Turbulent Brownian Coagulation Model

download Turbulent Brownian Coagulation Model

of 17

Transcript of Turbulent Brownian Coagulation Model

  • 8/14/2019 Turbulent Brownian Coagulation Model

    1/17

  • 8/14/2019 Turbulent Brownian Coagulation Model

    2/17

    INTRODUCTION

    MEAN FIELD COAGULATION

    MODEL

    RESULTS

    CONCLUSIONS

    TOPICS

  • 8/14/2019 Turbulent Brownian Coagulation Model

    3/17

  • 8/14/2019 Turbulent Brownian Coagulation Model

    4/17

    diffusion

    coagulation

    nucleation

    condensation

    sedimentation

    INTRODUCTION

  • 8/14/2019 Turbulent Brownian Coagulation Model

    5/17

    Brownian motion (~ 0.001 a 1 m)Turbulent motion (~ 1 a 10 m)

    Differential sedimentation ( > 10 m )

    COAGULATION

    Process by which some of the aerosol particles collide with each

    other and they join to form larger particles

    =+

    =i

    kiikkji

    jiijk

    nnnndt

    dn

    21

    Monodisperse sizedistribution

    All the particles are

    spherical

    Only binary collisions

    These collisions conserve mass andvolume

    All collisions produce coagulation

    Smoluchowsky (1917)

  • 8/14/2019 Turbulent Brownian Coagulation Model

    6/17

    =

    jk

    i

    0

    50

    100

    150

    200

    Diameter intervals

    0.001 0.01 0.02 0.03 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5 10

    - Only binary collisions, conservemass and volume

    - Polydisperse size distribution

    - Aerosol particles are spherical

    - All collisions coagulation

    MEAN FIELD COAGULATION MODEL (MFC)

  • 8/14/2019 Turbulent Brownian Coagulation Model

    7/17

    The probability that one collision takes place in the system.

    The probability that such collision involves particles of

    particular intervals i and j

    The probability Qijk that such collision produces a particle

    in a given interval k

    MEAN FIELD COAGULATION MODEL (MFC)

    ==

    jiifnn

    jiifnnDrDrKP

    ji

    jijjiiij

    2...),,,,(

  • 8/14/2019 Turbulent Brownian Coagulation Model

    8/17

    =

    =

    M

    ikikik

    M

    kji,kijij

    kQPQPdt

    dn

    121 1 )(

    =j ki

    MEAN FIELD COAGULATION MODEL (MFC)

  • 8/14/2019 Turbulent Brownian Coagulation Model

    9/17

    TB KKK +=

    )()(4 jijiB DDrrK ++=

    ccajiT wwrrK *)()(3

    8 22

    2/1

    ++

    =

    MEAN FIELD COAGULATION MODEL (MFC)

  • 8/14/2019 Turbulent Brownian Coagulation Model

    10/17

    RESULTS

    Kim et al., 2003

    NaCl aerosol

    Diameters: 0.050, 0.115 m

    Duration: 1800 3000 s

    Sample time: 300 350 s.

    Rooker and Davies, 1979

    CaCO3 aerosol

    Diameter interval: 0.005 0.030 m

    Duration: 1800 s

    Sample time: 300 - 400 s.

    Simulation of brownian coagulation

  • 8/14/2019 Turbulent Brownian Coagulation Model

    11/17

    SIMULATION OF BROWNIAN COAGULATIONKim et al., 2003

    Experimental data MFC model - Brownian Kernel

    0 1000 2000 3000

    TIME (s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    N/No

    0.050 m

    0 400 800 1200 1600

    TIME (s)

    0.2

    0.4

    0.6

    0.8

    1

    N

    /No

    0.115 m

  • 8/14/2019 Turbulent Brownian Coagulation Model

    12/17

    0 400 800 1200 1600 2000

    TIME (s)

    0.6

    0.7

    0.8

    0.9

    1

    N

    /No

    C50

    0 400 800 1200 1600 2000

    TIME (s)

    0.2

    0.4

    0.6

    0.8

    1

    N

    /No

    C90

    Rooker and Davies, 1979

    Experimental data MFC model - Brownian Kernel

    SIMULATION OF BROWNIAN COAGULATION

  • 8/14/2019 Turbulent Brownian Coagulation Model

    13/17

  • 8/14/2019 Turbulent Brownian Coagulation Model

    14/17

    Experimental data MFC model - Turbulent Kernel by Kruis and Kusters (1997)

    0 100 200 300

    TIME (s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    N

    /No

    1800 rpm

    = 810,000 cm2 s-3

    c= 3.5

    SIMULATION OF TURBULENT BROWNIAN

    COAGULATION

    0 100 200 300 400 500

    TIME (s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    N

    /No

    600 rpm

    = 30,000 cm2 s-3

    c= 1.0

  • 8/14/2019 Turbulent Brownian Coagulation Model

    15/17

    CONCLUSIONS

    The Mean Field Coagulation model (MFC) simulates, in asimple form, the coagulation of polydispersed aerosols.

    The simulation experiments showed that the MFC modelreproduces satisfactorily the experimental data of pure

    brownian and brownian turbulent coagulation.

    The MFC model takes into account the polydisperse nature ofthe aerosol. It is simulated with a probability function, Qij

    k,that conserves the aerosol volume.

  • 8/14/2019 Turbulent Brownian Coagulation Model

    16/17

    Thank you for your attention

  • 8/14/2019 Turbulent Brownian Coagulation Model

    17/17

    Kim D. S., Park S. H., Song Y. M., Kim D. H., Lee K. W. (2003).

    Brownian coagulation of polydisperse aerosols in the transitionregime. Journal of Aerosol Science, Vol. 34(7):859-868.

    Kruis F. E., Kusters K. A. (1997). The collision rate of particles

    in turbulent flow. Chem. Eng. Comm., Vol. 158:201-230.

    Okuyama K. Kousaka Y., Kida Yoshinori y Yoshida Tetsuo.

    (1977). Turbulent coagulation of aerosols in a stirred tank.

    Journal of Chemical Engineering of Japan, Vol. 10(2):142-147.

    Rooker S. J., Davies C. N. (1979). Measurement of thecoagulation rate of a high Knudsen number aerosol withallowance for wall losses. Journal of Aerosol Science, Vol.10:139-150.

    REFERENCES