(ki <1)ratewithu (seeFigure1).

    Thepotentialfecundityrate,Equation(4),hastheunrealisticandun-desirable feature that the slopebecomes infiniteat zero reproductiveinvestmentwhenkb<1.Thismeansthatasmallincreaseinenergyal-located to reproductioncanconveyanunrealistically large increase intherateatwhichoffspringareproduced,potentiallycausingimprobableevolutionarypredictions.Weavoidthisproblembyassumingaphysio-logical limitsuchthatwheneverkb<1therealizedfecundity isalwayslessthanafactorptimestheenergyallocated(Figure1c).Next,wecon-structacontinuousanddifferentiablerealizedfecundityrateasasmoothminimumofthepotentialfecundityandthephysiologicallimitbysettingb(uE)= (b̂

    (

    uE)s+ (puE)s)1∕sforsomevalueofs<0,withincreasinglyneg-

    ativevaluesofsimplyingacloserapproximationoftheminimum.Followingthecommonassumptionthatbiomassintakescaleswith

    massaccordingtoapowerlaw(e.g.,Kozłowski&Wiegert,1986;Reiss,1989;Roff,1992),theorganismisassumedtoacquireenergyataratethatdependsonitscurrentmassas

    (1)dm∕dt=(

    1−u(m))

    E(m), m(0)=mbirth.

    (2)dP∕dt=−Pq(u), P(0)=1.

    (3)q(u)= c1+c2ukq ,

    (4)b̂(uE)= c3(uE)kb .

    (5)E(m)= c4mke .

    F IGURE  1 Fecundityandmortalityratesasfunctionsofreproductiveinvestment.Thepanelsillustratehowdifferentparametersaffecttheshapesofthesefunctions.Thecurvaturesofthemortalityfunctionsin(a)dependonkqandthecurvaturesofthefecundityfunctionsin(b)dependonkb.(c)showshowtherealizedfecundityfunction(b,blackline)isconstructedasasmoothminimumofthepotentialfecundity(b̂,grayline)andthephysiologicallimit(dashedline)

    (a) (b) (c)

  • 4  |     JOHANSSON et Al.

    Theexpectedlifetimereproductionoftheindividualisthengivenby

    Weaimtodetermineoptimalmass-dependentallocationsched-ules that maximize expected lifetime reproduction as given byEquation(6).Thiscontrolproblemissolvedbyapplyingthemethodofdynamicprogrammingtoatime-discreteversionoftheordinarydifferential equations (Equations[1 and 2]; see, e.g., Bertsekas,1987orHouston&McNamara,1999foranoutlineofthestandardproceduresused).Primarily,wevary theparameterskq,kbandthephysiological limitp,because they influence thecurvaturesof thefecundityandmortalityfunctions.Inlinewithpreviousstudies(e.g.,Charnov,1993;Kozłowski&Uchmanski,1987),wesettheproduc-tion exponent ke to 3/4.Without lossof generalitywe reduce themodeldimensionalitybyadjustingthetimescalesothatthebaselinemortalityrate,c1,equals1.The remainingparametersareassignedvaluesmotivatedby simplicityor chosen for illustrativepurposes.Weconductarobustnesscheck(seeAppendixB)toclarifyhowvari-ationofparametersettingsandselectedmodelassumptions influ-enceoptimalallocationschedules.

    Theoptimalmass-dependentallocationschedulesarerepresentedby the proportionsu*(m) (where the asterisk denotes optimality) ofenergyinvestedintoreproductionforanyindividualbodymassm.Wedivideallocationschedulesintodifferentcategoriesbyconsideringthecurvatureofthefunctionu*(m)forearlyandlatelifestages.Tocovermostofthebiologicallyrelevant lifespan,wecalculatethetrajecto-riesofu*andm fromt=0toa time-pointof lowsurvivalprobabil-ity,P = 10−6. Ifuhasnot reached1withinthis timespan,growth isconsideredtobe indeterminate.Wealsoestimatethemaximumlifespanandmaximumbodysizecorrespondingtotheoptimalschedules.Followingacommonpracticeinanimalstudies(e.g.,Benedettietal.,2008;Satohetal.,2016),wedefinethemaximumlifespanastheav-erageageatdeathofthe10%mostlong-livedindividualsinacohort.Wethendefinemaximumbodysizeastheaveragefinalsizeoftheseindividuals.

    3  | RESULTS

    3.1 | Types of optimal allocation schedules

    By exploring the salient parameter space, we identify twelvequalitativelydifferent typesofoptimalallocation schedulesu*(m).Figure2ashowsexamplesofeachofthetwelvetypeswithparame-tercombinationsselectedforvisualclarity.Reproductiveallocationincreaseswithmasseitherstepwiseorgradually.Asaconsequence,theoptimalallocationschedulesconsistof intervalswithcontinu-ous increase andpointswith discontinuous increase (denotedD).Intervals of continuous increase can furthermore be divided intoaccelerating (denoted a) or decelerating (denoted d) functions ofbodymass.Wealsonotethattheoptimalallocationschedulescanhaveadifferentshapeduringtheonsetofreproduction(whenu*(m)

    increasesfromzero)andduringthecompletionphase(whenu*(m)approaches1oranasymptoticvalue).

    Four of the twelve types of allocation schedules (top row inFigure2a) exhibit a discontinuous onset of reproduction, whereastheothereightarecontinuousinthebeginning,increasinggraduallyfromzero.Inthecompletionphase,fullreproductiveallocation(u=1)isapproacheddiscontinuouslyinthreeofthetwelvetypes(leftmostcolumninFigure2a).Intheotherninetypes,theallocationcurvein-tersectswithu=1asa continuouscurve that is either acceleratingordecelerating(withthecompletionphasedenotedaord).Inthreetypes (rightmost column inFigure2a), the allocation curve isdecel-eratingwithouteverreachingfull reproduction (u=1),andthisspe-cialcaseiscategorizedasindeterminategrowth(withthecompletionphasedenotedi).

    Combinationsofthethreecategoriesofshapesintheonsetphase(D,a,ord)andthefourcategoriesofshapesinthecompletionphase(D,a,d,ori)constitutethetwelvequalitativelydifferentreproductive-allocationschedulesshowninFigure2. Inthefollowing,wewillusetheseonset-andcompletion-phaseshapecategoriestodescribethedifferent optimal mass-dependent reproductive-allocation sched-ules in abbreviated form.As an example, the string Dd refers to areproductive-allocation schedule with a discontinuous onset phaseandacontinuous,deceleratingcompletionphase.

    3.2 | Growth patterns of the optimal types

    DeterminedaccordingtousingEquation(1),thegrowthcurvesofthetwelvenumericallyobtainedoptimaltypesdescribedaboveareshownin(Figure2b).Thegrowthcurvesallhaveanacceleratingphaseinthebeginning,sincetheninvestmentintoreproductionislowandalmostallenergy isusedforgrowth.Thegrowthcurvesdiffermore inthelaterstages.Thetypeswithadiscontinuouscompletionphasestopgrowingsuddenly(growthtypeI,firstcolumninFigure2b).Thetypeswithacontinuouscompletionphasethatreachmaximalinvestmentinto reproduction,u=1, before the survival probability falls belowthestipulatedthresholdofP = 10−6(growthtypeII,secondcolumninFigure2b),growasymptoticallytowardafinalmass.Growthcurvesforthetypesthatdonotreachu=1withinthistimeframeareeitherdecelerating (growth type III, thirdcolumn inFigure2b)oracceler-ating(growthtypeIV,fourthcolumninFigure2b). Insummary,thetwelvequalitativelydifferenttypesofreproductive-allocationsched-ulescorrespondtofourqualitativelydifferentmodesofgrowthlateinlife.

    3.3 | How optimal allocation schedules depend on fecundity and mortality curvature parameters

    TofindalltwelvetypesofoptimalallocationschedulesinFigure2a,itisnecessarytovarymorethantwoparametersatatime.Itisthere-forenotstraightforwardtogiveafulloverviewofwhereintheparam-eterspacedifferenttypesareoptimal.However,severaltypescanbefoundbyvaryingkbandkqwhilekeepingtheotherparametersfixed

    (6)R0=∫∞

    0

    P(t) b(u[m(t)] E[m(t)]) dt.

  •      |  5JOHANSSON et Al.

    (Figure3a).Weusethisasastartingpointforelucidatingwhichcondi-tionsfavordifferenttypes.

    First,thetwocurvatureparameterskbandkqdeterminewhetherthe optimal allocation schedule is continuous, discontinuous, or acombinationofthetwo.ThefourquadrantsinFigure3acorrespondto combinations of accelerating (convex) anddecelerating (concave)fecundityandmortalityrates.Inthetop-leftquadrant,mortalityisac-celeratingandfecundityisdecelerating.Theseconditionsareknownto favor gradually increasing allocation to reproduction (see Siblyetal.,1985).Therefore,exclusivelytypeswithcontinuouslyincreasingreproductive investment (aa,ad,ai,anddi)arepresent there. In theopposite,lower-rightquadrant,noneoftheseconditionsarefulfilled,and thus,only thebang-bangcontrol strategy (DD)occurs there. Inthetop-rightandbottom-leftquadrants,oneoftheconditionsforin-termediateallocationisfulfilled,butnottheother.Itisonlyinthesetwoquadrantsthatwefindtypeswithmixeddiscontinuousandcon-tinuousphases (Dd,Di, andDa).Heuristically, the combinationof acurvatureparameterthatfavorsreproductiveallocationofbang–bangtypeandacurvatureparameterthatfavorsgradedallocationmayyieldtypesthatareamixtureofthetwo.Amoretechnicalunderstandingcanbegainedbyconsideringthemarginalvaluesofreproductivein-vestmentatdifferentlifestages,aswewilldetailinSection3.5.

    Second, the curvature parameters kb and kq determinewhetheroptimalallocationscheduleswithgraduallyincreasingreproductiveal-locationhaveacceleratingordeceleratingphases.Thisvariationcan

    beexplainedbythemagnitudeofthecurvatures.Note,forexample,thatdecreasingthecurvatureparameterkbofthefecundityfunctionandmovingfrom(kb,kq)=(1,1)to(kb,kq)=(0.5,1)inFigure3inducesatransitionfromanacceleratingtoadeceleratingcompletionphase,andfinallytoindeterminategrowth,whichisastronglydeceleratingcompletionphase.Similarly,increasingkqinthethreeleftmosttypesinthemiddlerowofFigure2leadsfromacceleratingtoincreasinglydeceleratingcompletionphases.

    Inmanycases,theshapesintheonsetandcompletionphasesdonotcoincide(alltypesexceptDD,aa,anddd).Consider,forexample,theDd and the dD types. Both exhibit continuously anddiscontin-uously increasingallocation,but theDd typehas thediscontinuousphase first and the dD type has the discontinuous phase last. Thevariation in the order by which different shape categories appearcanbeunderstoodbyobservinghowthecurvaturesofthefecundityandmortalityfunctionsvarywiththelevelofinvestment.Forexam-ple, thephysiological-limit parameterp affects the curvatureof thefecundityfunctionatlowlevelsofinvestment(Figure1c).Therefore,variationinpmainlyaffectstheshapeofthereproductive-allocationscheduleinitsearlyphases.Thisexplainswhytheearlyphasesofthereproductive-allocationschedulesinthesecondandthethirdrowinFigure2a,whichdifferonlyintheparameterp,havedifferentshapes(acceleratinganddecelerating,respectively).Next,considerthetypesaa,ad,da,andddinFigure2.Thesedifferinthephysiological-limitpa-rameterpandinthekqparameteronly.Variationinpcausesachange

    F IGURE  2 Differenttypesofoptimalreproductive-allocationschedules(a)andcorrespondinggrowthcurves(b).Lettersindicatetheshapesoftheallocationschedulesintheonsetphase(rows)andinthecompletionphase(columns)ofreproductiveinvestment.Foreachallocationscheduleshownin(a),thecorrespondinggrowthcurveisshownin(b).ThetypeofgrowthcurveisindicatedbytheromannumbersI–IVin(b).Thecirclesrepresentthemeanageormeansizeofthe10%oldestindividuals.Withsomeexceptionsdetailedbelow,weassumethefollowingparametersettings:kq =0.95,1.25,3.5,and10inthecolumnsfromlefttoright,kb =1.02,0.92,and0.92intherowsfromtoptobottom,p =15,15,and1.2intherowsfromtoptobottom,c2=0.04,c1 = c3 = c4=1,mbirth=0.01,andke =3/4.TheexceptionsarethatforDawesetc2 = 1.15 andkb =1.1;forDi,wesetc2=0.8;foraD,wesetc1 = c3=2andkb = kq =0.95;andfordD,wesetc1 = c3=2,kb = kq =0.95,andp = 2.5

    (b) (a)

  • 6  |     JOHANSSON et Al.

    between accelerating and decelerating curves in the early phasesof investment,whilevariation inkq causes the changebetween ac-celeratinganddeceleratingcurves in the laterphasesof investment(Figure1a).Hence, by changing theseparameters independently, allcombinationsaa,ad,da,andddcanbeobtained.

    InAppendixBwedescribehowvariationintheothermodelpa-rameters (c1,…,c4,ke,P, and s) qualitatively influence the shapes oftheoptimalschedules.Wegenerallyfindthatthediversityofoptimaltypesisrobusttomoderatevariationintheseparametervalues,butcanbereducediftheytakeonverylargeorverysmallvalues.Forex-ample,severaltypesinourschemeappearbecauseofaninteractionbetweenthemortalityandthefecundityfunctions.Wemightthere-foregetalowerdiversitywheneffectsfromoneofthesedominateforexample,ifc2issmallcomparedtoc3suchthatvariationinuwillaffectfecunditymuchmorethanmortality.

    Wealsostudyhowtheoptimalallocationschedulesareaffectedby fixed costs of reproduction and size-dependent mortality (seeAppendixB).Wefindthatfixedcostsofreproduction,suchthatfe-cundityiszerountilaminimumamountofenergyisallocatedtorepro-duction,haveverysimilareffectsontheshapesofoptimalschedulesas assuming accelerating fecundity.With regard to size-dependentmortality,wefindthatifmortalityisinitiallyveryhighanddecaysonlyslowlywithsizewecangetextremeandunrealisticoutcomeswhereit isoptimalto investallenergytoreproductionalreadyfrombirth.However,ifmortalitydropsrelativelyfastwithsizeorisnottoolargeoverall,theeffectsontheshapesoftheoptimalallocationschedules,andthusalsoonoveralldiversity,shouldberelativelymild.

    3.4 | How growth- curve types and life- history attributes depend on fecundity and mortality curvature parameters

    The allocation schedule determines the growth curve and, conse-quently, also themaximum life span andmaximumbody sizeof anorganism.Forexample, themaximumbodysize increasesas theal-location schedule becomes increasingly decelerating (e.g., secondrow inFigure2b). Inorder togiveamore systematicoverview,weinvestigatehowsalientlife-historycharacteristicsareaffectedbytheshapesofoptimalreproductiveallocationundervariationofthecur-vatureparameterskbandkq(Figure3b-d).Whenmovingtowardtheupperleftcorner(lowkbandhighkq)intheparameterspace,thetypesofgrowth (Figure3b)changefromendingabruptly (I)orasymptoti-cally (II) tocontinued, indeterminategrowth (III, IV).Whencompar-ingFigure3a,b, it isalsoapparentthatthereisnocompleteoverlapbetweentheoptimaltypesandthegrowthcurves intheparameterspace.Only thegrowth type that stopsabruptly (I) exclusively cor-respondstotheDDtypeinFigure3.However,withotherparametersettings,thistypeofgrowthcurvemayalsoarisewithanaDoradDtype(Figure2b).

    Variationingrowthcurvesisassociatedwithvariationinmaximumlifespanandmaximumbodysize.Asshown inFigure3d, thebang-bangcontrolstrategies(DD)andnonbang-bangcontrolstrategiesareaffecteddifferentlybyvariationinthecurvatureparameters.Forbang-bangcontrolstrategies,theswitchfromnonetofullreproductivein-vestmentoccursatincreasinglylargersizeswhenkbisincreased.The

    F IGURE  3 Overviewofhowthecurvatureparameters(kb,kq)ofthefecundityandmortalityfunctionsaffecttheshapeoftheoptimalreproductive-allocationscheduleandtheirproperties.In(a)and(b),thelinesindicatebordersbetweendifferenttypes.ThetypesareclassifiedasinFigure2.(c)and(d)arecontourplots.In(b–d)thedashedlineindicatestheborderbetweenbang-bangcontrolstrategies(DD)andothers.Thegraylinesin(a)and(b)correspondtokb = 1 andkq =1,respectively.Theinsetinpanel(d)showstheoptimalallocationschedulesu*(m)attheparametervaluesindicatedbyXandYinthecontourplot.Parameters:c1 = c2 = c3 = c4=1,mbirth=0.01,ke=3/4,andp = 15

    (a) (b)

    (c) (d)

  •      |  7JOHANSSON et Al.

    reasonisthatthestrongeracceleratingfecundityreturnsmakeitop-timaltowaitlongertoreproduce.Hence,bothmaximumlifespanandmaximumbodysizeincreasewithkb.Thebang-bangcontrolstrategiesare,however,notaffectedbykq,astheyonlytakethevaluesu* = 0 andu*=1,andarethereforeindependentofkqaccordingtoEquation(3).Fornonbang-bangcontrolstrategies,theeffectofincreasingkbisthatu*decreasesatlowersizesandincreasesathighersizes(movingfrompointsXtoYinFigure3d,inset),andasaconsequence,individ-ualswiththeoptimalallocationscheduleexperiencelowermortalityand grow faster when young, and experience higher mortality andgrowslowerwhenold.Theneteffectonmaximumlifespan(maximumbodysize)dependsonwhetherornottheincreasedsurvival(growth)intheearlierstagesiscompensatedbythereducedsurvival(growth)inlaterstages.

    3.5 | The marginal values of reproductive investment

    Qualitativeinsightsintohowfecundityandmortalityfunctionsaffecttheshapeoftheoptimalallocationschedulecanbegainedbystudyingthereturnsofashortchangeinreproductiveinvestmentforthelife-timereproductivesuccessofanindividual.FollowingMetz,Staňková,andJohansson(2016)andinthespiritofthemarginal-valuetheorem(Charnov,1976;seealsoWilliams,1966),wederiveanexpressionforsuch fitness returns,denoted r for short (AppendixA).For thepur-posesofourarguments,rcanbewrittenas

    Here, the first term gives the instantaneous return from reproduc-tion ifthereproductiveallocation is increasedfromu(t) toũattimetandthesecondandthirdtermcorrespondtothefuturereduction

    inreproductionfromtheassociateddecreaseinfuturesizesandde-crease insurvivalprobability,respectively.Theexpressionallowsustocomparethefitnessreturnfromchangingthelevelofreproductiveinvestmentfromutoũatagivenmassmofanindividual.Here,ũcantakeonanyvaluebetween0and1,incontrasttotheexpressionde-rivedbyMetz,Staňková,andJohansson(2016)thatgivesthemarginalfitnessreturns,i.e. is,effectsofsmalldeviationsfromu.Thefactorsy1(t,u)andy2(t,u)dependonthestrategyuasawhole;explicitex-pressionsaregiveninAppendixA.Areproductive-allocationscheduleu*isoptimalifandonlyifthefitnessreturnismaximizedatũ=u∗(m) foranym≥mbirth.Anydeviationfromtheoptimalstrategywill thuseitherdecreaselifetimereproductionorleaveitunchanged,andthefitnessreturnfortheoptimalstrategyisalwayszero.

    Byanalyzingtheexpressionforfitnessreturn,weseethatthecur-vatureofthefitnessreturnrdependsonthecurvaturesofthefecun-dity functionb and themortality functionq. In fact, rhasone termthatisequaltob(ũE)andonetermthatisproportionalto−q(ũ). The futurefitnessreturnscanbeseenasaweightedmeanofthesetwocomponents.Forexample,whenbothband−qareaccelerating(i.e.,haveincreasingslopes),theirweightedmean,andthusr,willalsobeaccelerating(Figure4a).Likewise,whenbothband−qaredecelerating(i.e.,havedecreasingslopes), rwillbedecelerating too (Figure4b,c).Finally,whenband−qhavedifferentcurvatures,rmaytakeonasig-moidalshape(Figure4d).

    Basedontheseobservations,wecanmakequalitativepredictionsabouttheoptimalallocationscheduleswhenband−qhavetheformsinFigure4a–d.Withanacceleratingr(Figure4a),therecannotbeaninteriormaximum, sowhen its slope changes, changes in allocationmustoccur in the formofa sudden,discontinuous shift (Figure4e).Withadeceleratingr(Figure5b,c),therecanbeaninteriormaximum.Astheslopeofrchangesinthesecases,themaximumwill increase

    (7)

    r(ũ,t;u)=[

    b(ũE(m))−b(uE(m))]

    (t)−[

    (ũ−u)E(m)]

    (t)y1(t,u)

    −[

    q(ũ)−q(u)]

    (t)y2(t,u).

    F IGURE  4  Illustrationofhowshapesoftheoptimalreproductive-allocationschedulescanbededucedusingthefitness-returnapproach.Foranindividualinagivenstate,thefitnessreturn(rinEquation(7)ofchangingtheallocationlevelfromutoũcorrespondstoaweightedmean(greylines)ofthefunctionsforfecundity(b(ũE),continuouslines)andnegativemortality(−q(ũ),dashedlines).Panels(a–d)showhowtheweightedmeanqualitativelydependsontheshapethefecundityandmortalityfunctions.Panels(e–h)illustratehowtheshapeoftheoptimalallocationschedule(u*,thicksolidlines)dependsontheshapeofthefitness-returnfunction(r(ũ,t;u∗),greylines)atdifferentagest.Thefitness-returnfunctionsineachpanel(e–h)correspondtotheweightedmeaninthepanels(a-d)above

    (a) (b) (c) (d)

    (e) (f) (g) (h)

  • 8  |     JOHANSSON et Al.

    gradually from 0 to 1, rendering a continuous allocation schedule(Figure4f,g).Finally,withasigmoidalr(Figure4d),wemaygetamix-tureofdiscontinuousandcontinuousallocationschedules(Figure4h).Noticethatinthisexample,theweightedmeanisacceleratingforlowvaluesofũanddeceleratingforhighvaluesofũ(Figure4d),whichex-plainswhytheoptimalallocationschedulefirstexhibitsadiscontinu-ousincreasetothenincreasingcontinuously.

    Whether a gradually increasing optimal allocation schedule willbe accelerating or decelerating as a function of mass (e.g., typesaaordd)dependsonmore subtlepropertiesof the fitness compo-nents. Consider theweightedmean of the fecundity andmortalityinFigure4b.Here,thebirthrateb isnearlylinearinũandq ismorecurvedforhighervaluesofũ.Theweightedmeanwillthereforehavemostcurvatureathighervaluesofũ.Astheslopechangeswithageinthiscase,themaximumwillincreaserelativelymuchatyoungagesand relatively little at older ages, thus giving rise to a deceleratingshape.InFigure4c,bycontrast,bhashighercurvaturethanq,andtheweightedmeanhashighestcurvaturefor lowvaluesofũ.Therefore,themaximumwillincreaseslowlyatyoungagesandfastatoldages,resultinginanacceleratingshapeoftheoptimalallocationschedule.Note, however, thatwhether the accelerating function of time alsowillbeanacceleratingfunctionofmass, inadditiondependsonthegrowthcurves(whichdescribemassasafunctionoftime).Thus,therelationshipbetweenearlyandlatecurvatureoftheweightedmeanandacceleratinganddeceleratingshapeofu*(m)shouldbeseenmoreasatendencythanasastrictrule.

    3.6 | Summary and synthesis

    Three key observations from numerical investigations (Figures2and 3) and from studying the fitness returns of reproductive

    investments (Figure4) can be used to summarize our results. First,an intervalof a fitness-returncurve that is accelerating leads toanoptimal reproductive-allocation schedule with discontinuous in-crease(cf.Figure4a,e),whiledeceleratingintervalsleadtoanoptimalreproductive-allocationschedulewithgraduallyincreasingallocation(cf. Figure4b,f). Second, the slope of a decelerating fitness-returncurveaffectstheshapeofgraduallyincreasingoptimalreproductive-allocationschedules,suchthatmoredecelerationcausesatransitionfromanacceleratingtoadeceleratinggradualincrease(cf.Figure4b,fwithc,g).Third,theshapeofthefitness-returncurveforlow(high)lev-elsofreproductiveinvestmentaffectstheshapeofoptimalreproduc-tive-allocationschedulesatlow(high)agesormasses(cf.Figure4d,f).

    We synthesize these relationships into the general classifica-tion scheme of optimal allocation schedules shown in Figure5(corresponding to the numerically obtained allocation schedulesin Figure2). Variation in fitness-return curvatures in the earlystages (small investment levels) leads to three different catego-riesof shape in theonsetphase (rows inFigure5).Theonsetofreproductionmay be discontinuous (D) or continuous dependingonwhether the fitness-return curve at early stages is accelerat-ing or decelerating. Depending on how strong the decelerationis, a continuousonset canbedecelerating (d) or accelerating (a).Variation in fitness-returncurvatures in the later stages (high in-vestmentlevels)leadstofourdifferentcategoriesofshapeinthecompletion phase (columns in Figure5). Depending on whetherthefitness-returncurveattheseinvestmentlevelsisacceleratingor decelerating, full reproductive allocation may be approacheddiscontinuously (D)orgraduallybyacontinuouscurve(a,d,or i).Dependingonhowstrongthedecelerationis,thecontinuousallo-cationcurvemaybeaccelerating(a),decelerating(d),ordecelerat-ingwithouteverreachingu=1(i).

    FIGURE  5 Conceptualmapfromallocation-dependentfitnessreturnstooptimalallocationschedules.Thecurveswithintheboxesframedingreyrepresenttheshapeofthefitnessreturn(verticalaxes)asafunctionofreproductiveallocationu(horizontalaxes)forearlyages(leftcolumn)andlateages(toprow),respectively.Theseshapesinturnmaptoshapesoftheoptimalreproductive-allocationschedule,attheonsetandcompletionofreproductiveinvestment,respectively,asindicatedbythegreyarrows.Thetwelvetypesofoptimalallocationschedules(boxesfilledwithgrey)arethenobtainedascombinationsofthethreetypesofshapesattheonsetphaseandthefourtypesofshapesatthecompletionphase.AsinFigure2a,optimalallocationschedulesareshownasfunctionsdescribinghowtheallocationlevelu*(verticalaxes)dependsontheofsizem (horizontalaxes)

  •      |  9JOHANSSON et Al.

    Compared to the traditional classification of life histories intotypeswithdeterminategrowthandtypeswithindeterminategrowth,threetypes(DD,dD,andaD)clearlyexhibitdeterminategrowthandthreetypes (Di,di,andai)clearlyexhibit indeterminategrowth.Fortheremainingsixtypes,however,itisasomewhatarbitraryjudgmentwhethertheycouldbesaidtoexhibitdeterminateor indeterminategrowth(cf.Figure3a,b).

    4  | DISCUSSION

    Ourresultsshowthatvariationintheshapeofallocation-dependentfecundityandmortalityratescangiverisetoasurprisingdiversityinoptimalallocationschedules,hithertonotappreciatedintheliterature.Belowwediscusshowourfindingsarelinkedtoprevioustheory.Wealsodiscusshowtheresultscanbeusedto interpretempiricalpat-ternsinallocationandgrowthstrategiesandtounderstandhoweco-logicalandphysiologicalconstraintsinfluencelife-historyevolution.

    4.1 | Relation to other theoretical approaches

    Our results extend the more qualitative results reported in earlieranalytic studies (e.g., Sibly etal., 1985; Taylor etal., 1974). For ex-ample,Siblyetal.(1985)discussedwhichcombinationsofcurvaturesin fecundity andmortality rates render graded allocation schedulesoptimal,withoutgoing intofurtherdetailabouttheshapesoftheseschedules.By contrast, our results give concrete insights intowhatkindofdiversitywecanexpecttoarisefromthesemechanisms.Wealsoshowhowthisdiversitycanbeunderstoodbystudyingthefit-ness returns of reproductive investment (Equation[7], Figure5,AppendixA)andthusshedlightonhowspecificfeaturesoffecundityandmortalityratesinfluenceoptimalallocationschedules.

    Thefitnessreturn,whichcanbedeterminedforanyu,isinmanywayssimilar to the fitnessgradient inadaptive-dynamics theory fortheevolutionoffunction-valuedtraits(Dieckmann,Heino,&Parvinen,2006;seealsoMetzetal.,2016).Thisconnectionprovidesaninroadto study allocation problems under the influence of environmentalfeedback (seealsoParvinen,Dieckmann,&Heino,2013).This isaninteresting possibility for extensions of our presentmodel, as opti-mizationapproaches inherentlyaredirectlyapplicabletoarelativelynarrowrangeofcompetitivescenarios, suchasnurserycompetition(Metz,Mylius,&Diekmann,2008).Withanenvironmentalfeedbackloop in place, we have to distinguish between primary parametersand parameters modified by the environmental feedback, like thefullrangeofpossiblefertilitiesandthatoffertilitiesinenvironmentsdepleted by the corresponding equilibrium populations. Ifwe allowmaximalfreedomintheprimaryparameters,uptonaturalphysiologi-calrestrictions,themodifiedparameterscanonlybemorerestricted.Hence, incorporating an environmental feedback can only decreasethepossiblevariation inoutcomesof theoptimizationproblem.Wealsonotethattheuseoffitnessreturnstogetherwithanassociatedmarginal-valuetheoremtosolveallocationproblemsmethodologicallyconnectsourworktoalargerangeofotherproblemsinevolutionary

    theory,includingmatingbehavior(Parker,1974)andoptimalforaging(Charnov,1976).

    Whilewehavestudiedtheinfluenceofallocation-dependentfe-cundity andmortality rates on optimal allocation schedules, similartypesandsimilardiversitymayresultfromothermechanismsaswell.KingandRoughgarden(1982)found,forexample,thatadiscontinu-ousonsetofreproductionfollowedbyacontinuouscompletionphasecanbeoptimalforannualspecieswhenseasonlengthsfluctuatesto-chastically.Asanotherexample,Janczur(2009)foundthataqualita-tivelysimilarallocationschedulecanbeoptimalforplantsaffectedbyherbivory,andfurthermore,thattheexactallocationlevelduringthecompletionphasedependedonthecostsandefficienciesofchemicaldefensesubstances.

    Theoretical studies have also predicted optimal reproductive-allocationscheduleswithqualitativelydifferentshapescomparedtothoseweidentifyhere.OneexampleisgivenbyMcNamara,Houston,Barta,Scheuerlein,andFromhage(2009),whoinvestigatedamodelinwhichdamageaccumulatedoveranorganism’s lifetimemakesimul-taneousallocationtogrowthandreproductionoptimal.Incontrasttoourmodel,inwhichreproductiveallocationalwaysincreaseswithageorremainsconstant,theyshowedthatreproductiveallocationcoulddecreaseatlaterstagesofanorganism’slifewhenphysiologicalcon-ditionsdeteriorate.Asanotherexample,models taking intoaccountseasonalvariationintheenvironmentpredictthat itmaybeoptimalforperennial lifehistories to switchbetweenphasesofgrowthandreproductioneveryyear(e.g.,Kozłowski&Uchmanski,1987)insteadofsimultaneouslyallocatingtogrowthandreproduction,aswehavestudiedhere.Seasonallyvaryingsurvivalprospects for theoffspringcanfurtherinfluencetheoptimalshapeofsuchindeterminategrowthpatternsandaffectwhether it isoptimalto invest intoreproductionbeforeoraftergrowthwithinasingleseason(Ejsmond,Czarnołeski,Kapustka,&Kozłowski,2010).

    Becausedifferentalternativemechanismsmayfavorindetermi-nategrowth, itwouldbeof interesttoknowhowourpredictionsregardingshapesofoptimalallocationschedulesandtheirdiversitymightbeaffectedbyalternativemechanisms,whichalsomayex-plainindeterminategrowth.Someinsightsintothisquestionwereprovided in Klinkhamer, Kubo, and Iwasa (1997)who consideredseasonal variation aswell as allocation-dependent fecundity andmortality functions (corresponding tokbandkqbeing nonzero) inamodelofperennialplants.Notethatotherstudies(e.g.,Ejsmondetal., 2010;Kozłowski&Uchmanski,1987)ofoptimal reproduc-tiveallocation in seasonalenvironmentsassume that fecundity isproportional to reproductive allocation (kb=1). In line with ourconclusions,Klinkhameretal.(1997)foundthattheoptimalyearlyallocationtoreproductionincreasedgraduallywithagewhentherewerediminishingreturnsfrominvestmentintofecundity.However,whenmortalityincreasedatadeceleratingratewithreproductiveallocation, inwhichcaseourmodelpredictsbang-bangcontrol isoptimal,theyinsteadfoundthat itwasoptimaltoreproduceonlyin certain years, with nonreproductive years in between, a pat-terncomparabletomasting.AsnotedbyKlinkhameretal.(1997),suchpatternsof intermittentreproduction inpracticecorrespond

  • 10  |     JOHANSSON et Al.

    tobang-bangcontrolifsurvivalafterthefirstreproductiveyearisverylow.Thesecomparisonsshowthatsomeofourresultscanbecarriedovertomorecomplexscenarios,butthatadditionalmech-anisms, e.g. associatedwith the presence of storage organs, canyieldqualitativelydifferentpredictions.

    Previous theoretical studies have mostly focused on studyingwhetherornot,orunderwhichconditions,acertainmechanismcangiverisetoindeterminategrowth.Bycontrast,exploringtheeffectsofvariationinparametersthatarestructurallyimportantfortheshapeof reproductive schedules, as we have done here, clarifies whichpotentialagivenmechanismhas togeneratediversity in lifehisto-ries.An interestingavenuefor futureresearch is tocomparewhichpatternsof life-historyvariationaregeneratedbywhichalternativemechanisms.Itwouldalsobeinterestingtostudymoresystematicallyinteractions among different mechanisms that independently mayfavorindeterminategrowth(cf.Klinkhameretal.,1997).

    4.2 | Predictions about empirical patterns

    Ouranalysisreveals linksbetweenecologicalandphysiologicalcon-straints on life-history evolution, on the one hand, and shapes andcharacteristics of the expected reproductive-allocation and growthstrategies,ontheotherhand.Inparticular,ourmodelbridgesbetweentheallocationpatternsexpectedfromevolutionandthecurvaturesofvitalratesthataffectfitnessreturns.Ifthesecurvaturesareknown,thetypeofoptimalallocationschedulecanbepredicted.Similarly,theshapeofanoptimaltypecanbeusedtoinferaspectsoftheshapeoftheunderlyingfitness-returnfunction.

    Theusefulnessofestablishingtheselinksdependsonhowwellthecurvaturesofthefitness-returnfunctionsandthefeaturesoftheal-locationpatternscanbeobservedempirically.Empiricalstudieshaveidentified reproductive-allocation schedules, that can be related tothosefoundinourstudy.Forexample,WenkandFalster(2015)eval-uated the existing empirical evidence for diversity of reproductive-allocation schedules among perennial plants.Among the 32 speciesincluded in their review forwhich reproductive-allocation scheduleshadbeenquantifiedor couldbe inferred, they identified sixdistincttypes.Specifically,theirtypescorrespondedtoDD,Dd,dd,twover-sionsofdi(dependingonwhetherreproductiveallocationapproachedanasymptoteorcontinuedtoincrease),andonetype,notpresentinourmodel,characterizedbyacompletionphasewithdecliningrepro-ductive allocation.As anotherexample,Ware (1980)estimatedhowmuchsurplusenergywasallocatedtoeithergrowthorreproductioninAtlanticpopulationsofdifferentfishspeciesusingallometricfunc-tionsofsize.Thestudyreportedthatthefunctionsdescribingenergydevoted to reproduction (corresponding touE in ourmodel) for thedifferentspecieshad largerexponents thanthefunctionsdescribingsurplusenergy(correspondingtoEinourstudy).Ifweassumethatre-productiveeffortuinourstudyforeachpopulationcorrespondstotheratiobetweenthetwofunctions,andbecausethedifferencebetweentheestimatedexponentsinallcaseswereabove0andbelow1(Table3inWare,1980),wecandeducethatushouldbeadeceleratingfunctionofmass(correspondingtotheddorditypesinourframework).

    Forsomespecies,researchershavealsoputforwardempiricalev-idenceforwhyfecundityisanonlinearfunctionofenergydevotedtoreproductionandhaveusedthistoexplainwhyacertainreproductivestrategymightbeoptimal.Forexample,SchafferandSchaffer(1979)relatedpollination-drivenacceleratingreturnsofreproductiveinvest-ments to the bang–bang strategy (DD) of Yucca wipplei andMiller,Tenhumberg&Louda(2008)relateddiminishingreturnsofreproduc-tionowingto insectherbivorytoagradedallocationpattern (corre-spondingtotheddorditypesinourframework)inaspeciesofcactus(Opuntia imbricata).

    Estimatingenergyallocatedtogrowthandreproductionduringthe lifetime of an organism can be complicated and expensive,which may explain why such observations are rare (cf. Myers &Doyle,1983;Wenk&Falster,2015).Estimatingshapesoffecundityandmortalityfunctionsisperhapsevenmorechallengingowingtothetemporaldecouplingbetweentheallocationdecisionandfinaleffectonlifetimereproduction.However,evenifitmaybehardtogetafirmgriponthesekeyfeaturesfromdata,theycorrelatewithother patterns, that may be easier to observe. To startwith, ourmodel predicts connections between different types of allocationschedulesandqualitativelydifferentgrowthcurves.Ourmodelalsopredicts how the curvatures of mortality and fecundity functionsrelatetomaximumlifespanandmaximumbodysize (Figure3c,d).Predictions from our model about variation in energy-allocationpatterns can therefore be connected to data on growth curves,bodysizes,andage.Forexample,MyersandDoyle (1983)usedamodelsimilartoourstoreconstructmortalitycurvaturesfromdataon thegrowthand reproductive successondifferent fish species.As the curvatures ofmortality and fecundity functions ultimatelydepend on ecological and physiological constraints on life-historyevolution,variationinthesefunctionscanbeassumedtovarywithfactors,thatinfluencetherelevantconstraints.Itwould,forexam-ple,beinterestingtostudywhetherlifehistoriesvaryalonggradi-entsofsiblingcompetition(cf.Stockley&Parker,2002)ordependonreproductiveconstraints(cf.Shine,1988)inlinewithourmodelpredictions. In sum, even if some components of ourmodel maybe hard tovalidate, themultitude of connections betweenmodelpredictionsandaccessibledatamakeusbelievethattherearemanyways themodel predictions usefully generate empirically testablehypothesesaboutpatternsofdiversityinlifehistories.

    Onespecificpossibilityforfutureresearchderivesfromourresultthatthepropertiesofbang–bangtypesandtypeswithcontinuousin-creaseinreproductiveallocationdependverydifferentlyonvariationincurvatureparameters.Forexample,withsettingsasinFigure3c,d,therewouldbea strongpositivecorrelationbetweenmaximum lifespanandmaximumbody size among randomly sampledbang–bangtypes,butnotamongnonbang–bangtypes.Itwouldbeinterestingtoinvestigatewhethersuchpatternscanbeobservedinempiricaldata(cf. Blueweiss etal., 1978;Hendriks, 2007) by grouping species ac-cordingtolife-historytypeandseeingifcorrelationsbetweenlifespanandbodysizedifferbetweenthesegroups.

    Ourinvestigationheregoesbeyondthetraditionalperspectiveofdividingallocationpatterns into those leading toeitherdeterminate

  •      |  11JOHANSSON et Al.

    or indeterminate growth. Our findings thereby offer a conceptualfoundation for studying intermediatecases, enabling the systematicexplorationofricherandmorenuancedvariationinlifehistories.Ourresults alsoprovide linksbetweenecological andphysiological con-straintsandtheselife-historytypes.Byestablishinganewandwiderscopefortestablepredictions,wehopetheseresultswillinspirecon-tinuedresearch intounderstanding the fullvariationof lifehistoriesencounteredinnature.

    ACKNOWLEDGEMENTS

    WethankDanielFalsterandJörgenRipaforhelpfulcommentsonear-lierversionsofthemanuscript.J.Johanssongratefullyacknowledgessupport by the Evolution and Ecology Program of the InternationalInstitute for Applied Systems Analysis (IIASA) and by the SwedishResearchCouncil(2015-00302toJ.Johansson)andMarieSklodowskaCurieActions,Cofund,ProjectINCA600398.Å.Brännströmgratefullyacknowledges support fromTheSwedishResearchCouncil and theSwedish Research Council Formas. J.A.J. Metz benefitted from thesupportfromthe“ChaireModélisationMathématiqueetBiodiversitéof Veolia Environnement-Ecole Polytechnique-Museum Nationald’HistoireNaturelle-FondationX.”U.Dieckmanngratefullyacknowl-edges support by the Sixth Framework Program of the EuropeanCommission,theEuropeanScienceFoundation,theAustrianScienceFund,theAustrianMinistryofScienceandRe-search,andtheViennaScienceandTechnologyFund.

    CONFLICT OF INTEREST

    Nonedeclared.

    AUTHOR CONTRIBUTIONS

    JJ,ÅB,andUDinitiatedthestudyanddesignedthemodel.JJanalyzedthemodel, conceived the synthetic framework, andwrote the firstdraftofthemanuscript.JAJMprovidedthemarginal-valueargumentsandanalysesoffitnessreturns.Allauthorsdiscussedtheresultsandimplicationsandcontributedsubstantiallytorevisions.

    ORCID

    Jacob Johansson http://orcid.org/0000-0002-0018-7018

    REFERENCES

    Aksnes, D. L., & Giske, J. (1993). A theoretical model of aquatic vi-sual feeding. Ecological Modelling, 67, 233–250. https://doi.org/10.1016/0304-3800(93)90007-F

    Andersson,M., & Iwasa,Y. (1996). Sexual selection. Trends in Ecology & Evolution,11,53–58.https://doi.org/10.1016/0169-5347(96)81042-1

    Bell,G.(1980).Thecostsofreproductionandtheirconsequences.American Naturalist,116,45–76.https://doi.org/10.1086/283611

    Benedetti,M.G.,Foster,A.L.,Vantipalli,M.C.,White,M.P.,Sampayo,J.N.,Gill,M.S.,…Lithgow,G.J.(2008).Compoundsthatconferthermal

    stressresistanceandextendedlifespan.Experimental Gerontology,43,882–891.https://doi.org/10.1016/j.exger.2008.08.049

    Bertsekas,D.P.(1987).Dynamic programming: Deterministic and stochastic models.EnglewoodCliffs,NJ:PrenticeHall.

    Blueweiss, L., Fox,H.,Kudzma,V.,Nakashima,D., Peters,R.,&Sams, S.(1978).Relationshipsbetweenbodysizeandsomelifehistoryparam-eters.Oecologia,37,257–272.https://doi.org/10.1007/BF00344996

    Calow, P. (1979). The cost of reproduction – a physiological approach.Biological Reviews of the Cambridge Philosophical Society, 54, 23–40.https://doi.org/10.1111/j.1469-185X.1979.tb00866.x

    Calow,P.,&Woollhead,A.S.(1977).Relationshipbetweenration,repro-ductive effort and age-specific mortality in evolution of life-historystrategies–someobservationsonfreshwatertriclads.Journal of Animal Ecology,46,765–781.https://doi.org/10.2307/3639

    Charnov, E. L. (1976). Optimal foraging: The marginal value the-orem. Theoretical Population Biology, 9, 129–136. https://doi.org/10.1016/0040-5809(76)90040-X

    Charnov,E.L.(1993).Life history invariants: Some explorations of symmetry in evolutionary ecology.Oxford,UK:OxfordUniversityPress.

    Cohen,D. (1971).Maximizing finalyieldwhengrowth is limitedby timeor by limiting resources. Journal of Theoretical Biology,33, 299–307.https://doi.org/10.1016/0022-5193(71)90068-3

    Dieckmann,U.,Heino,M.,&Parvinen,K. (2006).Theadaptivedynamicsoffunction-valuedtraits.Journal of Theoretical Biology,241,370–389.https://doi.org/10.1016/j.jtbi.2005.12.002

    Ejsmond,M.J.,Czarnołeski,M.,Kapustka,F.,&Kozłowski,J.(2010).Howtotimegrowthandreproductionduringthevegetativeseason:Anevo-lutionarychoiceforindeterminategrowersinseasonalenvironments.American Naturalist,175,551–563.https://doi.org/10.1086/651589

    Feeny,P.(1976).Plantapparencyandchemicaldefence.Recent Advances in Phytochemistry,10,1–40.

    Fraenkel, G. S. (1959). The raison d’être of secondary plant sub-stances. Science, 129, 1466–1470. https://doi.org/10.1126/science.129.3361.1466

    Gadgil, M., & Bossert, W. H. (1970). Life historical consequences ofnatural selection. American Naturalist, 104, 1–24. https://doi.org/10.1086/282637

    Goodman, D. (1974). Natural selection and a cost ceiling on repro-ductive effort. American Naturalist, 108, 247–268. https://doi.org/10.1086/282906

    Greene, D. F., & Johnson, E. A. (1994). Estimating the mean an-nual seed production of trees. Ecology, 75, 642–647. https://doi.org/10.2307/1941722

    Heino, M., & Kaitala, V. (1999). Evolution of resource allocation be-tween growth and reproduction in animals with indeterminategrowth. Journal of Evolutionary Biology, 12, 423–429. https://doi.org/10.1046/j.1420-9101.1999.00044.x

    Hendriks,A.J. (2007).Thepowerofsize:Ameta-analysisrevealsconsis-tency of allometric regressions. Ecological Modelling, 205, 196–208.https://doi.org/10.1016/j.ecolmodel.2007.02.029

    Houston, A., & McNamara, J. M. (1999).Models of adaptive behaviour. Cambridge,UK:CambridgeUniversityPress.

    Intrilligator,M.D. (1971).Mathematical optimization and economic theory. EnglewoodCliffs,NJ:PrenticeHall.

    Janczur,M.K.(2009).Optimalenergyallocationtogrowth,reproduction,andproductionofdefensivesubstancesinplants:Amodel.https://doi.org/10.1371/journal.pone.0089535

    King, D., & Roughgarden, J. (1982). Graded allocation between vegeta-tiveandreproductivegrowthforannualplantsingrowingseasonsofrandom length. Theoretical Population Biology, 22, 1–16. https://doi.org/10.1016/0040-5809(82)90032-6

    Klinkhamer, P. G. L., Kubo, T., & Iwasa, Y. (1997). Herbivores and theevolutionof the semelparous perennial life-historyof plants. Journal of Evolutionary Biology, 10, 529–550. https://doi.org/10.1007/s000360050040

    http://orcid.org/0000-0002-0018-7018http://orcid.org/0000-0002-0018-7018https://doi.org/10.1016/0304-3800(93)90007-Fhttps://doi.org/10.1016/0304-3800(93)90007-Fhttps://doi.org/10.1016/0169-5347(96)81042-1https://doi.org/10.1086/283611https://doi.org/10.1016/j.exger.2008.08.049https://doi.org/10.1007/BF00344996https://doi.org/10.1111/j.1469-185X.1979.tb00866.xhttps://doi.org/10.2307/3639https://doi.org/10.1016/0040-5809(76)90040-Xhttps://doi.org/10.1016/0040-5809(76)90040-Xhttps://doi.org/10.1016/0022-5193(71)90068-3https://doi.org/10.1016/j.jtbi.2005.12.002https://doi.org/10.1086/651589https://doi.org/10.1126/science.129.3361.1466https://doi.org/10.1126/science.129.3361.1466https://doi.org/10.1086/282637https://doi.org/10.1086/282637https://doi.org/10.1086/282906https://doi.org/10.1086/282906https://doi.org/10.2307/1941722https://doi.org/10.2307/1941722https://doi.org/10.1046/j.1420-9101.1999.00044.xhttps://doi.org/10.1046/j.1420-9101.1999.00044.xhttps://doi.org/10.1016/j.ecolmodel.2007.02.029https://doi.org/10.1371/journal.pone.0089535https://doi.org/10.1371/journal.pone.0089535https://doi.org/10.1016/0040-5809(82)90032-6https://doi.org/10.1016/0040-5809(82)90032-6https://doi.org/10.1007/s000360050040https://doi.org/10.1007/s000360050040

  • 12  |     JOHANSSON et Al.

    Kozłowski, J. (1991). Optimal energy allocationmodels – an alternativetotheconceptsofreproductiveeffortandcostofreproduction.Acta Oecologica,12,11–33.

    Kozłowski,J.,&Uchmanski,J.(1987).Optimalindividualgrowthandrepro-duction inperennial specieswith indeterminategrowth.Evolutionary Ecology,1,214–230.https://doi.org/10.1007/BF02067552

    Kozłowski, J., &Wiegert, R. G. (1986). Optimal allocation of energy togrowth and reproduction. Theoretical Population Biology, 29, 16–37.https://doi.org/10.1016/0040-5809(86)90003-1

    Kozłowski,J.,&Ziólko,M.(1988).Gradualtransitionfromvegetativetore-productivegrowthisoptimalwhenthemaximumrateofreproductivegrowthislimited.Theoretical Population Biology,34,118–129.https://doi.org/10.1016/0040-5809(88)90037-8

    León,J.A.(1976).Lifehistoriesasadaptivestrategies.Journal of Theoretical Biology,60,301–335.https://doi.org/10.1016/0022-5193(76)90062-X

    Lord, J.M., &Westoby,M. (2012).Accessory costs of seed productionandtheevolutionofangiosperms.Evolution,66,200–210.https://doi.org/10.1111/j.1558-5646.2011.01425.x

    McNamara,J.M.,Houston,A.I.,Barta,Z.,Scheuerlein,A.,&Fromhage,L.(2009).Deterioration,deathandtheevolutionofreproductiverestraintinlatelife.Proceedings of the Royal Society B,276,4061–4066.https://doi.org/10.1098/rspb.2009.0959

    Metz,J.A.J.,Mylius,S.D.,&Diekmann,O.(2008).Whendoesevolutionoptimize?Evolutionary Ecology Research,10,629–654.

    Metz,J.A.J.,Staňková,K.,&Johansson,J.(2016).Thecanonicalequationofadaptivedynamicsforlifehistories:Fromfitness-returnstoselectiongradientsandPontryagin’smaximumprinciple.Journal of Mathematical Biology,72,1–28.https://doi.org/10.1007/s00285-015-0938-4

    Miller, T. E. X. Tenhumberg, B., & Louda, S. M. (2008). Herbivore-me-diated ecological costs of reproduction shape the life history of aniteroparous plant. American Naturalist, 171, 141–149. http://doi.org/10.1086/524961

    Myers,R.A.,&Doyle,R.W.(1983).Predictingnaturalmortalityratesandreproduction-mortalitytrade-offsfromfishlifehistorydata.Canadian Journal of Fisheries and Aquatic Science, 40, 612–620. https://doi.org/10.1139/f83-080

    Orton,J.H. (1929).ObservationsonPatella uulgata.Part III.Habitatandhabits.Journal of the Marine Biological Association of the UK,16,277–288.https://doi.org/10.1017/S0025315400029805

    Paine, R.T. (1976). Size-limited predation:An observational and experi-mental approach with the Mytilus-Pisaster interaction. Ecology, 57,858–873.https://doi.org/10.2307/1941053

    Parker,G.A. (1974).Courtshippersistenceandfemale–guardingasmaletime investment strategies. Behaviour, 48, 157–184. https://doi.org/10.1163/156853974X00327

    Parvinen,K.,Dieckmann,U.,&Heino,M.(2013).Function-valuedadaptivedynamicsandoptimalcontroltheory.Journal of Mathematical Biology,67,509–533.https://doi.org/10.1007/s00285-012-0549-2

    Perrin, N., Ruedi, M., & Saiah, H. (1987). Why is the cladoceranSimocephalus vetulus(Müller)nota‘bang-bangstrategist’?Acritiqueoftheoptimal-body-sizemodel.Functional Ecology,1,223–228.https://doi.org/10.2307/2389424

    Perrin, N., & Sibly, R. M. (1993). Dynamic models of energy alloca-tion and investment. Annual Review of Ecology Evolution and Systematics, 24, 379–410. https://doi.org/10.1146/annurev.es.24.110193.002115

    Perrin,N.,Sibly,R.M.,&Nichols,N.K.(1993).Optimal-growthstrategieswhenmortalityandproduction-ratesaresize-dependent.Evolutionary Ecology,7,576–592.https://doi.org/10.1007/BF01237822

    Pontryagin,L.S.(1962).The mathematical theory of optimisation processes. Interscience4.

    Reiss,M.J. (1989).The allometry of growth and reproduction. Cambridge,UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511608483

    Roff,D.(1992).The evolution of life histories: Theory and analysis.NewYork,NY:ChapmanandHall.

    Sallabanks,R.(1992).Fruitfate,frugivory,andfruitcharacteristics:Astudyofthehawthorn,Crataegus monogyna(Rosaceae).Oecologia,91,296–304.https://doi.org/10.1007/BF00317800

    Satoh,A.,Brace,C.S.,Rensing,N.,Cliften,P.,Wozniak,D.F.,Herzog,E.D.,…Imai,S.(2016).Sirt1extendslifespananddelaysaginginmicethroughtheregulationofNk2homeobox1intheDMHandLH.Cell Metabolism.,18,416–430.https://doi.org/10.1016/j.cmet.2013.07.013.

    Schaffer,W.M.,&Schaffer,M.V.(1979).Theadaptivesignificanceofvari-ationsinreproductivehabitintheAgavaceaeII:Pollinatorforagingbe-haviorandselectionfor increasedreproductiveexpenditure.Ecology,60,1051–1069.https://doi.org/10.2307/1936872

    Scharer, L. (2009). Tests of sex allocation theory in simultaneouslyhermaphroditic animals. Evolution, 63, 1377–1405. https://doi.org/10.1111/j.1558-5646.2009.00669.x

    Shine, R. (1988). Constraints on reproductive investment:A comparisonbetweenaquaticandterrestrialsnakes.Evolution,42,17–27.https://doi.org/10.1111/j.1558-5646.1988.tb04104.x

    Sibly,R.,Calow,P.,&Nichols,N.K.(1985).Arepatternsofgrowthadaptive?Journal of Theoretical Biology,112,553–574.https://doi.org/10.1016/S0022-5193(85)80022-9

    Sletvold, N., & Ågren, J. (2015). Nonlinear costs of reproduction in along-lived plant. Journal of Ecology, 103, 1205–1213. https://doi.org/10.1111/1365-2745.12430

    Stockley,P.,&Parker,G.A.(2002).Lifehistoryconsequencesofmammalsibling rivalry.Proceedings of the National Academy of Sciences of the United States of America,99,12932–12937.https://doi.org/10.1073/pnas.192125999

    Svensson,J.-E.(1997).FishpredationonEudiaptomus gracilisinrelationtoclutchsize,bodysize,andsex:Afieldexperiment.Hydrobiologia,344,155–161.https://doi.org/10.1023/A:1002966614054

    Taylor, H. M., Gourley, R. S., Lawrence, C. E., & Kaplan, R. S. (1974).Natural selection of life history attributes: An analytical ap-proach. Theoretical Population Biology, 5, 104–122. https://doi.org/10.1016/0040-5809(74)90053-7

    Ware, D. M. (1980). Bioenergetics of stock and recruitment. Canadian Journal of Fisheries and Aquatic Science, 37, 1012–1024. https://doi.org/10.1139/f80-129

    Wenk,E.H.,&Falster,D.S.(2015).Quantifyingandunderstandingrepro-ductiveallocationschedulesinplants.Ecology and Evolution,5,5521–5538.https://doi.org/10.1002/ece3.1802

    Williams,G.C. (1966).Natural selection, the costs of reproduction, anda refinement of Lack’s principle.American Naturalist,100, 687–690.https://doi.org/10.1086/282461

    How to cite this article:JohanssonJ,BrännströmÅ,MetzJAJ,DieckmannU.Twelvefundamentallifehistoriesevolvingthroughallocation-dependentfecundityandsurvival.Ecol Evol. 2018;00:1–15. https://doi.org/10.1002/ece3.3730

    APPENDIX A

    Derivation of fitness- return functionBelowwecalculatethefitnessreturnsaccordingtoEquation(7)forour optimization problem defined by Equations (1–6). As inMetzetal.(2016),fitnessreturnsr(ũ,t;u)denotetheeffectsonthelifetimereproductionR0ofanindividualthatresultfromchangingutothe

    https://doi.org/10.1007/BF02067552https://doi.org/10.1016/0040-5809(86)90003-1https://doi.org/10.1016/0040-5809(88)90037-8https://doi.org/10.1016/0040-5809(88)90037-8https://doi.org/10.1016/0022-5193(76)90062-Xhttps://doi.org/10.1111/j.1558-5646.2011.01425.xhttps://doi.org/10.1111/j.1558-5646.2011.01425.xhttps://doi.org/10.1098/rspb.2009.0959https://doi.org/10.1098/rspb.2009.0959https://doi.org/10.1007/s00285-015-0938-4http://doi.org/10.1086/524961http://doi.org/10.1086/524961https://doi.org/10.1139/f83-080https://doi.org/10.1139/f83-080https://doi.org/10.1017/S0025315400029805https://doi.org/10.2307/1941053https://doi.org/10.1163/156853974X00327https://doi.org/10.1163/156853974X00327https://doi.org/10.1007/s00285-012-0549-2https://doi.org/10.2307/2389424https://doi.org/10.2307/2389424https://doi.org/10.1146/annurev.es.24.110193.002115https://doi.org/10.1146/annurev.es.24.110193.002115https://doi.org/10.1007/BF01237822https://doi.org/10.1017/CBO9780511608483https://doi.org/10.1017/CBO9780511608483https://doi.org/10.1007/BF00317800https://doi.org/10.1016/j.cmet.2013.07.013https://doi.org/10.2307/1936872https://doi.org/10.1111/j.1558-5646.2009.00669.xhttps://doi.org/10.1111/j.1558-5646.2009.00669.xhttps://doi.org/10.1111/j.1558-5646.1988.tb04104.xhttps://doi.org/10.1111/j.1558-5646.1988.tb04104.xhttps://doi.org/10.1016/S0022-5193(85)80022-9https://doi.org/10.1016/S0022-5193(85)80022-9https://doi.org/10.1111/1365-2745.12430https://doi.org/10.1111/1365-2745.12430https://doi.org/10.1073/pnas.192125999https://doi.org/10.1073/pnas.192125999https://doi.org/10.1023/A:1002966614054https://doi.org/10.1016/0040-5809(74)90053-7https://doi.org/10.1016/0040-5809(74)90053-7https://doi.org/10.1139/f80-129https://doi.org/10.1139/f80-129https://doi.org/10.1002/ece3.1802https://doi.org/10.1086/282461https://doi.org/10.1002/ece3.3730https://doi.org/10.1002/ece3.3730

  •      |  13JOHANSSON et Al.

    constantvalueũstartingatt>0forashortdurationoftime,withthedifferencethatwehereconsiderchangesinuthatarenotnec-essarilysmall.Weassumethatthecontrolu,asafunctionoftime,ispiecewisecontinuouslydifferentiable,whichmeansthatouranaly-sisallowsforcontrolsofbang–bangtype(DD)andothertypeswithdiscontinuous increase in reproductive allocation. As the value ofthecontrolatfinitelymanypointsdoesnotmatterfortheanalysis,weassumethatthetimet>0doesnotcorrespondtoadiscontinu-ityofthecontrolu.Weconsiderachangeoftherelativeallocationtoreproduction,u(τ),

    forτ ∊[t,t + δ), say, toũ,while leaving the restofuunchanged.WedenotebyΔmthedifferencethatthismakesinmassm,andbyΔPthedifferencethatthismakesinsurvivalprobabilityP.Duringtheperiodwhentheperturbationisactive,betweenagesttot + δ(withudenot-ingtheallocationfunctiontowhichwemakethechange),wehave

    The first equation holds as m is differentiable at t and thereforem(τ)=m(t)+O(δ) for τ ∊[t,t + δ). Now, as a direct consequence ofEquation(A1),wehave

    Weusetheseintermediateresultstoderiveanexpressionforthefitnessreturn,proceedinginfoursteps.First,wenotethattheimme-diate fitness gain from this strategy change for an individual thatalreadyhassurviveduntiltimetisgivenby

    Second,bylinearizingtheintegrandintheexpressionforlifetimereproduction,i.e.,P(t)b(u(t)E(m(t)))inEquation(6),weapproximatethefuturefitnesslossresultingfromthischangeinstrategyas

    NotethatweheredividewithP(t)becauseweagainconsiderthefit-nesseffectsforanindividualthathassurviveduntiltimet.Third,wedetermine linear approximationsofΔP(τ) andΔm(τ) for

    thetimeperiodaftertheperturbation,i.e.forτ > t + δ.Tothisend,weusethatthedifferentialequationforP(τ)/P(t + δ)withrespecttoτisthesameasthatforΔP(τ),exceptforadifferenceininitialconditions.WedefinêP(τ;t)andm̂(τ;t)by

    where ̂Pandm̂arefunctionsofbothτandt.However,weshallfrom now on hide the latter argument. Using Equations (A2) and (A5), we get ΔP(τ)=ΔP(t+δ) ̂P(τ)=−P(t) (q(ũ)−q(u(t))) δ ̂P(τ)+O(δ2) and

    Δm(τ)=Δm(t+δ)m̂(τ)=−E(m(t))(ũ−u(t))δm̂(τ)+O(δ2). We also note

    thatP(τ)=P(t) ̂P(τ)+O(δ)andwewillusethisbelowtoexpressallsur-vivalratesintermsof̂P(τ).Fourthweexpressthefitnessreturnrasthedifferencebetween

    theimmediatefitnessgain(Equation[A3])andthefuturefitnessloss(Equation[A4]withΔP(τ) andΔm(τ) replacedby theapproximationsabove),dividedbyδ.Wewillalsoignorehigher-orderterms.Thus,wefind

    Inourcomparison(Figure4),wefocusonhowthefitnessreturnsthroughthedifferentvitalratesaffecttheformoftheoptimalalloca-tionu*.Inordertofacilitatereading,werenamethefirstandsecondintegralinEquation(A6),whichbothareindependentofũ,asy1(t,u*)andy2(t,u*)inEquation(7).Atũ(t)=u

    ∗(t),thetotalreturnr(t)is0when0 < u*(t)<1, nonpositive when u*(t)=0, and non-negative whenu*(t)=1.AsshownbyMetzetal.(2016),itmaybenotedthatfortheoptimalallocationstrategy,thefunctionsy1(t,u*)andy2(t,u*)corre-spondtotheso-calledcostatesfromPontryagin’smaximumprinciplefromoptimalcontroltheory(Intrilligator,1971;Pontryagin,1962).Asinthepresentarticleweaimatprovidingbiologicalinsight,wehaveoptedforabiologicallyinspiredargumentintermsoffitnessreturnsandamarginal-valueconsideration,insteadoffallingbackonthetra-ditionsofmathematicalcontroltheory.

    APPENDIX B

    Robustness and sensitivity of numerical resultsInordertoevaluatetherobustnessofourapproach,westudyherehowtheshapesoftheoptimalallocationschedulesareaffectedby(1)variationinmodelparameters,(2)explicitfixedcostsofreproduc-tion, and (3) size-dependentmortality.Wemainly consider the ef-fectson thediversityofoptimal types,which ismain focusof thisstudy.

    Effects of variation in model parametersWe identify twomajoreffectsof varying theparametersc1,…,c4 andke.First,variation in theseparameterscanmake itoptimal toswitchtoreproductionearlierorlaterinlife.Specifically,earlierin-vestments to reproduction are optimal when mortality increases(increased c1 or c2) or when fecundity or growth efficiency de-creases (increased c3 or c4), all in line with general expectations.Thesechangesdonotnecessarilyaffecttheshapesoftheoptimalallocationschedules,but inextremecases, itmaybecomeoptimalnottogrowatallandinvestallsurplusenergytoreproductionfrombirth onward (e.g., for very high c1). Close to such unrealistic

    dΔmdτ

    =dm̃dτ

    −dmdτ

    = (1− ũ)E(m+Δm)− (1−u)E(m)=− (ũ−u) E(m)+O(δ),

    Δm(t)=0,

    dΔPdτ

    =d ̃Pdτ

    −dPdτ

    =−q(ũ)(P+ΔP)+q(u)P=− (q(ũ)−q(u))P+O(δ),

    ΔP(t)=0.

    Δm (t+δ)=−E (m(t)) (ũ−u(t)) δ+O(δ2),

    ΔP (t+δ)=− (q(ũ)−q (u(t)))P(t)δ+O(δ2). (A2)

    (A3)δ [b (ũE(m)) − b (uE(m))](t)+O(δ2).

    (A4)−1

    P(t)

    ∫t

    [

    ΔPb(

    uE(m))

    +ΔmPb�(

    uE(m))

    uE�(m)]

    (τ)dτ.

    (A5)d̂P

    dτ=−q(u) ̂P, ̂P(t;t)=1,

    dm̂

    dτ= (1−u)E�(m)m̂, m̂(t;t)=1.

    r(ũ,t;u)=[

    b(ũE(m))−b(uE(m))]

    (t)

    −∞∫t

    ̂P(τ)[

    E(m(t))(

    ũ−u(t))

    b�(

    uE(m))

    uE�(m)m̂

    +(

    q(ũ)−q(u(t)))

    b(

    uE(m))]

    (τ)dτ

    =[

    b(ũE(m))−b(uE(m))]

    (t)−(

    ũ−u(t))

    E(m(t))∞∫t

    [

    ̂Pb�(

    uE(m))

    uE�(m)m̂]

    (τ)dτ

    −(

    q(ũ)−q(u(t)))

    ∞∫t

    [

    ̂Pb(

    uE(m))]

    (τ)dτ. (A6)

    (A1)

  • 14  |     JOHANSSON et Al.

    conditions, the model will exhibit a lower diversity of types.Increasingkemayeitherincreaseordecreasefecundityreturnsde-pendingonbodymass(note,e.g.,thatEinEquation(5)willdecreasewithkeifm<1,butincreaseotherwise),suchthatu*(m)decreases(increases) for small (large)bodymasses,potentially resulting inaratherflatu*(m).Ifthelattereffectisstrong,thepotentialfordiver-sitytoarisethroughothermechanismsnaturallydecreases.Second,variationintheparametersc2,…,c4influenceswhetherthe

    shape of the optimal allocation schedule is mainly determined byallocation-dependentmortalityorbyallocation-dependentfecundity.Ifc2islargecomparedtoc3andc4,theshapeoftheoptimaltypewillmainlydependonthemortalitycurvaturekq,andintheoppositesitu-ation, the shapewill mainly depend on the fecundity curvature kb. Becauseseveraltypesinourscheme(e.g.,dD,aD,andad)appearbe-causeofaninteractionbetweenthemortalityandthefecundityfunc-tion,wegetlowdiversitywheneffectsfromoneofthesedominateovereffectsfromtheother.Theoverarchingresultfromtheseobservationsisthatthediver-

    sityofoptimaltypesmaybeconstrainedifthesegeneralmodelpa-rameterstakeonrelativelylargeorsmallvalues.Extremevaluesoftheparameterspands,whichare introducedbyus tocontrol thephysiologicallimit(Figure1c),mayalsoreducediversityorhaveun-desiredeffects.Asnoted intheResultssection,highvaluesoftheparameterpfavortypeswithaccelerating(a)onsetofreproductionandlowervaluesfavortypeswithdecelerating(d)onset.Inaddition,if p is set to a very low value, fecundity will be a linear function(b(uE)=puE),whichcausestheonsettobediscontinuous(D).Itfol-lowsthatvariation in theparameterpmayreducethediversityofoptimal types if it ismade toosmallor too large.Theparameters

    controlshowclosethesmoothminimumfunctionfitsthestandardminimumfunction.Withverylargenegativevaluesofs,thefecun-dityfunctionwillhaveasharptransitionfromalineartoanonlinearsection, which causes numerical instability when determining theoptimalallocationschedule.Whenshasvaluesclosetozero,ontheotherhand,thesmoothminimumfunctionstartsdeviatingalotfromthestandardminimumfunctionand ishencenotameaningfulap-proximation anymore. We also examine the survival probability(P = 10−6)accordingtowhichgrowthisclassifiedas indeterminate.Specifically,weconsideredeffectsonthelineinFigure3athatsepa-rates indeterminate from determinate growth. Decreasing P dis-placesthislineupwardsandtotheleft,butonlyrelativelylittle,asmanyoptimalallocationschedulesinthetop-leftcornerseemnevertoreachfullreproduction(u*hasanasymptotebelow1).IncreasingP,however,canmovethislinearbitrarilyfardownandright,whichisexpected,asorganismthenhavelesstimetoreachfullreproductiveallocation (u=1) before their survival probability falls below thecriticallevel.

    Effects of fixed costs reproductionWhile in this study we assume accelerating fecundity functions(kb>1),whichmayrepresentaneedforinitialinvestmentstobemadebeforeenergycanbedivertedintooffspringdirectly,wealsoexploreanalternativewaytomodelsuchsituationsFollowingCharnov(1979),weassumeafixedcostc5forreproductionbyspecifyingtheenergydevotedtooffspringasf(uE)=max(0,uE−c5)andassumingthefe-cundityb(uE)= c3f(uE)kb. As illustrated by FigureB1a,whereweusethetypeadasabaseline,thesecostscausetheonsetofreproductiontobediscontinuous.Whenthefixedcost is increased,reproduction

    F IGURE  B1 Robustnesstofixedcostsofreproduction(a)orsize-dependentmortality(b,c).Wevaryparametersinthemodifiedfunctionsforfecundity(a)ormortality(b,c)asdescribedinthetext;otherwise,parametersettingscorrespondtothoseoftypeadinFigure2a,whichservesasareferencetype.(a)Comparedtothereferencetype(graycontinuousline,c5=0),assumingfixedcostsofreproduction(c5>0)causestheoptimalreproductive-allocationscheduletoexhibitadiscontinuousonsetofreproduction(blackcontinuousanddottedlineswithc5 = 0.01 and0.02,respectively)orbeofbang–bangtype(blackdashedline,c5=0.1).(b,c)Comparedtothereferencetype(graycontinuousline,c6=0),size-dependentmortalitycandisplacetheoptimalallocationscheduletotheleft(blackcontinuousline,c6=0.75,km=0.5),totheright(blackdashedline,c6=5,km=1.5),ormakeitu-shaped(blackdottedline,c6=5,km=0.8).Theeffectsofincreasingconstantmortalityby25%with25%comparedtothebaselineareshownforcomparisonasagraydashedline(c6=0.25,km=0).In(b)wesetu=0toillustratetheeffectofthesize-dependentmortalitycomponentonly

    (b) (c)(a)

  •      |  15JOHANSSON et Al.

    starts later and the discontinuous jump becomes larger, eventuallymakingabang–bangstrategyoptimal.Thesameoccurswhenapply-ingfixedcoststotheothertypeswithcontinuousonsetinFigure2a.Fixedcostsmodeledinthiswaythushaveeffectssimilartoincreasingkb inourmodel.Notice, forexample, thatwhenmovingtowardtheright inFigure3a,theoptimaltypestypicallyfirstdevelopadiscon-tinuousonsetof reproduction (DaorDd)and then turn intobang–bangstrategies(DD).

    Effects of size- dependent mortalityAsafurtherrobustnesstest,weexploretheeffectsofassumingsize-dependent mortality, given its common occurrence in nature (e.g.,Paine, 1976). To this end, we add a size-dependent term toEquation(1), representing increased mortality for juveniles.Specifically, we assume q(u,m)= c1+c2ukq +c6mkm (cf. Sibly etal.,1985).Weexploretheeffectsofvaryingc6andkmontheoptimalal-locationschedulesinFigure2a.Asintheprevioussection,weusethetype ad from Figure2a for reference. The results are neverthelessrepresentativefortheremainingtypesthereaswell.In three scenarios with size-dependent mortality, we observe

    relatively small changes in the shapes of the optimal allocationschedules.Firstlywhenmortalityisinitiallymoderateandthende-clines relatively slowly with size (black continuous line inFigureB1b),theoptimalallocationscheduleisdisplacedtotheleft,that is, reproduction occurs earlier (black continuous line inFigureB1c).Thiscanbeinterpretedasaneffectofincreasedaver-agemortality,similartotheeffectofanincreasedsize-independentmortality(graydashedlinesinFigureB1b,c).Secondly,ifmortalityisinitiallyhighandthendropsrelativelyfastwithsize(blackdashedlineinFigureB1b),theoptimalallocationscheduleisdisplacedtothe right, that is, reproduction is delayed (black dashed lines inFigureB1c). This occurs because by growing as fast as possiblewhen young, individuals can avoid the high juvenile mortality.Thirdly,whenkmissufficientlylarge,theoptimalallocationsched-ule remains virtually unchanged (i.e., it is nearly identical to the

    graycontinuouslineinFigureB1candthusnotshown).Thisoccursbecause thesize-dependentcomponentofmortalityquicklyvan-ishesastheindividualgrows,anditthusremainsoptimaltogrowfast(lowu*)atsmallsizes.Althoughthesize-dependentmortalityfunctionsdiscussedsofar

    (e.g.,theblackcontinuousanddashedlinesinFigureB1b)arequalita-tivelydifferent fromtheconstantmortality function in thebaselinecase(graycontinuouslineinFigureB1b),theireffectsontheoptimalallocationschedulesarecomparabletotheeffectsofrelativelyminorvariationoftheparametersoftheoriginalmodel.Note,forexample,thatincreasingthe(size-independent)mortalityoftheoriginalmodelby25%(i.e.,movingfromthegraycontinuoustothegraydashedlineinFigureB1b)hasalargereffectonthesizeatwhichfullreproductionis reached (u*=1) thananyof the threescenariosdiscussedso far.Also,noneofthesescenarioscausesachangeintheshapeoftheop-timalallocationschedulesaccordingtoourclassificationsystem(i.e.,forthetypeadinFigureB1bandtheremaining11typesinFigure2binthemaintext).Intwootherscenarios,weobservemoredrasticeffectsofincluding

    size-dependentmortality inourmodel. Firstly, theoptimal allocationschedulecanbecomeu-shaped(dottedlineinFigureB1b,c).Thisoc-curswhenmortality is initially very high anddrops relatively slowly,such that lowsurvivalprospects initiallymake itoptimal to invest inreproductionfrombirthonwardanditpaysofftogrowonlystartingatlarger sizes. Such a strategy is, however, not biologically feasible, asgrowthwouldstopimmediatelyuponbirth.Secondlytheextremeandunrealisticstrategyofdevotingallenergyto reproduction frombirthonward(u*(m)=1forallm),isoptimalwhenmortalityishighforallsizes(whenc6islargeandkmsmall).Insum,addingamortalitycomponent,thatdecayswithsizeonly

    slowly,canleadtoextremesituationsinwhichitisoptimaltoinvestallenergy into reproduction already from birth. However, if mortalitydrops relatively fastwithsizeor isnot too largeoverall,weexpectrelativelymildeffectsontheshapesoftheoptimalallocationsched-ules,andthusalsoonoveralllife-historydiversity.