Tutorial Optical Transmission Systems Peter J Winzer

download Tutorial Optical Transmission Systems Peter J Winzer

of 155

Transcript of Tutorial Optical Transmission Systems Peter J Winzer

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    1/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    Optic Communication Systems

    For Non-Optical Communications EngineersPeter J. WinzerBell Labs, Alcatel-Lucent, USA

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    2/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    2

    ACKNOWLEDGMENT

    Bell Labs

    S.ChandrasekharA.R.ChraplyvyR.-J.EssiambreN.K.FontaineG.J.FoschiniH.KogelnikG.KramerA.LevenX.Liu

    S.RandelG.RaybonR.RyfR.W.Tkach

    AND MANY OTHERS

    Univ. Tel Aviv

    Univ. LAquilaC.AntonelliR.DarA.MecozziM.Shtaif

    Politecnico di Torino

    P.Poggiolini

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    3/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    3

    OVERVIEW

    The role of optics in data networks

    Linear and nonlinear impairments in optical networks

    Optical modulation and detction techniques

    Optical multiplexing techniques

    Spatial multiplexing in optical communications

    (MIMO and MIMO-SDM security)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    4/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    4

    1

    The role of opticsin data networks

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    5/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    5

    MASSIVE TRAFFIC GROWTHMULTI-MEDIA & MACHINE-TO-MACHINE APPLICATIONS

    HiDef Video Communication Panasonics LifeWall

    1995 2000 2005 2010

    2 dB / year(58%/year)

    10 Gb/s

    100 Gb/s

    1 Tb/s

    10 Tb/s

    US data network traffic

    100 Tb/s

    60% 10 log10(1.6) dB 2 dB

    [R.W.Tkach, Bell Labs Tech. J., 2010]

    3D manipulation

    zspace.com

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    6/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    6

    Amdahls rule of thumb

    1 Floating point operation (Flop) triggers ~1 Byte of transport

    100 TFlops

    10 TFlops

    1 TFlops

    100 GFlops

    10 GFlops

    1 GFlops

    1995 2000 2005 2010

    2.7 dB / year(86%/year)

    2 dB / year(58%/year)

    10 Gb/s

    100 Gb/s

    1 Tb/s

    10 Tb/s

    US data network traffic

    Top 500 Supercomputers 100 Tb/s

    60% 10 log10(1.6) dB 2 dB

    http://www.circuitboards1.com

    MASSIVE TRAFFIC GROWTHMULTI-MEDIA & MACHINE-TO-MACHINE APPLICATIONS

    [P.J.Winzer, Proc. ECOC, 2010]

    Cloud services turn the network into a giant multi-processor interface

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    7/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    7

    TRAFFIC GROWTH VARIATIONS: 20% TO 90%DEPENDING ON APPLICATION AND GEOGRAPHY

    IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment, http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdfMetro Network Traffic Growth, Bell Labs Strategic White Paper, http://resources.alcatel-lucent.com/asset/171568M. Nowell, Cisco Visual Networking Index; 20102015, http://www.ieee802.org/3/ad_hoc/bwa/public/sep11/nowell_01_0911.pdf Cisco Visual Networking Index: Forecast and Methodology, 20132018, http://www.cisco.com

    [P. J. Winzer, Bell Labs Tech. J., 2014]

    http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdfhttp://resources.alcatel-lucent.com/asset/171568http://www.ieee802.org/3/ad_hoc/bwa/public/sep11/nowell_01_0911.pdfhttp://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdfhttp://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdfhttp://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdfhttp://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdfhttp://www.ieee802.org/3/ad_hoc/bwa/public/sep11/nowell_01_0911.pdfhttp://www.ieee802.org/3/ad_hoc/bwa/public/sep11/nowell_01_0911.pdfhttp://www.ieee802.org/3/ad_hoc/bwa/public/sep11/nowell_01_0911.pdfhttp://resources.alcatel-lucent.com/asset/171568http://resources.alcatel-lucent.com/asset/171568http://resources.alcatel-lucent.com/asset/171568http://resources.alcatel-lucent.com/asset/171568http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdfhttp://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdfhttp://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf
  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    8/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    8

    DATA NETWORKING INFRASTRUCTUREOPTICAL COMMUNICATIONS EVERYWHERE

    Core

    Access

    LAN

    Satellites

    Data center

    SwitchingTransport

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    9/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    9

    WHY OPTICAL COMMUNICATIONS?

    1 0 1 1 0 1 0 1 1 0

    TX RXMetric: Maximum transmission distance that can be

    bridged before digital regeneration becomes necessary.

    High data rates

    and

    long distances

    Fiber to the home

    (FTTH)

    Alcatel-Lucents1830 PSS

    Reg

    eneration-freetra

    nsmissiondistanc

    e

    Aggregate link capacity

    [P. J. Winzer et al., Proc. IEEE 94, 952-985 (2006)]

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    10/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    10

    WHY OPTICAL COMMUNICATIONS?REASON #1: LARGE NARROW BANDWIDTHS

    1 kHz 1 MHz 1 GHz 1 THz 1 PHz

    Frequency / wavelength of the electromagnetic field

    VLF LF MF HF

    1 km 1 m 1 mm 1 mm

    VHF UHF SHF EHF

    V

    isible

    Light

    h

    =

    kT

    ~ 5 GHz

    C L

    At 200 THz (1.5mm) carrier frequency

    Low-loss fiber

    Efficient sources & detectors

    Low-noise amplifiers (EDFAs)

    5 50 THz of channel bandwidth

    is still narrowbandat 200 THz(~a few % relative bandwidth)Thats where most digital radio happens

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    11/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    11

    WHY OPTICAL COMMUNICATIONS?REASON #2: VERY LOW PROPAGATION LOSSES

    Loss[dB/km]

    Accurate pointing needed

    (~ mrad @ kHz vibrations)

    K. H. Kudielka et al.,

    Proc. IEEE Phased Array

    Symposium, Boston, 419 (1996)

    Attenuation of glass

    Today: < 0.2 dB / km

    (RF coax: ~ 100x to 1000x more loss)

    Divergence angle ~ l/D

    PRX~ PTXDTXDRX/ l222

    E.g., 200 THz instead of 20 GHz

    108x higher antenna gain (80dB)

    Divergence in free space

    D

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    12/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    12

    TELECOMMUNICATIONS BEFORE FIBER-OPTICSAT&TS LONG-HAUL BUSINESS

    Technology Designation YearVoice circuits

    per channel

    2-way

    channels

    Repeater

    distance

    Total 2-way

    voice circuits

    Coax

    L-1 1941 600 4 8 miles 2400

    L-3 1950 1,860 6 4 miles 11,160

    L-4 1967 3,600 10 2 miles 36,000

    L-5E 1975 13,200 11 1 mile 145,200

    Microwave

    Relay

    TD-2 (4 GHz) 1969 1,200 12 26 miles 14,400

    TH-1 (6 GHz) 1961 1,860 8 26 miles 14,880

    AR6A (6 GHz) 1981 4,000 8 26 miles 32,000

    mm-

    WaveguideWT4 (trial) 1975 4,032 57 25 miles 230,000

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    13/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    13

    Courtesy: H. Kogelnik

    FIBER VS. COPPER - A CLEAR BUSINESS CASE

    For 6x less in cable diameter,and 23x less in weight,and 25x longer repeater spacing,you got 156x more capacity!

    Ca. 1977

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    14/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    14

    OPTICAL NETWORKS: WORKHORSE OF THE INTERNET

    Lineinterface(e.g., 100 Gbit/s)

    Router

    Optical network

    Reconfigurable opticaladd/drop multiplexer

    (ROADM)

    Clientinterface(e.g., 4 x 25 Gbit/s)

    WDMsystem(e.g., 80 x 100 Gbit/s)

    Increaseper-wavelength interface rateIncrease aggregateper-fiber capacityIncrease network flexibility

    Spectral efficiency (SE) in [b/s/Hz]:

    SE = per-channel bit rate / WDM spacing

    Tx Rx

    ~ 5 THz bandwidth ~ 100 km of fiber

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    15/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    15

    HIGH-SPEED OPTICAL INTERFACESWHY A TERABIT IS CHALLENGING BUT NEEDED

    1986 1990 1994 1998 2002 2006

    10

    100

    1

    10

    100

    SerialInterfaceRat

    esandWDMCapacit

    ies

    Gb/s

    Tb/s

    2010 2014 2018

    1

    2022200G optical line interfacesare now available

    Router interfacescaling has merged with transport rates

    Router port aggregationno longer possible[P. J. Winzer, IEEE Comm. Mag. 26-30 (2010)]

    Network processors available at 400G

    1-port 100GigE

    ?

    !

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    16/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    16

    HIGH-CAPACITY WDM SYSTEMSWHEN WILL WE NEED FASTER INTERFACES ?

    20% 40% 60% 80%

    400 Gb/s 2018 2014 2013 2012

    1 Tb/s 2023 2017 2015 2014

    10 Tb/s 2035 2024 2020 2018

    (Simple extrapolation of higher interface needs)

    Fact: Leading-edge providers started installing 100G interfaces in 2010.Question: When will such providers want higher-rate interfaces?

    Assumedtrafficgrowth rate

    Assumedinterface raterequirement

    Extrapolated availability requirementfor higher-speed interfaces

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    17/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    17

    HIGH-CAPACITY WDM SYSTEMSCOMMERCIAL CAPACITY SATURATION AT ~ 50 TB/S

    1986 1990 1994 1998 2002 2006

    10

    100

    1

    10

    100

    SerialInterfaceRat

    esandWDMCapacit

    ies

    Gb/s

    Tb/s

    2010 2014 2018

    1

    2022

    WDM capacity scaling has slowed from ~100%/year to ~20%/year in 2000

    WDM systems available up to ~10 to 20 Tb/s

    [P. J. Winzer, IEEE Comm. Mag. 26-30 (2010)]

    ?

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    18/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    18

    HIGH-CAPACITY WDM SYSTEMSWHEN WILL WE NEED FASTER INTERFACES ?

    (Simple extrapolation of higher WDM capacity needs)

    Fact: Leading-edge providers started installing 10T WDM systems in 2010.Question: When will such providers want higher-capacity systems?

    AssumedTrafficgrowth rate

    AssumedWDM capacityrequirement

    Extrapolated availability requirementfor higher-capacity systems

    20% 40% 60% 80%

    50 Tb/s 2019 2015 2013 2012

    200 Tb/s 2026 2019 2016 2015

    1 Pb/s 2035 2024 2020 2018

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    19/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    19

    HIGH-CAPACITY WDM SYSTEMSCOMMERCIAL CAPACITY SATURATION AT ~ 50 TB/S

    1986 1990 1994 1998 2002 2006

    10

    100

    1

    10

    100

    SerialInterfaceRat

    esandWDMCapacit

    ies

    Gb/s

    Tb/s

    2010 2014 2018

    1

    2022

    WDM capacity scaling has slowed from ~100%/year to ~20%/year in 2000

    WDM systems available up to ~10 to 20 Tb/s

    [P. J. Winzer, IEEE Comm. Mag. 26-30 (2010)]

    ?

    ?

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    20/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    20

    2Impairments in opticalnetworks

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    21/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    21

    NOISE FROM OPTICAL AMPLIFIERSAMPLIFIED SPONTANEOUS EMISSION (ASE)

    Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Lower bound on noise dictated by quantum mechanics

    Optical signal-to-noise ratio (OSNR):

    RXTX

    Amplified spontaneous emission (ASE)

    Optical signal power

    Optical noise power

    [R.-J. Essiambre et al., J. Lightwave Technol. (2010)]

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    22/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    22

    NOISE FROM OPTICAL AMPLIFIERSAMPLIFIED SPONTANEOUS EMISSION (ASE)

    Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Lower bound on noise dictated by quantum mechanics

    Optical signal-to-noise ratio (OSNR):

    RXTX

    Amplified spontaneous emission (ASE)

    Optical signal power

    Optical noise power

    G amplifier gain = span lossNspan number of spans

    Span length 100km 50km

    Span loss (=G) 20dB 10dB

    Spans Nspan 2 Nspan

    Total noise 100 Nspan 20 Nspan

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    23/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    23

    NOISE FROM OPTICAL AMPLIFIERSAMPLIFIED SPONTANEOUS EMISSION (ASE)

    Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Lower bound on noise dictated by quantum mechanics

    Optical signal-to-noise ratio (OSNR):

    RXTX

    Amplified spontaneous emission (ASE)

    Optical signal power

    Optical noise power

    [R.-J. Essiambre et al., J. Lightwave Technol. (2010)]

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    24/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    24

    FIBER NONLINEARITIESTHE ULTIMATE LIMIT OF FIBER TRANSMISSION Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Lower bound on noise dictated by quantum mechanics

    Increase signal power for better (O)SNR:

    Fiber nonlinearities

    (within a signal, between WDM signals, between signal and noise)

    Signal power

    (Optical) noise power

    Core diam. ~8 mmMegawatt / cm2optical intensities

    n = n0+n1Popt+ (Kerr effect)

    Leads to nonlinear distortionsover hundreds of kilometers

    A A ejznzA ejzn z ejzn P z0 1 opt

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    25/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    25

    FIBER NONLINEARITIESTHE ULTIMATE LIMIT OF FIBER TRANSMISSION Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Lower bound on noise dictated by quantum mechanics

    Increase signal power for better (O)SNR:

    Fiber nonlinearities

    (within a signal, between WDM signals, between signal and noise)

    RXTX

    Amplified spontaneous emission (ASE)

    Signal power

    (Optical) noise power

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    26/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    26

    CHROMATIC DISPERSION AND PMD

    Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Signal-distortions

    Fiber nonlinearity

    Chromatic dispersion, polarization-mode dispersion

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    27/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    27

    CONCATENATED FILTERING IN OPTICAL NETWORKS

    Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Signal-distortions

    Fiber non-linearity

    Chromatic dispersion, polarization-mode dispersion

    Optical filter concatenation

    l1

    lN

    DEMUX MUX

    Drop AddWDM multiplexer

    WDM demultiplexer

    l1

    lN

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    28/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    28

    CROSSTALK IN OPTICAL NETWORKS

    Fiber and optical component loss

    Noise from in-line amplification (EDFA, Raman); proportional to gain G Signal-distortions

    Fiber non-linearity

    Chromatic dispersion, polarization-mode dispersion

    Optical filter concatenation

    Crosstalk (WDM, inband)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    29/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    29

    OPTICAL FIBER TRANSMISSION

    Optical field propagating in the fibers transverse mode

    (Nonlinear Schrdinger Equation)+ N

    ROADM Reconfigurable optical add/drop multiplexer

    FiberNonlinearity

    FilteringEffects

    Chromatic Dispersion

    Optical Filtering (ROADMs)

    Spontaneous emission from

    in-line optical amplifiers

    Noise

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    30/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    30

    Simulation steps

    Step size DzDz

    0 2 3 4 5 6 7 81 Distance

    SPLIT-STEP FOURIER TRANSFORM METHOD

    NUMERICAL SOLUTION OF FIBER PROPAGATIONConsider short pieces of fiber (dispersion only, nonlinearity only)

    Alternate between simple solution in t and f

    Nonlinearity (but no dispersion)

    Dispersion (but no nonlinearity)

    Courtesy: Pierluigi Poggiolini

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    31/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    31

    Courtesy: Pierluigi Poggiolini

    Courtesy: Pierluigi Poggiolini

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    32/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    32

    Courtesy: Pierluigi Poggiolini

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    33/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    33

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    34/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    34

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    35/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    35

    DISPERSION-MANAGED SYSTEMS

    MANAGING NONLINEARITY WAS REALLY HARD

    0.01

    0.1

    1

    10

    Spectralefficiency

    perpolarization[b/s/

    Hz]

    1990 1994 1998 2002 2006

    Year

    2010

    Laser & filter stability

    x-pol

    y-pol

    x-pol

    y-pol

    Modulation

    PDM

    ~1 dB/year

    Detection

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    36/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    36

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    37/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    37

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    38/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    38

    Courtesy: Pierluigi Poggiolini

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    39/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    39

    y g gg

    FINDING THE FACTOR

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    40/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    40

    FINDING THE FACTOR

    Optics Express, 16335 (2014)

    J. Lightwave Technology (2015)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    41/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    41

    3Modulation inoptical communications

    HIGH CAPACITY WDM SYSTEMS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    42/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    42

    HIGH-CAPACITY WDM SYSTEMSCOMMERCIAL CAPACITY SATURATION AT ~ 50 TB/S

    1986 1990 1994 1998 2002 2006

    10

    100

    1

    10

    100

    SerialInterfaceRa

    tesandWDMCapaci

    ties

    Gb/s

    Tb/s

    2010 2014 2018

    1

    2022

    WDM capacity scaling has slowed from ~100%/year to ~20%/year in 2000

    WDM systems available up to ~10 to 20 Tb/s

    [P. J. Winzer, IEEE Comm. Mag. 26-30 (2010)]

    ?

    ?

    THE COMMUNICATION ENGINEERS TOOLKIT

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    43/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    43

    THE COMMUNICATION ENGINEERS TOOLKIT

    5 DIMENSIONS OF AN ELECTRO-MAGNETIC WAVE

    Polarization

    Time Quadrature

    Modulation of the field in

    Frequency

    Space

    Same 5 dimensions across communications technologies(Wireless, DSL, Optics, )

    USING THE FIVE PHYSICAL DIMENSIONS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    44/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    44

    USING THE FIVE PHYSICAL DIMENSIONSAN OPTICAL COMMUNICATIONS POINT OF VIEW

    Polarization

    Time Quadrature

    Physical dimensions

    FrequencySpace

    t

    f

    O E S C L

    1300

    0

    1400 1500 1600

    0.3

    0.6

    0.9

    1.2

    Wavelength [nm]

    Loss[dB]

    13601260 1460 1530

    1565

    1625

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    45/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    45

    3.1Intensity modulation

    MODULATING THE INTENSITY DIMENSION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    46/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    46

    MODULATING THE INTENSITY DIMENSION

    Easiest property to modulate

    Use absorptionor interferenceprocesses

    Intensity

    p

    in

    datap

    [P.J. Winzer et al., Proc. IEEE, p.952 (2006).]

    DETECTING THE INTENSITY DIMENSION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    47/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    47

    DETECTING THE INTENSITY DIMENSION

    Practical detection schemes are important for high-speed optical systems.

    Practical modulation techniques are important for high-speed optical systems.

    Photodetection

    Electrical signalOptical intensity

    1)Demodulation refers to the process of moving an (optical) passband signal to (electrical) baseband, while

    detection refers to the extraction of digital information out of the baseband signal.

    Easiest property to modulate

    Use absorptionor interference

    Easiest property to demodulate

    'Direct detection' (better1): 'demodulation) = optical intensity detection,photodetection

    Intensity

    THE #1 TRANSPONDER DESIGN STRATEGY

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    48/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    48

    THE #1 TRANSPONDER DESIGN STRATEGYMODULATE AS FAST AS ECONOMICALLY FEASIBLE

    Space

    PolarizationFrequency

    Time Quadrature

    Physical dimensions

    10 Gb/s25 Gb/s

    53.5 Gb/s 107 Gb/s

    Research:

    107-Gb/s electrical signal

    [Winzer et al., ECOC05]100G Photo-receiver

    [Sinsky et al., OFC07]

    100G CDR Demux

    [Derksen et al., OFC06]

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    49/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    49

    3.2Phase modulation

    OPTO ELECTRONIC CONVERTERS DETECT INTENSITIES

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    50/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    50

    OPTO-ELECTRONIC CONVERTERS DETECT INTENSITIES

    Photodetection

    Electrical signalOptical intensity

    Intensity PhasePhase-to-amplitude conversion at detection

    Also known as interference in optics

    Local oscillator laser (coherent receiver)

    Signal self-reference (differential mod.)

    Direct detection with delay demodulation

    Differential phase modulation

    Information in phase difference

    Coherent receiver

    BINARY DIFFERENTIAL PHASE MODULATION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    51/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    51

    constructive

    destructive

    balanced

    Detector amplitude imbalanceOSNR

    penalty

    [dB]

    BINARY DIFFERENTIAL PHASE MODULATIONNEED BALANCED DETECTION TO GAIN 3 dB

    [Gnauck et al., JLT, 115 (2005)]

    Im{E}

    Re{E}

    OOK DPSK

    Im{E}

    Re{E}

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    52/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    52

    3.3Multi-level modulation

    NEED HIGHER BIT RATES ?

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    53/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    53

    NEED HIGHER BIT RATES ?ONE OPTION: MULTI-LEVEL

    Space

    PolarizationFrequency

    Time Quadrature

    Physical dimensions

    10 Gb/s

    25 Gb/s

    53.5 Gb/s 107 Gb/s

    50 Gb/s

    Multilevel (PAM)

    PAM: Pulse amplitude modulation

    10

    11

    01

    00

    NEED HIGHER BIT RATES ?

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    54/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    54

    NEED HIGHER BIT RATES ?ONE OPTION: MULTI-LEVEL

    Space

    PolarizationFrequency

    Time Quadrature

    Physical dimensions

    10 Gb/s

    25 Gb/s 50 Gb/s

    Multilevel (PAM)

    PAM: Pulse amplitude modulation

    [Gnauck et al., OFC 2011]

    56 Gb/s (28 GBd) 112 Gb/s (56 GBd) 160 Gb/s (80 GBd)

    [Winzer et al., ECOC 2011] [Raybon et al., PTL 2012] [Raybon et al., ECOC 2013]

    214 Gb/s (107 GBd)

    QUADRATURE PHASE SHIFT KEYING (QPSK)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    55/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    55

    QUADRATURE PHASE SHIFT KEYING (QPSK)MULTI-LEVEL IN BOTH QUADRATURES

    Im{E}

    Re{E}

    16-QAM TRANSMITTER

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    56/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    56

    16-QAM TRANSMITTERUSING A DAC AND AN I/Q MODULATOR

    6 dB6 dB

    2-bit arbitrary waveform generator

    Multiple-bitdelay

    Im{E}

    Re{E}4

    4

    IntegratedI/Q Modulator

    p/2

    PRBS: Pseudo-random bit sequence

    I/Q: In-phase/quadrature (or: Re{E} / Im{E})

    215

    -1PRBS at14.0 Gb/s

    D1

    D1

    D2

    D2

    6 dB

    6 dB

    (D2outputshalf-patterndelayed wrtD1 outputs)

    11-GHz LPF

    11-GHz LPF

    Laser

    [Winzer et al., ECOC08]

    HIGHER-LEVEL FORMATS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    57/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    57

    p/2

    N-level Electronic Signal I

    N-level Electronic Signal Q

    Laser N2QAM Signal

    Format N Bits/symbol

    QPSK 2 216-QAM 4 4

    64-QAM 8 6

    256-QAM 16 8

    N2-QAM N 2 log2(N)

    8-level drive for 64-QAM

    HIGHER-LEVEL FORMATSUSING A DAC AND AN I/Q MODULATOR

    [A. Sano et al., ECOC2010, PD2.4]

    [J. Godin et al., BLTJ, 2013] 21.4 GBaud

    10 GBaud

    [J. Godin et al., BLTJ, 2013]

    50 GBaud

    CONSTELLATION SIZE VERSUS SYMBOL RATE

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    58/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    58

    CONSTELLATION SIZE VERSUS SYMBOL RATE

    1 2 3 4 5 6 7 8 9

    100

    200

    300

    Bits per symbol

    Linera

    te[Gb/s]

    16-QAM

    [Winzer, J. Lightwave Technol. 30, 3824 (2012)]

    PDM 512-QAM

    3 GBaud (27 Gb/s)[Okamoto et al., ECOC10]

    PDM 256-QAM

    4 GBaud (32 Gb/s)[Nakazawa et al., OFC10]

    PDM 64-QAM

    21 GBaud (128 Gb/s)[Gnauck et al., OFC11]

    PDM 16-QAM

    80 GBaud (320 Gb/s)[Raybon et al., PTL12]

    PDM QPSK

    107 GBaud (224 Gb/s)[Raybon et al., PTL12]

    ADC & DAC resolution Bandwidth

    [R. H. Walden, JSAC (1999), and Proc. CSIC (2008)][A. Khilo et al., Opt. Ex. (2012)]

    SCALING THROUGH MORE LEVELS OR SYMBOL RATE ?

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    59/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    59

    SCALING THROUGH MORE LEVELS OR SYMBOL RATE ?

    PDM 512-QAM

    3 GBaud (54 Gb/s)[Okamoto et al., ECOC10]

    PDM 256-QAM

    4 GBaud (64 Gb/s)[Nakazawa et al., OFC10]

    PDM 64-QAM

    21 GBaud (256 Gb/s)[Gnauck et al., OFC11]

    PDM 16-QAM

    80 GBaud (640 Gb/s)[Raybon et al., IPC12]

    Logarithmic scaling Linear scaling

    PDM QPSK

    107 GBaud (448 Gb/s)[Raybon et al., ECOC12]

    [T. Pfau et al., J. Lightwave Technol. 27(8), 989 (2009)]

    [Winzer, J. Lightwave Technol. 30, 3824 (2012)]

    PRACTICAL CONSIDERATIONS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    60/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    60

    PRACTICAL CONSIDERATIONSIMPLEMENTATION PENALTY

    98

    7

    6

    54

    3

    2

    1Bitspersymbol(perpolarization)

    2.0

    1.5

    1.5

    0.70.9

    0.5

    0.6

    3.3

    1.6

    1.0

    2.1

    0.72.4

    1.3

    0.9

    0.6

    2 2

    2.4

    1.7

    2.8

    0.6

    0.5

    4.3

    10 100

    Symbol rate [Gbaud]

    5 20 50

    [Winzer, J. Lightwave Technol. 30, 3824 (2012)]

    EVOLUTION OF HIGH-SPEED TRANSPONDERS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    61/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    61

    EVOLUTION OF HIGH SPEED TRANSPONDERSTOWARDS 1 TB/S ON A SINGLE CARRIER

    Space

    Polarization

    Frequency

    Time Quadrature

    Physical dimensions

    1986 1990 1994 1998 2002 2006

    10

    100

    2010 2014 2018

    1

    2022

    107 Gbaud QPSK

    1000

    Serialinterfacerates[Gb/s]

    107 Gbaud 16-QAM (856 Gb/s)

    72 GBd PDM-64-QAM (864 Gb/s)

    [Randel et al, 2014]

    [Raybon et al, 2013]

    SPECTRAL EFFICIENCY AND ITS PRICE IN SNR

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    62/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    62

    SPECTRAL EFFICIENCY AND ITS PRICE IN SNR

    20 years ago:Device physics set engineeringlimitson spectral efficiency

    Today:Information theory sets fundamentallimitson spectral efficiency

    Simple on-off modulation,direct detection

    Higher-order modulation,coherent detection

    0.01

    0.1

    1

    10

    Spectralefficiency

    perpolarizatio

    n[b/s/Hz]

    1990 1994 1998 2002 2006Year

    2010

    Laser & filter stability

    x-pol

    y-pol

    x-pol

    y-pol

    Modulation

    PDM

    ~1 dB/year

    Detection

    0 5 10 15 20 25

    1

    10

    Required SNR per bit [dB]

    Spectralefficiency

    perpolarization[b/s/Hz]

    3.7 dB 8.8 dB

    2x

    2x16

    64

    4

    256SE = log

    2(1 + SNR)

    LOW SPECTRAL EFFICIENCY MODULATION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    63/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    63

    LOW SPECTRAL EFFICIENCY MODULATION(SPACEBORNE APPLICATIONS)

    0 5 10 15 20 25

    0.1

    1

    10

    SNR (photons)per bit [dB]

    Sp

    ectralefficiency[b/s/Hz]

    Sensitivity-constrained

    Capacity-constrained

    Intensity

    Pulse Position Modulation (PPM)

    1 0 0 1 1 1

    Position within PPM symbolTime

    0 0

    4

    8

    16

    32

    64

    PPM

    256

    LOW SPECTRAL EFFICIENCY MODULATION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    64/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    64

    LOW SPECTRAL EFFICIENCY MODULATION(SPACEBORNE APPLICATIONS)

    0 5 10 15 20 25

    0.1

    1

    10

    SNR (photons)per bit [dB]

    Sp

    ectralefficiency[b/s/Hz]

    Sensitivity-constrained

    Capacity-constrained

    4

    8

    16

    32

    64

    PPM

    256

    Shot-noise limited

    channels

    Intensity

    Pulse Position Modulation (PPM)

    1 0 0 1 1 1

    Position within PPM symbolTime

    0 0

    FROM CLASSICAL TO QUANTUM TECHNIQUES

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    65/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    65

    FROM CLASSICAL TO QUANTUM TECHNIQUES[J. Gordon, Quantum effects in communication systems, Proc. IRE 50, 1898 (1962)]

    [A. S. Holevo, The capacity of a quantum channel with general signal states, Trans. Inf. Theory 44, 269 (1998)]

    0.001 0.01 0.1 1 10 100Spectral efficiency [bits/s/Hz]

    -20

    -10

    0

    10

    Sensitivity[dBbits/photon]

    Linear Shannon

    Photon counting

    Gordon/Holevoquantum capacity

    ???

    Classical Quantum

    [C. Antonelli et al., J. Lightwave Technol. (2014)]

    SOME MORE ADVANCED TRICKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    66/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    66

    [Karlsson & Agrell, ECOC10]

    [Cai et al., ECOC10]

    ISI

    MAP

    SOME MORE ADVANCED TRICKS4D, CODING, SHAPING, OVER-FILTERING

    Whatever you do, Shannon will be the limit[C. E. Shannon, BLTJ (1948)]

    0 5 10 15 20 25

    1

    10

    Required SNR per bit [dB]

    16-QAM

    64-QAM

    4-QAM

    256-QAMConstellationshaping

    Over-filtering

    Coded modulation[Liu et al., OFC12]

    Spectralefficiency[b/s/H

    z]

    ISI: Inter-symbol interference; MAP: Maximum a posteriori

    4-DIMENSIONAL MODULATION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    67/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    67

    4 DIMENSIONAL MODULATIONCLOSER SYMBOL PACKING THROUGH CORRELATIONS

    Re{E}

    4

    Simple 2D example:16-QAM, viewed as 2 independent, orthogonally muxed 4-PAMs

    Im{E}

    Re{E}4

    4

    Im{E}

    Re{E}4

    Im{E}

    + =

    Re{E}4

    4

    Im{E}

    Here, the two dimensionsare no longer independent2D modulationSacrifice SE for performance [Karlsson & Agrell, ECOC10]

    In 4D space:(Ix/Qx/Iy/Qy)

    [H. Buelow et al., OFC 2013]

    + =

    DIGITAL PULSE SHAPING

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    68/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    68

    DIGITAL PULSE SHAPINGPULSE BANDWIDTH AND SPECTRAL EFFICIENCY

    10 dB

    56 GHzSpectrum[dB]

    Frequency

    Spectral efficiency =Information bits

    Signal spectral width

    MODERN OPTICAL TRANSPONDERS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    69/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    69

    MODERN OPTICAL TRANSPONDERSDIGITAL PULSE SHAPING

    DAC

    DAC

    DAC

    DAC

    TransmitDSP

    PDMI/Q-MOD

    TX Laser

    t

    f

    First 200G 16-QAM coherent interfaceAlcatel-Lucent 2013

    Modern coherent transponders use pulse shaping for: Spectral efficiency Pre-compensation of various fiber impairments

    (dispersion, nonlinearity, filtering)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    70/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    70

    4Coherent detection and

    digital signal processing

    COHERENT DETECTION BASICS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    71/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    71

    Local

    Oscillator (LO)

    Signal|ESig(t) + ELO|

    2 = |ESig(t)|2+ |ELO|

    22 Re{ESig(t) ELO e }

    Beat term

    90-deg shifted LO

    Signal

    Second signal quadrature Im{ESig(t) ELO e }

    90-deg hybrid

    Requires signal-LOpolarization alignment

    j2pfIFt+jfSig(t)

    j2pfIFt+jfSig(t)

    COHERENT DETECTION BASICS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    72/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    72

    Local

    Oscillator (LO)

    Signal

    90-deg shifted LO

    Signal

    Local

    Oscillator (LO)

    Signal

    90-deg shifted LO

    Signal

    x-polarization y-polarization

    The good news:Polarization multiplexing

    comes for free

    Polarization-diversity 90-degree hybrid

    COHERENT DETECTION BASICS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    73/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    73

    THE ROLE OF THE INTERMEDIATE FREQUENCY

    Heterodyne Homodyne Intradyne

    Front-end bandwidth ~ 5* Symbol rate Symbol rate ~Symbol rate

    Phase/frequency locking Frequency locking Analog optical PLLDigital electronic PLL

    (free-running LO)

    Spectral sketch

    Constellation sketch

    fIF0 f0 IF

    LocalOscillator (LO)

    f

    Signal|ESig(t) + ELO|2: 2 Re{ESig(t) ELO e }

    Beat term

    Im{E}

    Re{E}

    Im{E}

    Re{E}

    Im{E}

    Re{E}

    j2pfIFt +jfSig(t)

    MODERN COHERENT DETECTION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    74/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    74

    DO AS MUCH AS YOU CAN DIGITALLY, IN CMOS

    LO Local oscillator

    DSP Digital signal processing

    Coherent optical front-end

    Im{E}

    Re{E}

    90 degHybrid

    90 degHybrid

    PBS

    LO laserPBS

    Signal

    In-phase component

    Quadrature component

    In-phase component

    Quadrature component

    x-pol.

    y-pol.

    f0

    PBS Polarization beam splitter

    A/D Analog-to-digital conversion

    x pol.

    y pol.

    MODERN COHERENT DETECTION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    75/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    75

    A/D

    A/D

    A/D

    A/D

    Ix

    Qx

    Iy

    Qy

    Digitization

    HIGH-SPEED A/D CONVERSIONIN THE LAB

    Agilent90000 Q-Series

    160 GS/s @ 63GHz

    LeCroyLabMaster 10Zi

    160 GS/s @ 65 GHzLO Local oscillatorDSP Digital signal processing

    90 degHybrid

    90 degHybrid

    PBS

    LO laserPBS

    Signal

    PBS Polarization beam splitter

    A/D Analog-to-digital conversion

    Coherent optical front-end

    x pol.

    y pol.

    MODERN COHERENT DETECTION

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    76/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    76

    A/D

    A/D

    A/D

    A/D

    Ix

    Qx

    Iy

    Qy

    Digitization

    HIGH-SPEED A/D CONVERSIONON CHIP

    LO Local oscillator

    DSP Digital signal processing

    90 degHybrid

    90 degHybrid

    PBS

    LO laserPBS

    Signal

    PBS Polarization beam splitter

    A/D Analog-to-digital conversion

    Coherent optical front-end

    x pol.

    y pol.

    MAIN COHERENT DSP BUILDING BLOCKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    77/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    77

    Chromaticdispersion

    Front-endcorrec

    tions

    A/D

    A/D

    A/D

    A/D

    +j

    +j

    Ix

    Qx

    Iy

    Qy

    Digital computation ofexp(-j a f2 )

    Transmit pulse Dispersed received pulse Compensated pulse

    Fiber DSP

    MAIN COHERENT DSP BUILDING BLOCKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    78/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    78

    Chromaticdispersion

    Front-endcorrec

    tions

    A/D

    A/D

    A/D

    A/D

    +j

    +j

    Ix

    Qx

    Iy

    Qy

    Digital computation ofexp(-j a f2 )

    Transmit pulse

    Fiber

    with LO phase noise

    Dispersed received pulse

    Received phase

    Ideal

    Compensated pulse

    Local oscillator laser needs to be coherentacross dispersed pulse width

    Electronically enhanced laser phase noise

    [W. Shieh et al., Opt. Exp., vol. 16, 15718 (2008)][C. Xie, Proc. OFC, OMT4 (2009)]

    MAIN COHERENT DSP BUILDING BLOCKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    79/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    79

    Chromaticdispe

    rsion

    Clockrecovery

    Retiming,resam

    pling

    Front-endcorrec

    tions

    A/D

    A/D

    A/D

    A/D

    +j

    +j

    Ix

    Qx

    Iy

    Qy

    PBS

    x

    y Polarization rotationSignal 1

    Signal 2

    Axx

    x + Axy

    y

    Ayxx + Ayyy

    PBSFiber

    Jones matrix inversion

    MAIN COHERENT DSP BUILDING BLOCKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    80/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    80

    Chromaticdispe

    rsion

    Clockrecovery

    Retiming,resam

    pling Hxx

    Hyy

    +

    Hxy

    +

    Hyx

    Front-endcorrec

    tions

    A/D

    A/D

    A/D

    A/D

    +j

    +j

    Ix

    Qx

    Iy

    Qy

    PBS

    x

    y Polarization rotationSignal 1

    Signal 2

    Axx

    x + Axy

    y

    Ayxx + Ayyy

    PBSFiber

    MAIN COHERENT DSP BUILDING BLOCKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    81/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    81

    Chromaticdispe

    rsion

    Clockrecovery

    Retiming,resam

    pling Hxx

    Hyy

    +

    Hxy

    +

    Hyx

    Front-endcorrec

    tions

    A/D

    A/D

    A/D

    A/D

    +j

    +j

    Ix

    Qx

    Iy

    QyFrequencylock

    ing

    Phasetrackin

    g

    Im{E}

    Re{E}f0

    MAIN COHERENT DSP BUILDING BLOCKS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    82/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    82

    [T. Mizuochi et al., Proc. OFC, 2012 ]

    Chromaticdispe

    rsion

    Clockrecovery

    Retiming,resam

    pling Hxx

    Hyy

    +

    Hxy

    +

    Hyx

    Front-endcorrec

    tions

    A/D

    A/D

    A/D

    A/D

    +j

    +j

    Ix

    Qx

    Iy

    QyFrequencylock

    ing

    Phasetrackin

    g

    D

    ecision/Decod

    ing

    A WORD ON FEC IN OPTICAL SYSTEMS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    83/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    83

    FEC

    decoder

    BER = 210-3 BER = 10-16

    -Log(Uncorrected BER)

    -Log(CorrectedBER)

    Hard decision, 7% Overhead

    FEC correction threshold

    Thats how most optical communications engineers view FEC:

    Assumes hard-decision FEC Assumes independent errors

    (sufficient scrambling wrt burst errors)

    Problem:Soft-decision FEC

    A WORD ON SOFT FEC IN OPTICAL SYSTEMS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    84/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    84

    Thats what nonlinearities can do:(Outside the assumptions leading to the Gaussian Noise model)

    [J. Cho et al., Optics Express, 7915 (2012)]

    A WORD ON SOFT FEC IN OPTICAL SYSTEMS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    85/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    85

    Thats what nonlinearities can do:(Outside the assumptions leading to the Gaussian Noise model)

    [A. Leven et al., Phot. Technol. Lett., 1547 (2011)]

    A WORD ON SOFT FEC IN OPTICAL SYSTEMS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    86/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    86

    Back-to-back After 1600-km transmission

    Gaussian-like signal statistics down to ~1E-5 even after 1600-km transmission

    The performance of SD-FEC expected to be fully obtained.

    MAJOR DSP ASIC MILESTONES IN OPTICS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    87/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    87

    2005 2006 2007 2008 2009 2010 201110

    0

    101

    102

    Year

    GateCounts(Million) ~70% per year

    2

    3

    4

    5

    6

    7

    8

    9

    0 10 20 30 40 50 60

    Sample rate [GS/s]

    Numberofbit

    Stated

    ENOB

    Nortel electronic pre-EDC 10G Tx (2005)

    20GS/s DAC

    ADC resolution vs. sample rate

    Nortel 40Gb/s PDM-QPSK (2007)

    20GS/s ADC/DSP

    Alcatel-Lucent 112Gb/s (2010)

    56GS/s ADC/DSP

    70M+ gates

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    88/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    88

    5Multiplexing in optical

    communication systems

    SAME 5 DIMENSIONS FOR MULTIPLEXING

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    89/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    89

    AN EXHAUSTIVE LIST

    Polarization

    Time Quadrature

    Physical dimensions

    FrequencySpace

    t

    f

    O E S C L

    13000

    1400 1500 1600

    0.3

    0.6

    0.9

    1.2

    Wavelength [nm]

    Loss[dB]

    13601260 1460 1530

    1565

    1625

    WAVELENGTH-DIVISION MULTIPLEXING (WDM)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    90/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    90

    Orthogonality through non-overlapping frequency bins (WDM)

    VARIOUS SUPERCHANNEL DEMONSTRATIONS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    91/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    91

    1 Tb/s(2 subcarriers) 16-QAM

    5.2 bit/s/Hz

    3200 km transmission[Raybon et al., IPC12]

    263 GHz

    1.5 Tb/s(8 subcarriers) 16-QAM

    5.7 bit/s/Hz

    5600 km transmission[Liu et al., ECOC12]

    1.2 Tb/s(24 subcarriers) QPSK

    3.74 bit/s/Hz

    7200 km transmission[Chandrasekhar et al., ECOC09]

    300 GHz

    ADC&DAC bandwid th & resolut ion Opt ical paral lel ism

    200 GHz

    1 Tb/s(4 subcarriers) 16-QAM

    5.0 bit/s/Hz

    2400 km transmission[Renaudier et al., OFC12]

    200 GHz

    Few carriers

    High symbol rate

    Large # of carriers

    Lower symbol rateMod.

    f

    Mod.

    Mod.

    Mod.

    Laser

    f

    +

    Laser

    Laser

    Laser

    f

    f

    f

    OFDM IN OPTICAL COMMUNICATIONS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    92/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    92

    Optical OFDM

    f

    All subcarriers modulated individually

    Parallel optical hardware

    f

    Electrical OFDM

    56 Gb/s net rate (65 Gb/s line rate)

    32-QAM per subcarrier[Takahashi et al., OFC09]

    All subcarriers modulated at oncef

    f

    Mod.Laser

    Mod.

    Comb

    ff

    f

    f

    f

    Mod.

    Mod.

    Mod.

    60 GHz

    448 Gb/s (10 subcarrier) 16-QAM5 bit/s/Hz2000 km transm.[X. Liu et al., OFC10]

    65 GHz

    606 Gb/s (10 subcarrier) 32-QAM7 bit/s/Hz2000 km transm.[X. Liu et al., ECOC10]

    1.2 Tb/s (24 subcarrier) QPSK3 bit/s/Hz7200 km transm.[S. Chandrasekhar et al., ECOC09]

    300 GHz

    POLARIZATION-DIVISION MULTIPLEXING (PDM)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    93/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    93

    A standard single-mode fiber supports two orthogonal polarizations

    One can transport independent signals in both polarizations, provided

    that one can separate them again at the receiver in the presence of

    random polarization rotations within the transmission fiber

    Polarization diversity receivers detect both polarizations

    (see section on coherent detection below)

    PDM increases spectral efficiency by a factor of 2

    SPACE-DIVISION MULTIPLEXING (SDM)

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    94/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    94

    Spatially disjoint optical beams are orthogonal

    Multiple fiber strands

    Multi-core fiber

    http://www.occfiber.com/

    Spatially overlapping optical beams can also be orthogonal

    Multiple modes in multi-mode fiber

    provided that one can selectively excite and detect those modes

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    95/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    95

    6Capacity limits

    THE NONLINEAR SHANNON LIMIT

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    96/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    96

    Increasing the signal power (i.e. the SNR) creates signal distortions from fiber

    nonlinearity, eventually limiting system performance

    SNR [dB]

    CapacityC

    [bits/s] Maximum

    capacity

    Signal launch power [dBm]

    Tx Rx

    Distributed Noise

    C = B log2(1 + SNR)

    Nonlinear distortions

    Quantum mechanics dictates a lower bound on amplifier noise

    [R.-J. Essiambre et al., Phys. Rev. Lett. (2008) or J. Lightwave Technol. (2010)]

    AN LOWER BOUND ESTIMATE FOR THE SHANNON LIMIT Assume ring constellations

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    97/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    97

    Assume ring constellations

    Deterministic signal back-propagation to remove (most of the) channel memory

    Numerical solution of nonlinear Schrdinger equation Numerical statistics

    SNR [dB]

    CapacityC

    [bits/s] Maximum

    capacity

    Signal launch power [dBm]

    Tx Rx

    Distributed Noise

    [R.-J. Essiambre et al., Phys. Rev. Lett. (2008) or J. Lightwave Technol. (2010)]

    0 5 10 15 20 25 30 35 40

    SNR (dB)

    Capacityperunitbandwidt

    h

    (bits/s

    /Hz)

    0

    1

    2

    3

    4

    5

    6

    8

    71 ring2 rings4 rings8 rings

    16 rings

    Numerical statistics

    SOME EXAMPLE RESULTS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    98/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    98

    0 5 10 15 20 25 30 35 40

    SNR (dB)

    Capacityperun

    itbandwidth

    (bits/s/Hz)

    0

    1

    2

    3

    4

    5

    6

    8

    7

    1 ring2 rings4 rings8 rings16 rings-0.2 -0.1 0 0.1 0.2

    -0.2

    -0.1

    0

    0.1

    0.2

    Imagpartoffield

    [mW1/

    2]

    Real part of field [ mW1/2

    ]

    -1 -0.5 0 0.5 1

    -1

    -0.5

    0

    0.5

    1

    Real part of field [ mW1/2

    ]

    Imagpartoffield[mW1/

    2]

    -2 -1 0 1 2

    -2

    -1

    0

    1

    2

    Real part of field [ mW1/2

    ]

    Imagpartoffield[m

    W1/

    2]

    R.-J. Essiambre et al., Phys. Rev. Lett. (2008) or J. Lightwave Technol. (2010)

    Note:Capacity maximum occurs at fairly high SNRs

    VARIOUS CONTRIBUTIONS TO CAPACITY

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    99/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    99

    R.-J. Essiambre et al., J. Lightwave Technol. (2010)

    SENSITIVITY ANALYSIS TO FIBER PARAMETERS

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    100/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    100

    Capacity is fairly insensitive to (heroic!)

    improvements of fiber loss, nonlinearity,

    or dispersion

    Dont waste your money improving

    single-mode fiber...

    [R.J.Essiambre and R.W.Tkach, Proc. IEEE, 2012]

    THE RATE-REACH TRADE-OFF IN OPTICAL FIBER

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    101/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    101

    5

    10

    15

    2100 1,000 10,000

    Transmission distance [km]

    Spectralefficiency[b/s/Hz]

    Metro Long-haul Submarine

    25

    50

    75

    10

    C-bandcapa

    city[Tb/s]

    THE RATE-REACH TRADE-OFF IN OPTICAL FIBER

  • 7/25/2019 Tutorial Optical Transmission Systems Peter J Winzer

    102/155

    COPYRIGHT 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

    102

    5

    10

    15

    2100 1,000 10,000

    Transmission distance [km]

    Spectralefficiency[b/s/Hz]

    Metro Long-haul Submarine

    25

    50

    75

    10

    C-bandcapa

    city[Tb/s]