Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium...

24

Transcript of Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium...

Page 1: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:
Page 2: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Tuesday, April 5th: “A” DayAgenda

ACT sample test #3Begin chapter 14: “Chemical Equilibrium”Homework:

Section 14.1 review, pg. 501: #1-5Concept Review: “Reversible Reactions and

Equilibrium”Be ready for a quiz covering

section 14.1 next time!

Page 3: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Completion Reactions

If enough oxygen gas is provided for the following reaction, almost all of the sulfur will react:

S8(s) + 8 O2(g) → 8 SO2(g)

Reactions such as this one, in which almost all of the reactants react, are called completion reactions.

Page 4: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Reversible ReactionsIn other reactions, called reversible reactions,

the products can re-form reactants.

Reversible reaction: a chemical reaction in which the products re-form the original reactants.

Another way to think about reversible reactions is that they form both products and reactants.

Page 5: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Reversible Reactions Reach EquilibriumOne reversible reaction occurs when you mix

solutions of calcium chloride and sodium sulfate:

CaCl2(aq) + Na2SO4(aq) → CaSO4(s) + 2 NaCl(aq)

Because Na+ and Cl- are spectator ions, the net ionic equation best describes what happens.

Ca 2+ (aq) + SO4 2- (aq) CaSO4 (s)

Page 6: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Reversible Reactions Reach Equilibrium

Solid calcium sulfate, the product, can break down to make calcium ions and sulfate ions in a reaction that is the reverse of the previous one.

CaSO4 (s) Ca2+ (aq) + SO42- (aq)

Use arrows that point in opposite directions when writing a chemical equation for a reversible reaction.

Ca 2+ (aq) + SO4 2- (aq) CaSO4 (s)

Page 7: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Chemical EquilibriumThe reactions occur at the same rate after the initial

mixing of CaCl2 and Na2SO4.

The amounts of the products and reactants do not change.

Reactions in which the forward and reverse reaction rates are equal are at chemical equilibrium.

Chemical Equilibrium: a state of balance in which the rate of a forward reaction equals the rate of the reverse reaction and the concentrations of products and reactants remains unchanged.

Page 8: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Opposing Reaction Rates are Equal at Equilibrium

The reaction of hydrogen, H2, and iodine, I2, to form hydrogen iodide, HI, reaches chemical equilibrium.

H2 (g) + I2 (g) 2 HI (g)

At first, only a very small fraction of the collisions between H2 and I2 result in the formation of HI.

H2(g) + I2(g) → 2 HI(g)

Page 9: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Opposing Reaction Rates are Equal at Equilibrium

After some time, the concentration of HI goes up.

As a result, fewer collisions occur between H2 and I2 molecules, and the rate of the forward reaction drops.

Similarly, in the beginning, few HI molecules exist in the system, so they rarely collide with each other.

Page 10: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Opposing Reaction Rates are Equal at Equilibrium

As more HI molecules are made, they collide more often and form H2 and I2 by the reverse reaction.

2 HI(g) → H2(g) + I2(g)

The greater the number of HI molecules that form, the more often the reverse reaction occurs.

Page 11: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Rate Comparison for H2(g) + I2(g) 2 HI(g)

Page 12: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Opposing Reaction Rates are Equal at Equilibrium

When the forward rate and the reverse rate are equal, the system is at chemical equilibrium.

If you repeated this experiment at the same temperature, starting with a similar amount of pure HI instead of the H2 and I2, the reaction would reach chemical equilibrium again and produce the same concentrations of each substance.

Page 13: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Chemical Equilibria are DynamicIf you drop a ball into a bowl, it will bounce.

When the ball comes to a stop it has reached static equilibrium, a state in which nothing changes.

Chemical equilibrium is different from static equilibrium because it is dynamic.

In a dynamic equilibrium, there is no net change in the system.

Two opposite changes occur at the same time.

Page 14: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Chemical Equilibria are DynamicIn equilibrium, an atom may change from being

part of the products to part of the reactants many times.

But the overall concentrations of products and reactants stay the same.

For chemical equilibrium to be maintained, the rates of the forward and reverse reactions must be equal.

Arrows of equal length also show equilibrium.Reactants Products

Page 15: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Chemical Equilibria are DynamicIn some cases, the equilibrium has a higher

concentration of products than reactants.

This type of equilibrium is also shown by using two arrows.

Reactants Products

The forward reaction has a longer arrow to show that the products are favored.

Page 16: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Another Example of EquilibriaEven when systems are not in equilibrium, they are

continuously changing to try to reach equilibrium. For example, combustion produces carbon dioxide,

CO2, and poisonous carbon monoxide, CO. As CO and CO2 cool after combustion, a reversible reaction produces soot, solid carbon.

2 CO(g) C(s) + CO2(g)This reaction of gases and a solid will reach

chemical equilibrium. Equilibria can involve any state of matter, including

aqueous solutions.

Page 17: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex IonsComplex ion, or coordination compound: the

name given to any metal atom or ion that is bonded to more than one atom or molecule.

Ligands: a molecule or anion that readily bonds to a metal ion. (Ex: NH3, CN-)

Complex ions may be positively charged cations or negatively charged anions.

(Remember, in order to be an ION, an atom or group of atoms has to have a CHARGE.)

Page 18: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex IonsIn this complex ion, [Cu(NH3)4]2+, ammonia

molecules bond to the central copper(II) ion.

What is theligand in thiscomplex ion?

NH3

Page 19: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex Ions Complex ions formed from transition metals

are often deeply colored.

Page 20: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex IonsThe charge on a complex ion is a sum of the

charges on the species from which the complex ion forms.For example, when the cobalt ion, Co2+,

bonds with four Cl− ligands, the total charge is (+2) + 4(−1) = −2.

Metal ions and ligands can form complexes that have no charge. These are not complex ions. Why not?

Complex ions often form in systems that reach equilibrium.

Page 21: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex IonsConsider zinc nitrate dissolving in water:

Zn(NO3)2 (s) Zn2+ (aq) + 2 NO3- (aq)

In the absence of other ligands, water molecules bond with zinc ions. So, this reaction can be written:

Zn(NO3)2(s) + 4H2O [Zn(H2O)4]2+ (aq) + 2NO3- (aq)

(complex ion)

Page 22: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex IonsIf another ligand, such as CN−, is added, the new

system will again reach chemical equilibrium.Both water molecules and cyanide ions “compete”

to bond with zinc ions, as shown in the equation below.

[Zn(H2O)4]2+(aq) + 4CN-(aq) [Zn(CN)4]2-(aq) + 4H2O(l)

All of these ions are colorless, so you cannot see which complex ion has the greater concentration.

Page 23: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Equilibria Involving Complex IonsIn the chemical equilibrium of nickel ions,

ammonia, and water, the complex ions have different colors.

You can tell which ion has the greater concentration based on color:[Ni(H2O)6]2+(aq) + 6NH3(aq) [Ni(NH3)6]2+(aq) + 6H20(l)

Green Blue-violetThe starting concentration of NH3 will determine

which one will have the greater concentration.

Page 24: Tuesday, April 5 th : A Day Agenda ACT sample test #3 Begin chapter 14: Chemical Equilibrium Homework: Section 14.1 review, pg. 501: #1-5 Concept Review:

Homework

Section 14.1 review, pg. 501: #1-5Concept Review: “Reversible Reactions and

Equilibrium”

Quiz over this section next time…