Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the...

32
Turing instability of electrical discharges Sh. Amiranashvili August 27, 2007

Transcript of Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the...

Page 1: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Turing instability of electrical discharges

Sh. Amiranashvili

August 27, 2007

Page 2: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Institute of Applied Physics at Münster

Johannes LavenWeifeng ShangLars StollenwerkHans-Georg PurwinsHendrik BödekerSvetlana Gurevich

100 % Experiment

100 % Theory

Page 3: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Outline

1 Experimental data

2 Turing instability and RD patterns

3 Applications to the glow discharge

Page 4: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Part I. Experimental data

+-

There are more things between cathode and anode than aredreamt in your philosophy.

H. Raether

Page 5: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Rubens, 1940

Formation of the anode spots in the glow discharge mode.

-+

Spherical cathode R = 26.7 cm;Spherical anode r = 5.1 cm;Nitrogen p ∼ 1 Torr;Current I ∼ 500 mA.

A homogeneous anode glow is unstable and evolves to thesymmetric arrangements of current spots.

Page 6: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Anode spots (Rubens, 1940)

Page 7: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Schoenbach, 2004

Formation of the cathode spots in the glow discharge mode.

1 Cathode d = 100 µm;2 Spacer 250 µm;3 Hollow anode D = 1.5 mm;4 Xenon p ∼ 200 Torr.

A homogeneous cathode glow is unstable and evolves to thesymmetric arrangements of current spots.

Page 8: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Cathode spots (Schoenbach, 2004)

Theory: Benilov1986, 2007

Page 9: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Cathode vs anode spots, Nasuno, 2003

Nitrogen, d ∼ 100 µm, p ∼ 40 Torr, sandwich-like geometry.

Page 10: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Maxwell time

Metalτm → 0

Dielectric

τm →∞

High-ohmic barrier

τm = ε0ρ ∼ τi

Page 11: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Purwins group at Münster

Semiconductor

Electrode

Current spots

Glass

Camera

Light

Us

R

Gas

CCD

Electrode

Gas, e.g.: N2 0.5 mm 100 Torr

Cathode: GaAs 0.5 mm 107 Ω cm

Page 12: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Par t II. RD systems

un-1Jn un

Jn+1 un+1

dun

dt= Qn + Jn - Jn+1

Qn = f (un)

Jn ∼ un−1 − un

Jn+1 ∼ un − un+1

A discrete RD equation

dun

dt= f (un) + un−1 − 2un + un+1

Page 13: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

One component RD systems

Fisher, Kolmogorov 1937

∂tu = D∂2x u + f (u)

e.g.,

f (u) = u − u3

Local evolution

∂tu(x , t) = f (u)

u= 0 u= 1u= -1 u -2 -1 1 2

-2

-1

1

2

3

4

x

u

Page 14: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Free energy

Stable

Stable

Connected stable states;Fronts propagation;Phase transitions, flames, etc.

Free energy always reduces

∂tu = −δFδu

F[u] =

∫ [D(∂xu)2

2+ F (u)

]dnx

withF ′(u) = −f (u) ∂tF < 0

Page 15: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

“The chemical basis of morphogenesis”

Turing, 1952

∂tu = Du∂2x u + f (u, v)

∂tv = Dv∂2x v + g(u, v)

Reaction part

dudt

= f (u, v) anddvdt

= g(u, v)

Problem

How stability of a stationary state is affected by diffusion?

Page 16: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Prey-Predator Model

Linearized uniform system

dudt

= αu − βv

dvdt

= γu − δv

Stability conditions

α < δ

αδ < βγ

Page 17: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Slow preys, fast predators

Linearized full system

∂u∂t

= Du∂2x u + αu − βv

∂v∂t

= Dv∂2x v + γu − δv

The most important instabilitycondition

Du < Dv

(to be revised).

Page 18: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Stability analysis

Linearized full system is considered for u ∼ eikx , v ∼ eikx

dudt

= αu − βv

dvdt

= γu − δv

duk

dt= (α− Duk2)uk − βvk

dvk

dt= γuk − (δ + Dv k2)vk

Stability conditions

α < δ

αδ < βγ

α− Duk2 < δ + Duk2

(α− Duk2)(δ + Duk2) < βγ

Page 19: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Turing instability

αδ < βγ, but (α− Duk2)(δ + Dv k2) > βγ

maxk

[αδ + (αDv − δDu)k2 − (Duk2)(Dv k2)

]> βγ

A necessary condition

αDv > δDuk0

k

Α∆

ΒΓ

A finite space scale

Page 20: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Resume

Parametersα, β, γ, δ, Du, Dv

Citeria

α < δ “Sp” criterion

αδ < βγ “Det” criterion

αδ + DuDv k20 > βγ No simple interpretation

αDv > δDu Slow preys, fast predators

The most dangerous mode: k20 =

αDv − δDu

2DuDv

Page 21: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

An example

Equations

∂tu = D∂2x u + αu − βv

∂tv = ∂2x v + u − v

Criteria

D < α < 1

α < β < α +(α− D)2

4D

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Α

Β

D = 0.9

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Α

Β

D = 0.1

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Page 22: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Nonlinear stage of instability

∂tu = D∂2x u + αu − βv −u3︸︷︷︸

stab.

∂tv = ∂2x v + u − v

Two space dimensions

Spatial structureDifferent symmetriesSpace scaleDissipative solitons

Turing pattern

Page 23: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Part III. Applications

To which extent the concept ofTuring patterns can be used to ex-plain self-organization of glows?

+-

Page 24: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Key processes

Particle driftIonizationGamma process

E.g., 106 avalanchespermanently coexistin the gas gap.

E

A seed electron Ionization Gamma process

Page 25: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Transport equations

Continuity equation∂tn +∇Γ = Q

+ -+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

++

+

--

-

-

-

-

-

-

0 d zd+dc

j jc

E Ec

+ -

bi E -beE

j=j

A

j=j

C

j=j

B

Flux model

Γ = drift + diffusion

Source model

Q = ionization

Page 26: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Physical ideas

E

Average velocity

vdrift = b E

Particle flux

Γ = n vdrift − D∇n

Impact ionization(dndt

)ionization

= α(E) Γe

Page 27: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Mathematical model for gas

Particles

∂tne +∇Γe = Qe

∂tni +∇Γi = Qi

Source

Qe = α(E) Γe

Qi = α(E) Γe

Fluxes

Γe = −nebeE− De∇ne

Γi = +nibiE− Di∇ni

Field

E = −∇ϕ

ε0∇2ϕ = −q(ni − ne)

Drift dominates over diffusion!

Page 28: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Reduction idea

Separation of scales:

d = 0.1–0.5 mm and D ∼ 1 mm

Cathode

Anode

A locally 1D solution.A continuous set of 1Dsolutions is required.

CVC

Ugas = U(I)

Page 29: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Procedure

General formulation:

L0(∂z)u = L1(∂x , ∂y , ∂t )u

1D solution

L0(∂z)u = 0 → u = ueq(z,C)

Perturbation

u = ueq(z,C(x , y , t)

)+ u(x , y , z, t)

Compatibility

L′0(∂z)u = L1(∂x , ∂y , ∂t )ueq︸ ︷︷ ︸A singular equation

→ 〈 Projector |L1ueq(z,C)〉 = 0

Page 30: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Reduced equations

+ -+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

++

+

--

-

-

-

-

-

-

0 d zd+dc

j jc

E Ec

+ -

bi E -beEj=j

A

j=j

C

j=j

B

“Prey”

jz(x , y , t)

“Predator”

δU = Ugas(x , y , t)−Ub

∂t jz = Debi

be∇2jz +

τi

(α′bδU +

α′′bτ2i d

24ε20j2z

)jz

∂tδU =d2

c3τc∇2δU +

Us − Ub − δUτc

− jzc

Page 31: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Normalized form

A two-component reaction-diffusion system:

“current” u(x , y , t)“voltage” v(x , y , t)

τ∂tu = L2∇2u + (v + ηu2)u

∂tv = ∇2v + s − u − v

E.g., for the transient oscillations (current vs time)

10 20 30 40

0.2

0.4

0.6

0.82 4 6 8 10

0.2

0.4

0.6

0.8

1.2

Page 32: Turing instability of electrical discharges · 2017. 4. 20. · Schoenbach, 2004 Formation of the cathode spots in the glow discharge mode. 1 Cathode d = 100 m; 2 Spacer 250 m; 3

Results

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tow

nsen

dm

ode

Glo

wm

ode

Η

LAn example for τ = 1 and s = 1

∂tu = L2∇2u + (v + ηu2)u

∂tv = ∇2v + 1− u − v

MechanismInstability thresholdSpatial scaleInitial dynamics