Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

download Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

of 38

Transcript of Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    1/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    Tutorial

    on

    Saptarshi Ghosh

    Thesis Supervisor: Dr. Kumar Vaibhav SrivastavaDepartment of Electrical Engineering 

    Indian Institute of Technology, Kanpur, India

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    2/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    Presentation Outline

    2

    Introduction to Metamaterials

    Overview of Metamaterial Absorbers

    Modeling of Metamaterial Absorber Structure 1

    PEC-PMC modes

    Floquet Modes

    Modeling of Other Metamaterial Absorber Structures

     Conclusion 

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    3/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    Introduction to Metamaterials

    3

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    4/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    Overview of Metamaterial

    4

    Artificial composite materials consisting of structural units smaller thanthe wavelength (λ ) of the incident radiation.

    Conventional material with atoms

    Unit-cell driven metamaterial (size < λ /4)

    Controllable electromagnetic properties(ε, µ, n,…) at desired frequency.

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    5/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    Historical Overview

    1968: Veselago [1] predicted the existence of LHM.

    1996: Realization of negative permittivity practically [2] by Pendry.

    1999: Experimental verification of negative permeability [3] by Pendry. 2000: First Experimental Demonstration of LHM [4] by Smith.

    2001: First realization of Negative Refractive Index [5] by Shelby.

    5

    [1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of µ and ε,” Sov.

    Phys. Uspekhi, Vol. 10, No. 4, pp. 509-514, 1968.

    [2] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic

    microstructure,” Phys. Rev. Lett., Vol. 76, No. 25, pp. 4773-4776, June 1996.[3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced

    nonlinear phenomena,” IEEE Trans. Micr. Theory. Tech., Vol. 47, No. 11, pp. 2075-2084, Nov. 1999.

    [4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with

    simultaneously negative permeability and permittivity,” Phys. Rev. Lett., Vol. 84, No. 18, pp. 4184-4187, 2000.

    [5] R. A.Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,”

    Science, Vol. 292, pp. 77-79, April 2001. 

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    6/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    Metamaterial Absorbers

    6

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    7/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a  n  p  u  r ,   I   N   D   I   A

    [6] P.Saville, “Review of Radar Absorbing Materials,” Defense R & D Canada-Atlantic, Jan. 2005.

    Salisbury Screen

    Conventional Absorbers [6]

    Pyramidal Absorber

    ~λ 

    Wide bandwidth above 90%

    absorption bandwidth

    Disadvantage :

    large thickness and fragile

    Single-band absorber

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    8/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Metamaterial Absorber [7]

    8

    Structure is ultra-thin (λλλλ0 /35) compared to conventional absorbers.

    Effective electromagnetic constitutive parameters (ε eff  and  µeff ) have

    been tailored using unit cell design.

    Absorbers can be made scalable- from microwave, terahertz,infrared, optical frequency range.

    Structures can be easily fabricated using PCB technology. 

    First experimentally realized by Landy et. al. in 2008 [12].

    [7] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,”Phys. Rev. Lett., vol. 100, pp. 207402, May 2008.

    a1 = 4.2 mm, a2 = 12 mm, W = 4 mm,

    G = 0.6 mm, t = 0.6 mm, L = 1.7 mm,

    H = 11.8 mmFR4 substrate thickness = 0.72 mm

    Copper thickness = 0.017 mm

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    9/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Metamaterial Absorber

    9

    When the reflected power (|S11|2) and transmitted power (|S21|

    2) have

    been minimized simultaneously, absorptivity (A) will be maximum.

    2

    21

    2

    11 ||||1 S S  A   −−=

      |S11|2 = 0.01%

    |S21|2 ~ 0.9%

    A = 1-|S11|2-|S21|2 = 96%

    At 11.65 GHz,

    Simulated Absorptivity

    What is the reason behind the absorptivity?

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    10/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Metamaterial Absorber [8]

    10

    When the reflected power (|S11|2) and transmitted power (|S21|

    2)

    have been minimized simultaneously, absorptivity (A) will be

    maximum.

    The design is made such a way that the input impedance is

    matched exactly with the free space impedance.

    Input impedance can be matched with free space impedance by

    controlling the effective material parameters.

    [8] D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from

    inhomogeneous metamaterials,” Phys. Rev. E 71, pp. 036617, 2005.

    2

    21

    2

    11 ||||1 S S  A   −−=

    ε ε 

     µ  µ η 

    ε 

     µ η 

    ε ε 

     µ  µ ω 

    ′′+′

    ′′+′===

     j

     j Z 

    eff 

    eff 

    eff 

    eff 

    00

    0

    0)(

    ( )( ) 221

    2

    11

    2

    21

    2

    110

    11)(

    S S S S  Z 

    −−−+=η ω 

     µ ε    ′=′

    ε    ′′=′′

    at absorption

    frequency

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    11/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Effective Material Parameters [9]

    11

    [9] C. L. Holloway, E. F. Keuster, and A. Dienstfrey, “Characterizing metasurfaces /metafilms: the connection

    between surface susceptibilities and effective material properties,” IEEE Antennas Wireless Propag. Lett., Vol.10, pp. 1507-1511, 2011.

     µ ε    ′≈′   µ ε    ′′≈′′

     

      

     

    ++

    −−+=

    2111

    2111

    0 1

    121

    S S 

    S S 

    d k 

     jeff ε 

     

      

     

    +−

    −++=

    2111

    2111

    0 1

    121

    S S 

    S S 

    d k 

     jeff  µ 

    Re(εeff ): 1.04; Re(µeff ): -1.12 Im(εeff ): 11.06;  Im( µeff ): 8.86

    At

    11.65 GHz

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    12/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Metamaterial Absorber Structure 1

    12

    We are first going to design a single-band metamaterial absorber.

    Metamaterial absorber structures are periodic structures Since metamaterial absorber structures are resonant structures, there must be

    some equivalent capacitances (C) and inductances (L).

    Inductance can be realized by any metallic patch

    Capacitance can be realized by any gap between two metallic patches

    depending on the direction of E-field.

    Points to remember:

     LC  f 

    2

    2

    1

    π ≈

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    13/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Metamaterial Absorber Structure 1

    13

    8 x 8 Array Front View of Unit Cell Side View

    Perspective

    View

    a = 10 mm, w = 0.4 mm,

    l = 6.5 mm, g = 0.2 mm

    Copper thickness = 0.035 mm,FR4 thickness = 1 mm

    (εr =4.25  & tanδ =0.02)

     t

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    14/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    14

    HFSS →Insert the Design → Draw a 3-D rectangular box

    Metamaterial Absorber Structure 1

    3D box

    Properties window

    Project manager

    Progress windowMessage manager

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    15/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Project Variables

    15

    Project variables are applicable

    to a particular project

    Prefixed with “$” sign

    Project variable is applied to all

    the designs inside a project

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    16/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Design Variables

    16

    Design variables are applicable

    to a particular design

    Independent from one design to

    another design

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    17/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Square Metal Ground Plane

    17

    Positional coordinates : 0,0,0

    X-size: 10 mm; Y-size: 10 mm; Z-size: 0.035 mm

    Assign material: copper

    FR-4 Dielectric Substrate

    Positional coordinates : 0,0,0

    X-size: 10 mm; Y-size: 10 mm; Z-size: 0.035 mm

    Assign material: copper

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    18/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Top Metallic Patch

    18

    First draw a square box

    Then, draw a middle line and add it to the square loop

    Lastly, subtract a small gap from the middle line

    Assign material: copper

    Air Box

    An air box needs to be provided for providing boundary condition

    Assign material: vacuum

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    19/38

       S  a  p

       t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    PEC/PMC Boundary condition

    19

    Opposite Current : PEC

    PEC: Opposite CurrentSame Current : PMC

    Same Current : PMC

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    20/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    PEC/PMC Boundary condition

    PEC boundary PMC boundary

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    21/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T

       K  a

      n  p  u  r ,   I   N   D   I   A

    Assigning Wave ports

    21

    Since back side is full metal plane, transmission (S 21) is zero

    No need to put wave port 2 at the back

    Deembedding is not necessary, as we are interested in magnitude of

    reflection coefficient (|S 11|2

    ) only.

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    22/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a

      n  p  u  r ,   I   N   D   I   A

    Analysis

    Solution Frequency: 6 GHz

    Maximum delta S (∆S): 0.02

    Frequency range: 2 GHz – 10 GHz

    Sweep type : Fast/ Interpolating/ Discrete

    Sweep type Solution time Comments

    Fast 7 min 10 sec Quickest, but most inaccurate

    Interpolating 10 min 12 sec Not the quickest, not the most accurate

    Discrete ∼∼∼∼16 hours Slowest, but most accurate

    It is the difference in

    error between two

    consecutive passes

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    23/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a

      n  p  u  r ,   I   N   D   I   A

    Since only 1 port, only 1 S-parameter is available

    Reflection coefficient: S(1,1) in dB or in mag

    Reflection coefficient : -24 dB at 6.07 GHz

    Absorptivity: {1- (mag(S(1,1))2)}*100

    Results

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    24/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    24

    Surface Current Distributions

    Top surface Bottom surface

    Current is flowing in circulating loop around the incident magnetic field

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    25/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    What if the PEC/PMC boundary conditions will be interchanged ?

    Some Common Questions

    PEC boundary PMC boundary

    Reflection dip will change to 7.42 GHz instead of 6.07 GHz

    Reflection coefficient (S 11) will decrease to -9.03 dB instead of -24 dB

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    26/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    Will this PEC/PMC boundary condition be valid if the structure is

    complicated ?

    Will this PEC/PMC boundary condition work when the current flow

    will not be as simple as this ?How to measure the oblique incidence measurement ?

    How to measure the reflectivity when the structure is rotated ?

    Some Common Questions

    Solution Use Floquet Ports

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    27/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    Used exclusively with planar periodic structures

    Example : Planar phased array, frequency selective surface (FSS)

    Floquet Ports

    The analysis of the infinite structure is then accomplished by analyzing a

    single unit cell by providing periodic boundary conditions (PBC).

    PBC

    PBC

    P B C     P

       B   C 

    Periodic in x-y plane

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    28/38

       S  a  p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    Master/ Slave Boundary Condition

    Master 1

    Master 2Slave 1

    Slave 2

    No change in reflection coefficient or reflection dip under normal

    incidence even if there is reversal of master 2 and slave 2 directions

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    29/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    Assigning Floquet ports

    29

    No need to put floquet port 2 at the back

    Deembedding is not necessary, as we are interested in magnitude of

    reflection coefficient (|S 11|2) only.

    We have to provide lattice vectors “a” and “b” to define theperiodicity in x- y plane

    Periodic in x-direction

    Periodic in y-direction

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    30/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    Fast sweep is not available in lower versions of HFSS (upto HFSS 13)

    Result remains almost same

    Absorptivity: {1- (mag(S(1,1))2)}*100

    Analysis and Results

    Any Other advantage ?

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    31/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    There is a phase delay between the Master and Slave boundary

    The default value is zero

    Assign some variables in place of scan angles

    Angle variation

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    32/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K  a  n  p  u  r ,   I   N   D   I   A

    When phi scan angle is varied from 0o to 90o, the incident wave is

    polarized keeping the incident wave propagation direction constant

    Since the structure is asymmetrical, reflection dip will change 

    Polarization Angle variation

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    33/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K

      a  n  p  u  r ,   I   N   D   I   A

    Floquet port has the extra advantage of modal decomposition

    During assigning “floquet port”, the default number of modes is : 2

    These number of modes and type of modes can be manually controlled

    Oblique Incidence

    TE mode TM mode

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    34/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K

      a  n  p  u  r ,   I   N   D   I   A

    Variation of theta scan angle (θ) from 0o to 90o 

    TE Polarization TM Polarization

    When mode is TE (0,0) When mode is TM (0,0)

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    35/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K

      a  n  p  u  r ,   I   N   D   I   A

    Some Other Examples

    C  L f 

    2

    1

    2

    1

    ×≈

    π 

    Resonant frequency will decrease to 4 GHz whereas the early

    presented structure has a reflection dip at 6 GHz

    However, the structure is still asymmetrical w.r.t. field vector directions

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    36/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K

      a  n  p  u  r ,   I   N   D   I   A

    Some Other Examples (contd.)

    Structure is symmetrical w.r.t.

    incident field vector directions.

    The structure exhibits reflection dip at close to 6 GHz

    Small deviation in frequency from the initial proposed structure is due

    to difference in gap (g) value

    Structure is four-fold symmetrical

    Structure is polarization-insensitive

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    37/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K

      a  n  p  u  r ,   I   N   D   I   A

    Conclusion

    37

    A brief introduction about metamaterial and metamaterial absorber has been

    discussed.

    A single-band metamaterial absorber structure has been studied in detail.

    Different boundary conditions and modes have been investigated to analyze the

    structure. 

    Some other examples have also been discussed. 

  • 8/17/2019 Tutorial on Modeling of Metamaterial Structure in Ansys HFSS

    38/38

       S  a

      p   t  a  r  s   h   i   G   h  o  s   h ,

       I   I   T   K

      a  n  p  u  r ,   I   N   D   I   A

    38

    Thank You